NORMAL FUNCTIONS AND THE GHC

MATT KERR AND GREGORY PEARLSTEIN

In this note, based on the first author's talk at the symposium on "Hodge theory and algebraic geometry" (June 29 - July 3, 2009) in honor of Professor S. Usui, we revisit the link between singularities of admissible normal functions and the Hodge conjecture established in [GG],[BFNP],[dCM] (also see [KP1]), and describe how it extends to the generalized Hodge conjecture. Proofs may be found in [KP2], where the results will also be placed in a richer context. We thank RIMS and the organizers Asakura, Ikeda, and Kato for a wonderful conference, and anticipate that the developments on Néron models and zero loci of normal functions which were taking place (or which we learned about) during that week will allow (GG) (and perhaps (2) and (3)) to be established in new cases. We also thank A. Beilinson for the letter [Be] which inspired us to work out this story, and J. Lewis and M. Saito for helpful discussions.

Given a smooth projective variety X of dimension $2m$ over \mathbb{C} and a very ample line bundle $L \to X$, we define the primitive cohomology by

$$H^{2m}(X)^{\text{prim}}_{L} := \ker\{H^{2m}(X) \xrightarrow{\cup c_{1}(L)} H^{2m+2}(X)\}$$

and the primitive Hodge classes by

$$Hg^{m}(X)^{\text{prim}}_{L} := \text{Hom}_{\text{MHS}}(\mathbb{Z}(0), H^{2m}(X, \mathbb{Z}(m))^{\text{prim}}_{L}).$$

Now take

$$\mathcal{X} = \{(x, [\sigma]) \in X \times S \mid \sigma(x) = 0\}$$

to be the incidence variety associated to X and $S = \mathbb{P}H^{0}(X, \mathcal{O}(L))$.

Let $\rho : \mathcal{X} \to S$ denote projection onto the second factor and X^{\vee} be the discriminant locus of ρ. Then, we have a commutative diagram

$$\begin{array}{ccc}
S \setminus X^{\vee} & = & S^{\text{sm}} \\
\uparrow \rho^{\text{sm}} & \downarrow & \uparrow \rho \\
\rho^{-1}(S^{\text{sm}}) & = & \mathcal{X}^{\text{sm}}
\end{array}$$

and the pullbacks of primitive cohomology classes to fibres of ρ^{sm} are zero. The same is not true for their pullbacks to singular fibres of ρ.

Key words and phrases. Generalized Hodge Conjecture, Normal Functions.
Let \mathcal{H} be the variation of pure Hodge structure of weight -1 over S^{sm} with underlying local system $R^{2m-1}(\rho^{sm})_*\mathbb{Z}_{\mathcal{X}_{hdg}}(m)$. Let $\text{ANF}(S^{sm}, \mathcal{H})$ denote the group of admissible normal functions $[S]$ associated to \mathcal{H} over S^{sm}. Then, via Deligne cohomology (see [S], remark 1.7), we obtain an Abel-Jacobi map

$$AJ : Hg^m(X)^{prim}_L \to \text{ANF}(S^{sm}, \mathcal{H})/J^m(X).$$

Here, an element η of the intermediate Jacobian $J^m(X)$ defines an admissible normal function $\nu(s) = \iota_s^*(\eta)$ via the induced map $\iota_s^* : J^m(X) \to J^m(X_s)$ defined by inclusion of the fiber $X_s = \rho^{-1}(s)$ into X.

By [GG][BFNP][dCM], for each point $s \in S$, we have a singularity class map

$$\text{sing}_s : \text{ANF}(S^{sm}, \mathcal{H})/J^m(X) \to \text{Hom}(\mathbb{Q}(0), \iota_s^* R^1g_!\mathcal{H}) \cong (IH^1_s(\mathcal{H}))^{(0,0)}_\mathbb{Q},$$

induced by $\iota_s^* \circ Rg_!$, in the category of mixed Hodge modules. An element ν of $\text{ANF}(S^{sm}, \mathcal{H})/J^m(X)$ is said to be singular at the point $s \in S$ if $\text{sing}_s(\nu) \neq 0$. Clearly, the target of sing_s vanishes if $s \in S^{sm}$, and hence the singular locus of $\nu \in \text{ANF}(S^{sm}, \mathcal{H})/J^m(X)$ is contained in X^{\vee}. As a consequence of admissibility, the target of sing_s also vanishes if s is a smooth point of X^{\vee}. In what follows, we shall say that an admissible normal function is singular if its singular locus is non-empty.

