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HAUSDORFF DIMENSION OF SATURATED SETS FOR
DIFFEOMORPHISMS WITH DOMINATED SPLITTING

NAOYA SUMI (BER EIR)

ABSTRACT. Let f be a diffeomorphism of a manifold having a compact
invariant set with dominated splitting. Some lower and upper bounds
on the Hausdorff dimension of saturated sets are given in terms of the
Lyapunov exponents and the entropy.

Let M be a compact metric space and f : M — M be a continuous map
of M. Given a continuous function ¢ : M — R, we consider the set

n—+o00 1
i=0

n—1
Kaz{xeM: lim lZgo(fix)=a}

for a € R, which is called the level set of the Birkhoff averages of ¢. The
Birkhoff ergodic theorem tells us that when y is an ergodic f-invariant prob-
ability measure, the u-measure of K, is equal to 1 for a = J @du, and 0 for
any other o € R. However, the multifractal analysis assures that for sev-
eral important dynamical systems f and generic ¢, there exist uncountably
many values of o such that the ‘sizes’ of K, are not small in terms of the
dimension and of the entropy (see, e.g., [4], [8], [12], [13]). For example, if
M is a repeller of an expanding, C'*-conformal mixing map f, then the
following equation holds:

| B o _
1) dimsr(Ka) = ma‘x{f oz DafTd ] = "‘}

where h,(f) is the measure theoretical entropy of p, || D, f|| is the operator
norm of the differential D, f, and dimpy is the Hausdorff dimension ([8]).

In this paper we deal with the Hausdorff dimension of some saturated
sets for diffeomorphisms having a compact invariant set with dominated
splitting. Our purpose here is twofold: Firstly, we consider saturated sets
instead of the level sets of the Birkhoff averages. Secondly, we get rid of the
assumptions of the uniform hyperbolicity (or expansion) and the conformal-
ity of f. From now on we consider a C? diffeomorphism f : M — M of a
compact smooth Riemannian manifold M.
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To investigate time averages along orbits we introduce the empirical mea-
sure of order n of £ € M, which is defined by

1 n-1
On(2) = ~ > dfia)s
i=0

where §, is the Dirac measure at y € M. And we denote as V(z) the
limit-point set of the sequence {0n(z)}nen in the collection M(M) of all
probability measures on M. A subset D C M is said to be saturated if
z € M satisfies V(z) = V (y) for some y € D, then z € D. We remark that
the level set K, is saturated. This is a simple consequence of the fact that
z € K, if and only if every u € V(z) satisfies [ @du = a. In this paper we
shall consider more general saturated sets defined by

GK)={zeM:V(z)CK}

for some closed set K in the collection M (M) of all f-invariant probability
measures on M. With this notation we can write

Ka=G({u€Mf(M):/godp=a}).

In the case when K = {u}, we write simply G,.

A compact f-invariant set A is said to be an isolating set if there is an open
neighborhood U D A (called an isolating block) such that A = Npez f(U).
We say that an isolating set A admits a dominated splitting if there exist
a continuous D f-invariant splitting E° @ E°* of the tangent bundle of M
over A and a constant 0 < A < 1 satisfying

IDFIE®(2)|| - I(DFIE(2) "M < A,

for all z € A and n > 1. Moreover, to avoid complication we impose
additional assumptions as follows:

(1) if z € U and f(z) ¢ U then f*(z) g U for every n € N, and

(2) the dimension of E®(z) does not depend on z € A.
Hereafter, the dimension of E° will be denoted by d°. The domination
condition of the splitting is a weaker form of the uniform hyperbolicity, and
its statistical properties were intensively studied in several papers (cf. [1],
[2], [5], [7], [14]). On the other hand, to the best of our knowledge, the
multifractal analysis has not been studied under the domination condition.

