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1 Introduction
A sequence $d_{1},$ $d_{2},$

$\ldots,$
$d_{n}$ of nonnegative integers is called graphical if there exists

a simple graph $G$ with vertices $v_{1},$ $v_{2},$ $\ldots,$ $v_{n}$ such that $v_{k}$ has degree $d_{k}$ for each
$k$ . Certainly the conditions $d_{k}\leq n-1$ for all $k$ and $\sum_{k=1}^{n}d_{k}$ being even are
necessary for a sequence to be graphical, but these conditions are not sufficient.
A neccessary and sufficient conditon for a sequence to be graphical was found
by Havel [4] and later rediscoverd by Hakimi [3]. Another characterization
that determines which sequences are graphical is due to Erd\"os and Gallai [1].
Recently, Ttipathi and Vijay [8] improved the result of Erd\"os and Gallai.

The degree set of a graph $G$ is the set $D$ consisting of the distinct degrees
of vertices in $G$ . The question which sets of positive integers are the degree
sets of graphs has been investigated. Kapoor, Polimeni and Wall [7] completely
answered that question, and Thripathi and Vijay [10] have given a short proof
for the theorem of them. Recently, Tripathi and Vijay [9] have given the new
result on the graph with the least order and the least size among graphs with
the given degree set.

We propose a basic ploblem. If a degree sequence is given, we immediately
obtain a unique degree set. Conversely, if a degree set is given, we wonder
whether there is a procedure to obtain graphical degree sequences with the
given degree set. In general, there are infinitely many graphs with the given
degree set. Even if the order is restricted to the least one, we might find several
graphs with the given degree set.

Here, we are in the state to propose the following problem.
Problem For a given degree set, how many degree sequences with the least
order are there?

2 Degree 2-set
Let $p$ and $q$ be the number of vertices and the number of edges of the graph
$G$ , respectively. Let $\mathcal{D}=\{a, b\}$ be a degree set, where $a,$ $b>0$ , and $a>b$ .
We shall employ the notation $(c)_{m}$ to denote $m$ occurrence of the integer $c$ in
the degree sequence. We may denote a degree sequence by $s=(a)_{x}(b)_{y}$ , where
$a>b$ , and $x,$ $y>0$ with $x+y=p$.
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Then we obtain the following equation;

$\{\begin{array}{l}ax+by=2q,x+y=p,x, y>0.\end{array}$ (1)

Since $x$ and $y$ are positive integer solutions, we obtain next necessay condi-
tions

$\{\begin{array}{l}(a-b)|(2q-bp),(a-b)|(ap-2q),2q-bp>0,ap-2q>0.\end{array}$ (2)

Under the conditions (2), we have the solution for the equation (1) as follows,

$\{\begin{array}{l}x=_{a-b}^{\underline{2}_{L^{-}A}}b,y=_{a-b}^{a}-L^{-}2\Delta.\end{array}$ (3)

Because of a condition for graphs, $p\geq a+1$ . Then we consider a graph with
order $p=a+1$ . We set $p=a+1$ for the conditions (2) and obtain the following
conditions;

$\{\begin{array}{l}(a-b)|2q-b(a+1),(a-b)|a(a+1)-2q,2q-b(a+1)>0,a(a+1)-2q>0.\end{array}$ (4)

(5)

From the third and the fourth inequalities of the equation in (4), we secure
the bound for $q$ , that is $\frac{b(a+1)}{2}<q<\frac{a(a+1)}{2}$ .

We have the solution under the conditions (4),

$\{x=\frac{2q-b(a+1)}{a(a+1)-2qa-b}y=\frac{}{a-b},$

(6)

For convenience, we may write $a=k+l$ and $b=k$ , and we have

$\{\frac{y--x=k(k+l}{2}\frac{-2q(k+l)(k+l+1)}{2}\frac{\frac{2q-k(k+l+1)}{(k+\iota)(\iota_{+l+1)}}}{+1)<q<l},$

(7)

Lemma 2.1 The number of vertices with the maximum degree $k+l$ is less than
or equal to the minimum degree $k$ , that is $x\leq k$ .

Lemma 2.2 The number of edges $q$ is less than or equal to $k(k+2l+1)/2$ ,
that is $q\leq k(k+2l+1)/2$ .

