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1 Introduction

There are various types of orthogonal wavelet with order parameters, e.g.,
Battle-Lemarié wavelet, Daubechies wavelet, Stromberg wavelet (see [1], [2],
[7] and [9]). In particular, [10] showed that the Battle-Lemarié wavelet of
order n converges to the Shannon wavelet as n tends to infinity. Let us
denote the low pass filter, the scaling function and the wavelet of the Battle-
Lemarié by mB(€), ¢BL(x) and ¥PL(z) respectively. This family of the
Battle-Lemarié wavelet interpolates from the (non smooth) Haar wavelet
which has the best localization in time to the (smooth) Shannon wavelet
which has the best localization in frequency. For some applications, the
order parameter n enables us to control the smoothness and the proportion
between the time window and the frequency window.

We shall first explain the constructions of the Haar wavelet and the Meyer
wavelet. In this paper, the low pass filter of the Haar wavelet mBL(¢€) is

denoted also by m¥ (¢) and given by

H _ . BL _ iz &

mil(€)( = mPH()) = e 2 cos 2.

mil (£) is 27-periodic due to the multiplying by e~%/2. We immediately see
that mf(0) = 1 and |mi(€)]2 + |mf (¢ + 7)|? = 1. Then we also get
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The Fourier inverse transform directly gives the Haar scaling function
¢ (z) and wavelet ¥ (z).
Now, let us put

0 for —1< £€<0,
() = qpa(§) for 0<E<1, (1)
1 for &>1,

where p, () is the n-th order polynomial satisfying p,(§) +pn(1 —&) =1 and
pr(0) = 0. For instance,

po(€) =& pi(€) = E2(3—2€), pa(§) = £3(10 — 15¢ + 6¢7).

Then, by neglecting e~*/2 and replacing § by Zv,(Z(¢| — 1) in the argument
of the cosine of mi(£), one will get

7r 3
() = cos (5n (5161 - 1))
Hence, we can construct the Meyer scaling function ¢ () and wavelet ¥ (z)
by

°R

m

on'(€) = ﬁmM (277€) and 4,/ (€) = e’} (—g- 7)o (g),

which belong to C™ due to the irregularity of (1) at the points £ = 0, 1. This
causes polynomial decay of the Meyer wavelet.

Remark 1.1 One can find a Gevrey function ps, such that vy is also a
Gevrey function. Then, the Meyer wavelet would have arbitrary polynomial
decay. But, there does not exist an analytic function p., such that v, is also
an analytic function. Therefore in this construction with (1), it is impossible
to have exponential decay.

2 New family of Haar type

Following [4] and [5], we shall construct a new family of the wavelet interpo-
lating to the Shannon wavelet. Replacing g by g-singg in the argument of
the cosine of mi(¢), we define

mi (€) = cos (g sin® g)
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Here we remark that mf (¢) is 2n-periodic and satisfies m(0) = 1 and
(m3 (€)]? + |m# (€ + )| = 1, since
mi (€ +7) = cos <7—T cos® é) = COS (E — T in? §) = sin (— sin® §)
2 2 2 2 2 2 2
To construct a new wavelet family, let us consider 8, (&) given recursively by

©,(¢) = g and ©,(§) = gsin2 O,-1(¢) for n>2. (2)
Then we also define the 27-periodic function

mi (&) = cos 0, (€) for n > 2.

n

mH (€) satisfies m#(0) = 1. Noting that m (€ 4+ 1) = sin©,(€) still holds,
we can obtain [mX (&)]2+|mZ (£+7)]? = 1. We shall define ¢H(z) and v (x)
by

o0
= [Imfi(27%) and df1() = emit (5 +7) 2 (3).
=1
Letting ¢ (x) and 5% () be the Shannon scaling function and wavelet,
we get the following:

Theorem 2.1 For 2 < g < oo, we have
lim Hcpn — 5 HLq =0 and lim ”wH wfoHHLq =0.

n—oo n—oo

In [10] one can see the corresponding results for the Battle-Lemarié scaling
function and wavelet. Moreover, we also know the decays and regularities of
¢©H and YH (n > 2) as follows:

Theorem 2.2 Let n > 2. The scaling function ¢ and wavelet X have
exponential decays and belong to C*~(Ry;) for some a,, > 0 increasing in the
parameter n.