Where necessary, the dependence of the above constructs upon the choice of the very ample line bundle L will be signified by adjoining a subscript L. In particular, a primitive Hodge class ζ with respect to L defines an admissible normal function $\nu_{\zeta, L} = AJ_L(\zeta)$. The theorem of Griffiths and Green states that the Hodge conjecture is equivalent to the following (conjectural) statement:

$$(\text{GG}) \quad \forall(X, L, \zeta) \text{ as above}, \exists a \in \mathbb{N} \text{ such that } \nu_{\zeta, L^a}\text{ is singular on } S_{L^a}.$$
each $K \in \mathbb{Z}_{\leq 0}$, define a set of 4-tuples
\[\Xi_K := \left\{ (m, X, L, \zeta) \mid \begin{array}{l}
X = \text{smooth proj. var. } / \mathbb{C} \text{ of dim. } 2m \\
L = \text{very ample line bundle } / X \\
\zeta \in F_{hdg}^{K}H^{2m}(X, \mathbb{Q}(m))_{L}^{prim}
\end{array} \right\}, \]
noting that $F_{hdg}^{0}H^{2m}(X, \mathbb{Q}(m))_{L}^{prim} \cong Hg^{m}(X)_{L}^{prim}$.

Then \(\forall (m, X, L, \zeta) \in \Xi_K \), \(\mathcal{W} \) such that (GHC_K)
\[\text{codim. } m + K \neq \iota_{\mathcal{W}}^{*}[\zeta] \in H^{2m}((\mathcal{W}, \mathbb{Q}(m))) \]
is equivalent to the (usual) statement that all such ζ belong to the $(m + K)^{th}$ coniveau filtrait. Write Ξ^+_K if the condition $m \geq -K$ is replaced by $m > -K$.

Now one has the “tautological extension”
\[0 \rightarrow \mathcal{H} \rightarrow \check{U} \rightarrow \frac{H^{1}(S^{sm}, \mathcal{H})}{H^{1}(S^{sm}, \mathcal{H})} \rightarrow 0 \]
of sheaves /S^{sm}, which we may pull back to
(1) \[0 \rightarrow \mathcal{H} \rightarrow U \rightarrow H^{2m}(X, \mathbb{Q}(m))_{L}^{prim} \rightarrow 0. \]

In fact, we may regard (1) as an extension in the category of admissible VMHS (or MHM) on S^{sm}. Applying J_* and taking the long-exact cohomology sequence over S yields the connecting homomorphism
\[\theta : H^{2m}(X, \mathbb{Q}(m))_{L}^{prim} \rightarrow IH^{1}(\mathcal{H}), \]
a morphism of (pure) Hodge structure whose composition with restriction to s
\[IH^{1}(\mathcal{H}) \xrightarrow{\iota_s} Gr_{0}^{W}IH_{s}^{1}(\mathcal{H}) \]
extends $\text{sing}_{s} \circ AJ$ to all primitive cohomology classes. Again signifying the dependence of these constructions on L by adjoining a subscript, we have the main

Theorem. For each $K \in \mathbb{Z}_{\leq 0}$, (GHC_K) is equivalent to the statement
(2) \(\forall (m, X, L, \zeta) \in \Xi^+_K \), \(\exists a \in \mathbb{N} \) and $s \in X_{L}^{\vee}$ such that $\theta_{L^{a}}(\zeta)|_{s} \neq 0$.

For $K = 0$ this essentially reproduces the Griffiths-Green result.