By Lemma 2.2, we rewrite the equation (6) as follows;

$\{\frac{x=y--k(k+l+}{2}\frac{-2qk(k+2l+1)}{2}\frac{\frac{2q-k(k+l+1)}{(k+l)(k+l+1)l}}{1)<q\leq l},$
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Theorem 2.1 Let $\mathcal{D}=\{k+l, k\}$ be a degree set, where $k>0$ and $l>0$ . Then,
we have the following properties:

1. $k$ and $l$ are even.
There exist $k$ degree sequences $s=(k+l)_{x}(l)_{y}$ for each $(x, y)=(1, k+l)$ ,
$(2, k+l-1),$ $\ldots,$ $(k, l+1)$ . Moreover if $(x, y)=(1, k+l)$ , a number of
edges $q= \frac{(k+1)(k+l)}{2}$ is minimum, and if $(x, y)=(k, l+1),$ $q= \frac{k(k+2l+1)}{2}$

is the maximum.

2. $k$ is even and $l$ is odd.
There exist $\frac{k}{2}$ degree sequences $s=(k+l)_{x}(l)_{y}$ for each $(x, y)=(2, k+l-1)$ ,
$(4, k+l-3),$ $\ldots,$ $(k, l+1)$ . Moreover if $(x, y)=(2, k+l-1)$ , a number of
edges $q= \frac{k(k+l+1)}{2}+l$ is minimum, and if $(x, y)=(k, l+1),$ $q= \frac{k(k+2l+1)}{2}$

is maximum.

3. $k$ is odd and $l$ is even.
There exist $k$ degree sequences $s=(k+l)_{x}(l)_{y}$ for each $(x, y)=(1, k+l)$ ,
$(2, k+l-1),$ $\ldots,$ $(k, l+1)$ . Moreover if $(x, y)=(1, k+l)$ , a number of
edges $q= \frac{(k+1)(k+l)}{2}$ is minimum, and if $(x, y)=(k, l+1),$ $q= \frac{k(k+2l+1)}{2}$

is maximum.

4. $k$ and $l$ are odd.
There exist $r\frac{k}{2}\rceil$ degree sequences $s=(k+l)_{x}(l)_{y}$ for each $(x, y)=(1, k+l)$ ,
$(3, k+l-2),$ $\ldots,$ $(k, l+1)$ . Moreover if $(x, y)=(1, k+l)$ , the number
of edges $q= \frac{k(k+l+1)}{2}+\frac{l}{2}$ is minimum, and if $(x, y)=(k, l+1),$ $q=$

$\frac{k(k+l+1)}{2}+\frac{k}{2}l$ is maximum.

If $\prime D=\{k+l, k\}$ , then KPW algorithm produces a graph $K_{k}+\overline{K_{l+1}}$ , while
TV algorithm generates a graph $K_{l+1}\cup\overline{K_{k}}$ . These graphs are isomorphic and
have $k(k+2l+1)/2$ edges, and the number of edges is maximum.

Cororally 2.1 Let $\mathcal{D}=\{k, 1\}$ be a degree set, where $k\geq 2$ . Then the gmph
with the degree set CD is unique.

Cororally 2.2 Let $D=\{2k+1,2\}$ be a degree set, where $k\geq 1$ . Then the
gmph with the degree set $D$ is unique.

Therefore, the graph generated by KPW algorithm and TV algorithm is the
above one.

Cororally 2.3 Let $\mathcal{D}=\{2k, 2\}$ be a degree set, where $k\geq 2$ . There exist two
graphs with the degree set D.

The graph generated by KPW algorithm and TV algorithm has the degree
sequence $s=(2k)_{2}(2)_{2k-1}$ , and the number of edges $q=4k-1$ is maximum.

2.1 Example

Let $D=\{9,4\}$ be a degree set. We have $k=4$ and $l=5$ . By Theorem 2.1, we
obtain two degree sequences, (9) (4) and (9) (4) . The sequence (9) (4) has
unique graph, while another has three nonisomorphic graphs $K_{2}+C_{8},$ $K_{2}+2C_{4}$

and $K_{2}+(C_{3}\cup C_{5})$ .
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3 Degree n-set
Let $p$ and $q$ be the number of vertices and the number of edges of the graph
$G$ , respectively. Let $\mathcal{D}=\{d_{1}, d_{2}, \ldots, d_{n}\}$ be a degree set, where $d_{1}>d_{2}>$

