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ABSTRACT. Let $f$ be a diffeomorphism of a manifold having a compact
invariant set with dominated splitting. Some lower and upper bounds
on the Hausdorff dimension of saturated sets are given in terms of the
Lyapunov exponents and the entropy.

Let $M$ be a compact metric space and $f$ : $Marrow M$ be a continuous map
of $M$ . Given a continuous function $\varphi$ : $Marrow \mathbb{R}$ , we consider the set

$K_{\alpha}= \{x\in M:\lim_{narrow+\infty}\frac{1}{n}\sum_{i=0}^{n-1}\varphi(f^{i}x)=\alpha\}$

for $\alpha\in \mathbb{R}$ , which is called the level set of the Birkhoff averages of $\varphi$ . The
Birkhoff ergodic theorem tells us that when $\mu$ is an ergodic $f$-invariant prob-
ability measure, the $\mu$-measure of $K_{\alpha}$ is equal to 1 for $\alpha=\int\varphi d\mu$ , and $0$ for
any other $\alpha\in \mathbb{R}$ . However, the multifractal analysis assures that for sev-
eral important dynamical systems $f$ and generic $\varphi$ , there exist uncountably
many values of $\alpha$ such that the ‘sizes’ of $K_{\alpha}$ are not small in terms of the
dimension and of the entropy (see, e.g., [4], [8], [12], [13]). For example, if
$M$ is a repeller of an expanding, $C^{1+\delta}$-conformal mixing map $f$ , then the
following equation holds:

(0.1) $\dim_{H}(K_{\alpha})=\max\{\frac{h_{\mu}(f)}{\int\log||D_{x}f\Vert d\mu}$ : $\int\varphi d\mu=\alpha\}$

where $h_{\mu}(f)$ is the measure theoretical entropy of $\mu,$ $\Vert D_{x}$fll is the operator
norm of the differential $D_{x}f$ , and $\dim_{H}$ is the Hausdorff dimension ([8]).

In this paper we deal with the Hausdorff dimension of some saturated
sets for diffeomorphisms having a compact invariant set with dominated
splitting. Our purpose here is twofold: Firstly, we consider saturated sets
instead of the level sets of the Birkhoff averages. Secondly, we get rid of the
assumptions of the uniform hyperbolicity (or expansion) and the conformal-
ity of $f$ . From now on we consider a $C^{2}$ diffeomorphism $f$ : $Marrow M$ of a
compact smooth Riemannian manifold $M$ .
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To investigate time averages along orbits we introduce the empirical mea-
sure of order $n$ of $x\in M$ , which is defined by

$\delta_{n}(x)=\frac{1}{n}\sum_{i=0}^{n-1}\delta_{f^{i}(x)}$ ,

where $\delta_{y}$ is the Dirac measure at $y\in M$ . And we denote as $V(x)$ the
limit-point set of the sequence $\{\delta_{n}(x)\}_{n\in N}$ in the collection $M(M)$ of all
probability measures on $M$ . A subset $D\subset M$ is said to be saturated if
$x\in M$ satisfies $V(x)=V(y)$ for some $y\in D$ , then $x\in D$ . We remark that
the level set $K_{\alpha}$ is saturated. This is a simple consequence of the fact that
$x\in K_{\alpha}$ if and only if every $\mu\in V(x)$ satisfies $\int\varphi d\mu=\alpha$ . In this paper we
shall consider more general saturated sets defined by

$G(K)=\{x\in M:V(x)\subset K\}$

for some closed set $K$ in the collection $\mathcal{M}_{f}(M)$ of all $f$-invariant probability
measures on $M$ . With this notation we can write

$K_{\alpha}=G( \{\mu\in\Lambda t_{f}(M):\int\varphi d\mu=\alpha\})$ .