In the present paper we consider a new class of invariant measures instead

of hyperbolic measures. Let M¢(A) be the set of all f-invariant probability
measures on an isolating set A with dominated splitting. For u € Myf(A),
by the Kingman sub-additive ergodic theorem [10], the following limits exist
for p-almost every z € M:

1
xi(z) = lim —log || Dz f"|E%l,

1 oy
Xe(z) = lim = log||Dyng f "B,



.1
Xs(z) = lim ~log|| Dz f"|E.
Using these characteristics we define a subset H;(A) of My (A) as follows:
Hp(A) = {pe Ms(A) = xe(p) > 0> xs(w)}-
Here we set

xo (1) = /M xo (@)du(z) (0 = 1,¢,5).

Then we have the following:
Theorem 0.1. H;(A) is open in Ms(A).

To state our main theorem, we use the notion of topological entropy of
non-compact sets which was defined by Bowen ([6]). Recently Pfister and
Sullivan [12] showed that

sup{luop(f, Gu) : 1 € K} < huop(f, G(K)) < sup{hy(f) : u € K},

where hiop(f, Z) is the topological entropy of Z C M. QOur main theorem
gives lower and upper bounds on the Hausdorff dimension of G(K) as follows:

Theorem 0.2. Let f: M — M be a C? diffeomorphism ezhibiting an iso-
lating set A with a dominated splitting which satisfies the conditions (1) and
(2). If K is a closed subset contained in Hy(A) and satisfies that G, # 0
for some p € K, then we have

] h’tO (f7G ) . s h (f)
d +21€1§{——-—-—;1(u)“ }§d1mHG’(K)Sd +Sg§{——x‘:(u)}-

In the case when K = {u}, we can obtain an upper bound by using the
topological entropy of G,.

Theorem 0.3. Let f and A be as in Theorem 0.2. For p € Hy(A) with
Gy # 0, we have

ds + htop(f7 Gu) htop(f, Gp,) .
x1(1) Xc(1)

By the result of [9] we can give a sufficient condition for the equality to
hold.

Theorem 0.4. Let f and A be as in Theorem 0.2. If K is a closed subset
of Hs(A) such that for every p € K

(8) xa(#) = xc(n) and
(b) p is hyperbolic and satisfies the almost transversality condition,

< dimHGu <d+

then we have

. g [Pl
dim GR) =&+ o { X1 (1) } |



Here the hyperbolicity and the almost transversality of invariant measures
are defined as follows: A point x € A is said to be Lyapunov regular if there
exist real numbers x1(z) > x2(z) > --+ > Xp)(z) and a Dy f-invariant
decomposition T, M = E;(z) ® Ea(x) @ -+ @ Er(g)(x) such that for each
i=1,2,...,7(z)

lim > log D)l = xi(e) (v € Ei(x) \ {0))

exists, and
r(z)

lim —logldet( D, f")| =Y xi(z) dim Ei(z).
=1

By the multiplicative ergodic theorem ([11]) T’ has full y-measure. The

numbers x;(z) are called the Lyapunov exponents of f at the point z. We call

the measure u hyperbolic if none of the Lyapunov exponents for p vanish and

there exist Lyapunov exponents with different signs for y-almost everywhere.
For z € I, we define the unstable and stable manifolds at = as

Wh(z) = {y & M: limsup ~ logd(F (), (1) < o} |

We(z) = {y € M: hmsup logd(f”(w) My)) < 0}

where d is the distance on M induced by the Riemannian metric. Then
W(z) and W*(z) are injectively immersed manifolds satisfying

T,WY(z) = P Ei(z) and TW*(z)= @ Ei(a)
xi(z)>0 xi(z)<0
(see [3]). We say that u satisfies the almost transversality condition if for

p ® p-almost every pair (z,y) € M x'M there exist integers p,q € Z and a
point z € W¥(fP(z)) N W*(f?(y)) such that

T.W*(f?(x)) ® T.W°(f(y)) = Tz M.

Recently, in [9] we gave some lower bound on the Hausdorff dimension of
Gy.
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