. $..>d_{n}>0$ . We shall employ the notation $(c)_{m}$ to denote $m$ occurrence of
the integer $c$ in the degree sequence. We may denote a degree sequence by
$s=(d_{1})_{m_{1}}(d_{2})_{m_{2}},$

$\ldots,$
$(d_{n})_{m_{n}}$ , where $d_{1}>d_{2}>\cdots>d_{n}>0$ and $m_{i}>0$ ,

$1\leq i\leq n$ , with $m_{1}+m_{2}+\cdots+m_{n}=p$ .
Then we obtain the following equation;

$\{\begin{array}{l}d_{1}m_{1}+d_{2}m_{2}+\cdots+d_{n}m_{n}=2q,m_{1}+m_{2}+\cdots+m_{n}=p=d_{1}+1,m_{i}>0, i=1,2, \ldots,n.\end{array}$ (8)

If we have positive integers $m_{i},$ $i=1,2,$ $\ldots,n$ and $q$ which satisfy the Dio-
phantine equation (8), candidates for the number of edges and degree sequences
with a given degree set $\mathcal{D}$ could be found.

In order to find $m_{i},$ $i=1,2,$ $\ldots,$
$n$ , we introduce indefinite equations and we

replaoe $m_{i},i=1,2,$ $\ldots,n$ in the equation (8) by $x_{i},$ $i=1,2,$ $\ldots,n$ , respectively.

$\{\begin{array}{l}d_{1}x_{1}+d_{2}x_{2}+\cdots+d_{n}x_{n}=2q,x_{1}+x_{2}+\cdots+x_{n}=p=d_{1}+1.\end{array}$ (9)

Substituting from

$x_{n}=d_{1}+1-x_{1}-x_{2}-\cdots-x_{n-1}$

to the first equation in (13), we obtain the following equation:

$(d_{1}-d_{n})x_{1}+(d_{2}-d_{n})\mathfrak{X}_{2}+\cdots+(d_{n-1}-d_{n})x_{n-1}$

$=$ $2q-d_{n}(d_{1}+1)$ . (10)

Let $g=gcd((d_{1}-d_{n}), (d_{2}-d_{n}), \cdots, (d_{n-1}-d_{n}))$ . By the chinese remainder
theorem, there exist integers $x_{i},$ $i=1,2,$ $\ldots,$ $n-1$ , which satisfy equation (10)
if and only if $g|2q-d_{n}(d_{1}+1)$ .

Therefore, candidates for the number of edges with the degree set $\mathcal{D}$ satisfy
the condition $2q-d_{n}(d_{1}+1)=kg$ for some integer $k$ and are obtained as follows;

$q= \frac{kg+d_{n}(d_{1}+1)}{2}$ . (11)

Let $g*a_{i}=d_{i}-d_{n},i=1,2,$ $\ldots,n-1$ , and we use $kg=2q-d_{n}(d_{1}+1)$ ,
then the equation (10) is expressed by

$g*a_{1}x_{1}+g*a_{2}x_{2}+\cdots+g*a_{n-1}x_{n-1}=kg$.
Hence, if we find integer solutions $x_{i},$ $i=1,2,$ $\ldots,$ $n-1$ of

$a_{1}x_{1}+a_{2}x_{2}+\cdots+a_{n-1}x_{n-1}=k$ , (12)

then we secure candidates for a multiple number of each degree. Since $m_{i}>0$ ,
$i=1,2,$ $\ldots,n$ , only positive solutions are the candidates for degree sequence.
Equivalently,

$\{\begin{array}{l}a_{1}x_{1}+a_{2}x_{2}+\cdots+a_{n-1}x_{n-1}=k,x_{j}>0,i=1,2, \ldots,n-1.\end{array}$ (13)

This is an integer knapsack problem which is known NP-complete. However,
this problem is solvable in pseudo-polynomial time by dynamic programming
([2],[6]).
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4 Bounds for $k$

First, we evaluate a lower bound for $k$ .

Lemma 4.1

$\frac{1}{g}\sum_{i=1}^{n-1}(d_{i}-d_{n})\leq k$.

We show the next lemma.

Lemma 4.2 The number of vertices with the maximum degree $d_{1}$ is less than
or equal to the minimum degree $d_{n}$ , that is $m_{1}\leq d_{n}$ .

Next, we wonder how large the parameter $k$ is, and try to evaluate it.

Lemma 4.3

$k \leq\frac{1}{g}\{\sum_{i=1}^{n}d_{i}+(d_{2}-1)d_{1}-\{d_{n}+(n-2)\}d_{2}-d_{n}\}$ .