In the case when $K=\{\mu\}$ , we write simply $G_{\mu}$ .
A compact $f$-invariant set $\Lambda$ is said to be an isolating set if there is an open

neighborhood $U\supset\Lambda$ (called an isolating block) such that $\Lambda=\bigcap_{n\in \mathbb{Z}}f^{n}(U)$ .
We say that an isolating set $\Lambda$ admits a dominated splitting if there exist
a continuous $Df$-invariant splitting $E^{cs}\oplus E^{cu}$ of the tangent bundle of $M$

over $\Lambda$ and a constant $0<\lambda<1$ satisfying
$\Vert Df|E^{cs}(x)\Vert\cdot\Vert(Df|E^{cu}(x))^{-1}\Vert\leq\lambda$ ,

for all $x\in\Lambda$ and $n\geq 1$ . Moreover, to avoid complication we impose
additional assumptions as follows:

(1) if $x\in U$ and $f(x)\not\in U$ then $f^{n}(x)\not\in U$ for every $n\in N$ , and
(2) the dimension of $E^{cs}(x)$ does not depend on $x\in\Lambda$ .

Hereafter, the dimension of $E^{cs}$ will be denoted by $d^{s}$ . The domination
condition of the splitting is a weaker form of the uniform hyperbolicity, and
its statistical properties were intensively studied in several papers (cf. [1],
[2], [5], [7], [14] $)$ . On the other hand, to the best of our knowledge, the
multifractal analysis has not been studied under the domination condition.

In the present paper we consider a new class of invariant measures instead
of hyperbolic measures. Let $\mathcal{M}_{f}(\Lambda)$ be the set of all $f$-invariant probability
measures on an isolating set $\Lambda$ with dominated splitting. For $\mu\in M_{f}(\Lambda)$ ,
by the Kingman sub-additive ergodic theorem [10], the following limits exist
for $\mu$-almost every $x\in M$ :

$\chi_{1}(x)=\lim\underline{1}_{\log\Vert D_{x}f^{n}|E^{cu}\Vert}$ ,
$narrow\infty n$

$\chi_{c}(x)=\lim_{narrow\infty}\frac{1}{n}\log\Vert D_{f^{n}x}f^{-n}|E^{cu}\Vert^{-1}$ ,
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$\chi_{s}(x)=\lim_{narrow\infty}\frac{1}{n}\log\Vert D_{x}f^{n}|E^{cs}\Vert$ .

Using these characteristics we define a subset $\mathcal{H}_{f}(\Lambda)$ of $\mathcal{M}_{f}(\Lambda)$ as follows:

$\mathcal{H}_{f}(\Lambda)=\{\mu\in\lambda 4_{f}(\Lambda):\chi_{C}(\mu)>0>\chi_{s}(\mu)\}$ .

Here we set

$\chi_{\sigma}(\mu)=\int_{M}\chi_{\sigma}(x)d\mu(x)(\sigma=1, c, s)$ .

Then we have the following:

Theorem 0.1. $\mathcal{H}_{f}(\Lambda)$ is open in $\prime W_{f}(\Lambda)$ .

To state our main theorem, we use the notion of topological entropy of
non-compact sets which was defined by Bowen ([6]). Recently Pfister and
Sullivan [12] showed that

$\sup\{h_{top}(f, G_{\mu}) : \mu\in K\}\leq h_{top}(f, G(K))\leq\sup\{h_{\mu}(f) : \mu\in K\}$ ,

where $h_{top}(f, Z)$ is the topological entropy of $Z\subset M$ . Our main theorem
gives lower and upper bounds on the Hausdorff dimension of $G(K)$ as follows:

Theorem 0.2. Let $f:Marrow M$ be a $C^{2}$ diffeomorphism exhibiting an iso-
lating set $\Lambda$ with a dominated splitting which satisfies the conditions (1) and
(2). If $K$ is a closed subset contained in $\mathcal{H}_{f}(\Lambda)$ and satisfies that $G_{\mu}\neq\emptyset$

for some $\mu\in K$ , then we have

$d^{s}+ \sup_{\mu\in K}\{\frac{h_{top}(f,G_{\mu})}{\chi_{1}(\mu)}\}\leq\dim_{H}G(K)\leq d^{s}+\sup_{\mu\in K}\{\frac{h_{\mu}(f)}{\chi_{c}(\mu)}\}$ .

In the case when $K=\{\mu\}$ , we can obtain an upper bound by using the
topological entropy of $G_{\mu}$ .