There are two directions one can take this: refining the information contained in θ by substrata of X^{\vee}; and relating it back to normal functions, which we do first. Pulling (1) back on the right by the
inclusion of a sub-Hodge structure $V \subseteq H^{2m}(X, \mathbb{Q}(m))_{L}^{prim}$ yields an extension

$$0 \rightarrow \mathcal{H} \rightarrow U_{V} \rightarrow V \rightarrow 0$$

in the category of admissible VMHS over S^{sm}, or equivalently a normal function

$$\nu_{V} \in ANF(S, \mathcal{H} \otimes V^\vee).$$

Write $\Xi_{K}^{(+)}$ for the analogue of $\Xi_{K}^{(+)}$ with ζ replaced by an irreducible sub-Hodge structure V of $F_{hdg}^{K}H^{2m}(X, \mathbb{Q}(m))_{L}^{prim}$.

Corollary. (GHC_{K}) is equivalent to

(3) $\forall(m, X, L, V) \in \Xi_{K}^{+}, \exists a \in \mathbb{N}$ such that $\nu_{V,L^{a}}$ is singular on $S_{L^{a}}$.

Consider the decreasing filtration $\mathfrak{F}^{K}X^\vee$ on the discriminant locus (or “dual variety”) defined by

$$s \in \mathfrak{F}^{K}X^\vee \iff \dim(\text{sing}(X_{s})) \leq -2K,$$

with $\mathfrak{F}^{-m+1}X^\vee = X^\vee$ and $\mathfrak{F}^{1}X^\vee = \emptyset$. Here $\text{sing}(X_{s})$ means the subvariety of X_{s} consisting of its singular points. Writing $\{s_{i}\}$ for a system of representative points in the substrata of $\mathfrak{F}^{K}X^\vee$, we “refine” θ by the morphisms

$$Res_{L}^{K} := \left(\oplus_{s_{i} \in \mathfrak{F}^{K}X^\vee} \theta_{L}(\cdot)|_{s_{i}}\right) : H^{2m}(X, \mathbb{Q}(m))_{L}^{prim} \rightarrow \oplus Gr_{W}^{W} IH_{s_{i}}^{1}(\mathcal{H})$$

of Hodge structures. We then have (for each $K \in \mathbb{Z} \cap [-m+1, 0]$) two sub-Hodge structures, $\ker(Res_{L}^{K})$ and F_{hdg}^{K}, of the middle primitive cohomology of X.

Question. Assume (GHC_{K}). Then for each (m, X, L) (with $m > -K$), does $a \gg 0 \implies$

(4) $H^{2m}(X, \mathbb{Q}(m))_{L}^{prim} = \ker(Res_{L}^{K}) \oplus F_{hdg}^{K}$?

That $\ker(Res^{K}) + F_{hdg}^{K}$ spans all of H^{2m} would be implied by the statement

(5) $s \in \mathfrak{F}^{K}X^\vee \implies \text{level}(IH_{s}^{1}(\mathcal{H})) \leq -2K,$

since then the target Hodge structure of Res^{K} would equal its own F_{hdg}^{K}. Furthermore, could one show (given any $\zeta \in F_{hdg}^{K}$) that

(6) the \mathcal{W} in (GHC_{K}) can be taken to be smooth, there would exist $s \in \mathfrak{F}^{K}X^\vee$ with $\mathcal{W} \subset X_{s}$. This leads easily to $\zeta \notin \ker(Res^{K})$, so that $\ker(Res^{K}) \cap F_{hdg}^{K} = \{0\}$. So proving (4) involves checking (5) and (6) (or analogous statements).
We take a look at the extreme cases. First, for $K = -m + 1$, the Theorem will do in lieu of (6) (since \mathfrak{F}^{-m+1} is all of X^\vee), and (5) is automatic. For $K = 0$, all three statements hold, using §4 of [Th] for (6), at least provided we replace \mathfrak{F}^0X^\vee by the (smaller) locus of fibres with ODP singularities. Some similar modification of \mathfrak{F}^* may be required to make (4) work for all K. The analogy to automorphic forms (if we think of $\ker(\text{Res}^K)$ as “$|K|$-cusp forms”) seems tantalizing enough that this should be worked out.

REFERENCES