From Lemma 4.1 and Lemma 4.3, we obtain the bounds for $k$ ;

Theorem 4.1

$\frac{1}{g}\sum_{i=1}^{n-1}(d_{i}-d_{n})\leq k\leq\frac{1}{g}\{\sum_{i=1}^{n}d_{i}+(d_{2}-1)d_{1}-\{d_{n}+(n-2)\}d_{2}-d_{n}\}$ .

4.1 Example
We consider degree sequences for a degree set $D=\{8,6,4,2\}$ .

We substitute the degree set $D=\{8,6,4,2\}$ and $gcd(8-2,6-2,4-2)=2$
to the equation (13), then we have the equation

$6x_{1}+4x_{2}+2x_{3}=2k$ ,

where $k$ is a parameter. This equation is reduced to

$3x_{1}+2x_{2}+x_{3}=k$ . (14)

We solve the equation (14).
We substitute a degree set $\prime D=\{8,6,4,2\}$ and $gcd(8-2,6-2,4-2)=2$

to Theorem 4.1, then

$k \leq\frac{1}{2}\{8+6+4+2+(6-1)*8-(2+4-2)*6-2\}=17$ ,

and
$\frac{1}{2}\{(8-2)+(6-2)+(4-2)\}=6\leq k$ .

Therefore, it is enough to solve the equation (14) for $6\leq k\leq 17$ .
If $k=6$ , then we obtain a unique positive solution $x_{1}=1,$ $x_{2}=1,$ $x_{3}=1$ ,

and $x_{4}=6$ . Next we check whether the obtained candidate 8, 6, 4, 2, 2, 2, 2, 2, 2
is graphical, and it is true.

If $k=17$, we obtain a positive solution $x_{1}=2,$ $x_{2}=5,$ $x_{3}=1,$ $x_{4}=1$ , then
we have the candidate 8, 8, 6, 6, 6, 6, 6, 4, 2, and it is graphical.

Our bounds are sharp.
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5 Enumeration of candidates for degree sequence
To solve all solutions for the equation (13), we introduce a candidate tree.
Each vertex in the candidate tree is an n-tuple, and each n-tuple corresponds
to a solution for the equation (13). If $k$ is the lower bound for Theorem
4.1, then the equation (13) has a solution $(1,1, \ldots, 1, d_{1}-n+2)$ . We set
a root to $(1, 1, \ldots, 1, d_{1}-n+2)$ , and the root has $n-1$ children whose $narrow$

tuple are $(2, 1, \ldots, 1, d_{1}-n+1),$ $(1,2,1, \ldots, 1, d_{1}-n+1),$ $\ldots,$
$(1,$

$\ldots,$
$1,2,$ $d_{1}-$

$n+1)$ . The vertex $(1,1, \ldots, 1, \alpha,\beta_{1}, \ldots,\beta_{m}, d_{1}-n+2-k)$ has $n-m-$
$1$ children whose n-tuple are $(2,1, \ldots, 1, \alpha, \beta_{1}, \ldots, \beta_{m}, d_{1}-n+2-k-1)$ ,
$(1, 2, \ldots, 1, \alpha,\beta_{1}, \ldots, \beta_{m}, d_{1}-n+2-k-1),$ $\ldots(1,1,$

$\ldots,$
$1,$ $\alpha+1,$ $\beta_{1},$

$\ldots,$
$\beta_{m},$ $d_{1}-$

$n+2-k-1)$ , where $\alpha>1$ is an integer, $\beta_{i}>0$ is an integer, $1\leq i\leq m<n$ , and
$k<d_{1}-n+2$ is some positive integer. Moreover, the vertices $(\delta_{1}, \ldots, \delta_{n-1},1)$

have no child, where $\delta_{i}\leq d_{n}$ is an integer and $\delta_{i}>0$ is an integer, $2\leq i<n$ .
And the vertices $(d_{n}, \gamma_{1}, \ldots, \gamma_{n-1})$ have no child, where $\gamma_{i}>0$ is an integer $1\leq$