In conclusion, we observe that the scaling function ¢(z) defined by ¢(&) =
112 j=1 COS (2 sin? (—72I sin? ij—%)) is differentiable in = and also satisfies A,Ay =
0.669 which is near the limit 1/2 by the uncertainty principle, where Ay is
defined by
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Figure 1: graphs of pi, o, o and p3H

Table 1: Regularities of o and

n

2

3

4

5

6

ay, | 0.386

1.133

2.616

5.580

11.508
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Table 2: Time-bandwidth products of the scaling function and wavelet

n

2

3

4

5

6

Do gt

0.926

0.669

0.772

0.947

1.177

Ay Dyn

2.603

2.136

2.500

3.069

5.393
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Table 3: Time-bandwidth products of the scaling functions of Battle-
Lemarié, Meyer and Daubechies

n 1 2 3 [ 4 [ 5
Asrlypr | oo | 0.686 | 0.741 | 0.837 | 0.928
A Ayu | 0.810 [ 0.875 | 0.949 | 1.012 | 1.065
ApAyp | oo | 1.057 | 0.828 [ 0.849 | 0.984

3 New family of Stromberg type

In the previous section, starting from the Haar wavelet and using the recur-
sion (2) we have constructed a new family of the wavelet. A similar procedure
could be done also for other orthonormal wavelets. Now the following ques-
tion arises:

“ Does non-symmetric family of Stromberg type converge to the symmet-
ric Shannon wavelet in our construction?”

So, in this section we shall consider the wavelet starting from the Stréomberg

wavelet.
According to the method in [3], we first derive the low pass filter of the

Stromberg wavelet. Let us put the scaling function

w71 (z) = Zasz(l" — k),

keZ

where Ny(z) is the B-spline defined by

T for 0 <x <1,
No(z)=1Q 2—xz for 1 <z <2
0 otherwise.

By Fourier transform, we get

.- ¢ Sin (5/2).

Hence it follows that
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The orthonormality of the basis {p(z—k) : k € Z} is equivalent to ), . |P(£+
2km)|? = 1. Substituting (3) into this identity yields

'Za e ’kg' <2sm ) m—l.

Therefore, we obtain

g (-3

keZ

here we used the fact that 3, 5 1/(€ + 2km)* = (2sin g)_4(1 — 25sin? ) (see
[6]). Thus, >, 5 axe™*¢ can be written as

—ikE __ 2 € -2
E aie = e¥ 1—- sm ,
~ ( 3 2 )
with a real function 6(¢). To find a suitable 6(§), we use the following lemma:

Lemma 3.1 There ezist a real function 6y(€) and positive constants v; and
o such that

ewo(e)(l 2 5)_% V3

Zsin?2 -
3 2 M + 72e%

Now we shall take 0(§) = 6y(€) given in Lemma 3.1, i.e.,

~ \/§
k€ __
E are ——————71

i§
keZ + T2€

consequently, it follows that

V3 _—ig sin®(£/2) V3

— T = .
T + Y€ (€/2)2 71 + 7oe¥t

G1T(€) = Ny(€)

Thus, the low pass filter of the Stromberg wavelet is obtained by

5ST (9 . 3
my” (€) = AIST( <) = e~ % cos? fnt 7262&’
@17 (€) 2m + 726
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where vy, = ‘[—32'—1 and v, = —‘/%“L—l

Similarly as the previous section, we shall replace % by ©,(£) and define

Y+ ’7262i®"(£)

ST _ —2i0,(8) 2
mST(€) = e cos @n(f)%_‘_%emen(é).

More generally, we can prove the following:

Proposition 3.2 Let ¢ be a MRA wavelet. Suppose that a low pass filter m
associated with the scaling function ¢ has real Fourier coefficients. Assume
that [p(z)], |¥(z)] < C(1+ |z])~1¢, then m, defined by

ma(€) = m (26(6))

satisfies m,(0) = 1 and |m,(€)|> + |mp(é +7)? = 1.

Hence, we can construct new families by change of starting wavelets (e.g.
Franklin wavelet, Daubechies wavelet, etc.). So, the scaling function @57 (z)
and wavelet ¥5T(z) are defined by

257 () =ﬁm§T(z—jg) and 57 (€) =e’f/2m5T(§+”)¢5T(§)-

j=1
As for this family from the Stromberg wavelet, we also get the followings:

Theorem 3.3 For 2 < g < oo, we have

n—oo

lim [lon" = @3], =0 and  lim ||yrT — 3|, = 0.

Theorem 3.4 Let n > 2. The scaling function 37 and wavelet ST have
exponential decays and belong to C°(R,) for some B, > 0 increasing in the
parameter n.

In conclusion, we find that non-symmetric family of Stromberg type
with our construction also converges to the symmetric Shannon wavelet.
Moreover, we observe that the regularity of Stromberg type is better than
Haar type.
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Figure 2: graphs of 57, 37, and 37
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Table 4: Regularities of 57 and 57

n 2 3 4 ) 6
Bn | 1.175 | 2.569 | 5.358 | 10.934 | 22.086
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