Theorem 0.3. Let $f$ and $\Lambda$ be as in Theorem 0.2. For $\mu\in \mathcal{H}_{f}(\Lambda)$ with
$G_{\mu}\neq\emptyset$ , we have

$d^{s}+ \frac{h_{top}(f,G_{\mu})}{\chi_{1}(\mu)}\leq\dim_{H}G_{\mu}\leq d^{s}+\frac{h_{top}(f,G_{\mu})}{\chi_{c}(\mu)}$.

By the result of [9] we can give a sufficient condition for the equality to
hold.

Theorem 0.4. Let $f$ and $\Lambda$ be as in Theorem 0.2. If $K$ is a closed subset
of $\mathcal{H}_{f}(\Lambda)$ such that for every $\mu\in K$

(a) $\chi_{I}(\mu)=\chi_{c}(\mu)$ and
(b) $\mu$ is hyperbolic and satisfies the almost tmnsversality condition,

then we have

$\dim_{H}G(K)=d^{s}+\sup_{\mu\in K}\{\frac{h_{\mu}(f)}{\chi_{1}(\mu)}\}$ .
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Here the hyperbolicity and the almost transversality of invariant measures
are defined as follows: A point $x\in\Lambda$ is said to be Lyapunov regular if there
exist real numbers $\chi_{1}(x)>\chi_{2}(x)>\cdots>\chi_{r(x)}(x)$ and a $D_{x}f$-invariant
decomposition $T_{x}M=E_{1}(x)\oplus E_{2}(x)\oplus\cdots\oplus E_{r(x)}(x)$ such that for each
$i=1,2,$ $\ldots,$

$r(x)$

$\lim_{narrow\pm\infty}\frac{1}{n}\log\Vert D_{x}f^{n}(v)\Vert=\chi_{i}(x)$ $(v\in E_{i}(x)\backslash \{0\})$

exists, and

$\lim_{narrow\pm\infty}\frac{1}{n}\log|\det(D_{x}f^{n})|=\sum_{i=1}^{r(x)}\chi_{i}(x)\dim E_{i}(x)$ .

By the multiplicative ergodic theorem ([11]) $\Gamma$ has full $\mu$-measure. The
numbers $\chi_{i}(x)$ are called the Lyapunov exponents of $f$ at the point $x$ . We call
the measure $\mu$ hyperbolic if none of the Lyapunov exponents for $\mu$ vanish and
there exist Lyapunov exponents with different signs for $\mu$-almost everywhere.

For $x\in\Gamma$ , we define the unstable and stable manifolds at $x$ as

$\mathcal{W}^{u}(x)=\{y\in M:\lim_{narrow}\sup_{\infty}\frac{1}{n}\log d(f^{-n}(x), f^{-n}(y))<0\}$ ,

$\mathcal{W}^{s}(x)=\{y\in M:\lim_{narrow}\sup_{\infty}\frac{1}{n}\log d(f^{n}(x), f^{n}(y))<0\}$ ,

where $d$ is the distance on $M$ induced by the Riemannian metric. Then
$\mathcal{W}^{u}(x)$ and $\mathcal{W}^{s}(x)$ are injectively immersed manifolds satisfying

$T_{x} \mathcal{W}^{u}(x)=\bigoplus_{\chi_{i}(x)>0}E_{i}(x)$
and

$T_{x} \mathcal{W}^{s}(x)=\bigoplus_{\chi_{i}(x)<0}E_{i}(x)$

(see [3]). We say that $\mu$ satisfies the almost tmnsversality condition if for
$\mu\otimes\mu$-almost every pair $(x, y)\in M\cross M$ there exist integers $p,$ $q\in \mathbb{Z}$ and a
point $z\in \mathcal{W}^{u}(f^{p}(x))\cap \mathcal{W}^{s}(f^{q}(y))$ such that

$T_{z}\mathcal{W}^{u}(f^{p}(x))\oplus T_{z}\mathcal{W}^{s}(f^{q}(y))=T_{z}\cdot M$ .
Recently, in [9] we gave some lower bound on the Hausdorff dimension of
$G_{\mu}$ .
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