$i<n$ , because by Lemma 4.2, if $x_{1}>d_{n}$ , there is no solution for the equation
(13). In other words, the parent of vertex $(1, 1, \ldots, 1, \alpha, \beta_{1}, \ldots,\beta_{m}, d_{1}-n+2-k)$

is $(1, 1, \ldots, 1, \alpha-1, \beta_{1}, \ldots, \beta_{m}, d_{1}-n+2-k+1)$ , where $\alpha>1$ is an integer,
$\beta_{i}>0$ is an integer, $1\leq i\leq m<n$ , and $k<d_{1}-n+2$ is some positive
integer. So, we may uniquely determine the parent. We obtain the candidate
tree, whose height is $d_{1}-n+1$ . The solution $(d_{n}, d_{1}-(n-2), 1, \ldots, 1)$ for the
equation (14), which satisfy the upper bound of Theorem 4.3, appears at depth
$d_{1}-n+1$ in the candidate tree.

Let $NV_{i}(k)$ denotes the number of vertices whose coordinate $i$ in the n-tuple
precisely increases by one at depth $k$ in the tree, where $1\leq i\leq n-1$ and
$0\leq k\leq d_{1}-n+1$ .

Then we obtain next reccurence,

$NV_{0}(0)$ $=$ 1,
$NV_{1}(1)$ $=$ $NV_{2}(1)=\cdots=NV_{n-1}(1)=1$ ,

$NV_{1}(k)$ $=$ $\sum_{j=1}^{n-1}NV_{j}(k-1)-NV_{1}(k-d_{n}+1)$ ,

$NV_{i}(k)$ $=$ $\sum_{j=i}^{n-1}NV_{j}(k-1)$ , where $i,$ $k>1$ . (15)

Notioe that $\sum_{i=1}^{n-1}NV_{i}(k)$ denotes the number of vertices at depth $k$ in the
tree. Therefore, the total number of vertices in the tree is $\sum_{k=0}^{d_{1}-n+1}\sum_{i=1}^{n-1}NV_{i}(k)$ .

Rising factorial powers are defined by the rule

$n$ factors
$x^{\overline{n}}=\overline{x(x+1)\cdots(x+n-1)}$,

where $x$ and $n$ are nonnegative integers.
$NV_{n-1}(k)=1,$ $NV_{n-2}(k)=k,$ $NV_{n-3}(k)=\underline{k(k}+1)/2,$ $NV_{n-4}(k)=k(k+$

$1)(k+2)/6$ , and so on. We have $NV_{n-j}(k)= \frac{k^{j-1}}{(j-1)!}$ .

Lemma 5.1 Let $x$ be a positive integer and $m$ a nonnegative integer. Then,

$\sum_{i=0}^{m}\frac{(x-1)^{\overline{i}}}{i!}=\frac{x^{\overline{m}}}{m!}$ .
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Lemma 5.2 Let $m$ and $n$ be nonnegative integers. Then,

$\sum_{k=0}^{n}k^{\overline{m}}=\frac{n^{\overline{m+1}}}{m+1}$ .

Theorem 5.1 The candidate tree has

$\frac{(d_{1}-n+2)^{\overline{n-1}}}{(n-1)!}-\frac{(d_{1}-n+1-d_{n}+1)^{\overline{n-1}}}{(n-1)!}$ (17)

vertices. That is, the number of candidates for degree sequence is given by the
formula in equation (17).

5.1 Example
We consider degree sequences for a degree set $\mathcal{D}=\{8,6,4,2\}$ . Then $n=4$ ,
$d_{1}-n+1=5$ . We construct the candidate tree for $D=\{8,6,4,2\}$ , and show
it in Figure 1.

Figure 1: Candidate tree for $D=\{8,6,4,2\}$ .

The total number of vertices in the candidate tree is
$(d_{1}-n+2)^{\overline{n-1}}$ $(d_{1}-n+1-d_{n}+1)^{\overline{n-1}}$

$\overline{(n-1)!}\overline{(n-1)!}-$

$=$ $\frac{6^{\overline{3}}}{3!}-\frac{4^{\overline{3}}}{3!}=\frac{6\cdot 7\cdot 8}{3!}-\frac{4\cdot 5\cdot 6}{3!}=56-20=36$

We exhibit all solutions of the equation (14) in Tabel 1, and check whether
the candidates are graphical.

A symbol $q$ in Table 1 denotes the number of edges and is given in the
equation (11).
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Table 1: Candidates for degree sequences with $D=\{8,6,4,2\}$

6 Conclusion
We propose a basic problem of degree sets. We determine the number of candi-
dates for degree sequences with the least order for a given degree set.
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