<table>
<thead>
<tr>
<th>Title</th>
<th>A period map for cubic surfaces (Hodge theory and algebraic geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ikeda, Atsushi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2011), 1745: 5-10</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2011-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/171043</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
A period map for cubic surfaces

Atsushi Ikeda

Graduate School of Science, Osaka University

1 Construction of the period map

In this report, we construct a period map for cubic surfaces, and we prove the injectivity of the period map. Let \(X = X_F \subset \mathbb{P}^3 \) be a nonsingular cubic surface defined by \(F \in \mathbb{C}[x_0, \ldots, x_3] \). We remark that the cubic surface \(X \) has no holomorphic 2-form, therefore we cannot have a nontrivial Hodge structure by the period integral on \(X \) itself. We will consider another variety associated with \(X \). Let \(B = B_F \) be the zeros of the Hessian of the cubic polynomial \(F \):

\[
B_F = \{ p \in X \mid \det \left(\frac{\partial^2 F}{\partial x_i \partial x_j}(p) \right)_{0 \leq i,j \leq 3} = 0 \},
\]

and let \(\phi : Y = Y_F \to X \) be the double cover branched along \(B \). We remark that \(B \) has at most node as its singularity, and \(Y \) is the canonical resolution of the finite double cover. Here we want to classify the isomorphism class of \(X \) by using period integral on \(Y \).

The double cover \(Y \) is a minimal surface of general type with the geometric genus \(p_g(Y) = 4 \), the irregularity \(q(Y) = 0 \) and the square of the canonical divisor \(K_Y^2 = 6 \). Then the second Betti number is \(h^2(Y, \mathcal{Z}) = 52 \). The Néron-Severi group \(\text{NS}(Y) \) is contained in \(H^2(Y, \mathcal{Z}) \), and the Picard number depends on the equation \(F \). We can prove that the Picard number of \(Y \) for the generic equation is 28. We denote by \(H^2_{\text{inv}}(Y, \mathcal{Z}) \) the subgroup of rank 28 in \(H^2(Y, \mathcal{Z}) \) which corresponds to the Néron-Severi group of the generic equation, and we denote by \(H^2_{\text{var}}(Y, \mathcal{Z}) \) the subgroup of rank 24 in \(H^2(Y, \mathcal{Z}) \) orthogonal to \(H^2_{\text{inv}}(Y, \mathcal{Z}) \) by the symmetric form

\[
\langle , \rangle_Y : H^2(Y, \mathcal{Z}) \times H^2(Y, \mathcal{Z}) \to H^4(Y, \mathcal{Z}) \simeq \mathcal{Z}.
\]

We study the Hodge structure defined on \(H^2_{\text{var}}(Y, \mathcal{Z}) \).

Let \((H, \langle , \rangle) \) be a lattice which is isomorphic to \((H^2_{\text{var}}(Y, \mathcal{Z}), \langle , \rangle_Y) \). We have an Hermitian form on \(H_C = \mathbb{C} \otimes_{\mathbb{Z}} H \) by

\[
\langle , \rangle : H_C \times H_C \to \mathbb{C}; (\alpha, \beta) \mapsto \langle \alpha, \beta \rangle,
\]
where $\overline{\beta}$ denotes the complex conjugate of $\beta \in H_C$. We define the classifying space of the polarized Hodge structure by

$$D = \{ W \in \text{Grass}(4, H_C) \mid W \subset W^\perp, \langle \cdot, \cdot \rangle_W > 0 \},$$

and we call elements of D polarized Hodge structure on H. We define the polarized Hodge structure on $H^2_{\text{var}}(Y, Z)$ by the image of the injective homomorphism

$$H^0(Y, \Omega_Y^2) \longrightarrow \text{Hom}\left(\frac{H^2(Y, Z)}{H^2_{\text{inv}}(Y, Z)}, \mathbb{C} \right) \simeq H^2_{\text{var}}(Y, \mathbb{C}); \eta \mapsto \left[\alpha \mapsto \int_{\alpha} \eta \right].$$

Let $C \subset \text{Grass}(1, H^0(\mathbb{P}^3, O_{\mathbb{P}^3}(3)))$ be the space of smooth cubic surfaces. We fix a base point $[F_0] \in C$ and an isomorphism $(H^2_{\text{var}}(Y_{F_0}, Z), \langle \cdot, \cdot \rangle_{Y_{F_0}}) \simeq (H, \langle \cdot, \cdot \rangle)$. Then the monodromy group Γ is defined as the image of the monodromy representation

$$\pi_1(C, [F_0]) \longrightarrow \text{Aut}(H, \langle \cdot, \cdot \rangle),$$

and we have a period map

$$C \longrightarrow \Gamma \backslash D; [F] \mapsto [H^0(Y_F, \Omega_Y^2) \subset H^2_{\text{var}}(Y_F, \mathbb{C}) \simeq H^2_{\text{var}}(Y_{F_0}, \mathbb{C}) \simeq H_C],$$

where the isomorphism $H^2_{\text{var}}(Y_F, \mathbb{C}) \simeq H^2_{\text{var}}(Y_{F_0}, \mathbb{C})$ is defined by a path from $[F_0]$ to $[F]$ in C. This map gives the period map $\Psi : \mathcal{M} \rightarrow \Gamma \backslash D$, where $\mathcal{M} = C / \text{PGL}(4)$ is the moduli space of nonsingular cubic surfaces.

Theorem 1.1. The period map Ψ is injective.

Indeed, this theorem depends on the injectivity of another period map constructed by Allcock-Carlson-Toledo [1]. In the next section, we review the work of Allcock-Carlson-Toledo.

2 The period map by Allcock-Carlson-Toledo

Let $X = X_F \subset \mathbb{P}^3$ be a nonsingular cubic surface defined by $F(x_0, \ldots, x_3)$, and let $V = V_F \subset \mathbb{P}^4$ be the cubic 3-fold defined by the equation $F(x_0, \ldots, x_3) = x_4^3$. Then the natural projection

$$\rho : V \longrightarrow \mathbb{P}^3; [x_0 : \cdots : x_3 : x_4] \longmapsto [x_0 : \cdots : x_3]$$

is the triple Galois cover branched along X. Let σ be a generator of the Galois group. Since $H^3(V, \mathbb{Z})$ has no invariant vector by the Galois action, we consider $H^3(V, \mathbb{Z})$ as a $\mathbb{Z}[\omega]$-module of rank 5 by $\omega \alpha = \sigma^*(\alpha)$ for $\alpha \in H^3(V, \mathbb{Z})$, where $\omega \in \mathbb{C}$ denotes a primitive 3-rd root of unity. By using the alternating form

$$\langle \cdot, \cdot \rangle_V : H^3(V, \mathbb{Z}) \times H^3(V, \mathbb{Z}) \longrightarrow H^6(V, \mathbb{Z}) \simeq \mathbb{Z},$$

we consider the period map $\Psi : \mathcal{M} \rightarrow \Gamma \backslash D$.
we define a Hermitian form on $H^3(V, \mathbb{Z})$ by
\[
 h_V : H^3(V, \mathbb{Z}) \times H^3(V, \mathbb{Z}) \to \mathbb{Z}[\omega]; \quad (\alpha, \beta) \mapsto \langle \alpha, \omega \beta \rangle_V - \omega \langle \alpha, \beta \rangle_V.
\]
Then we have a natural isomorphism of Hermitian space $H^3(V, \mathbb{C})_\omega \simeq \mathbb{C} \otimes_{\mathbb{Z}[\omega]} H^3(V, \mathbb{Z})$, where
\[
 H^3(V, \mathbb{C})_\omega = \{ \alpha \in H^3(V, \mathbb{C}) \mid \sigma^*(\alpha) = \omega \alpha \}
\]
is the eigenspace of ω in $H^3(V, \mathbb{C})$ by the action σ^*, and the Hermitian form on $H^3(V, \mathbb{C})_\omega$ is defined by
\[
 H^3(V, \mathbb{C})_\omega \times H^3(V, \mathbb{C})_\omega \to \mathbb{C}; \quad (\alpha, \beta) \mapsto (\omega^2 - \omega) \langle \alpha, \overline{\beta} \rangle_V.
\]
Let (H', h) be a Hermitian $\mathbb{Z}[\omega]$-lattice which is isomorphic to $(H^3(V, \mathbb{Z}), h_V)$. The period domain of Allcock-Carlson-Toledo is defined by
\[
 D' = \{ E \in \text{Grass}(4, \mathbb{C} \otimes_{\mathbb{Z}[\omega]} H') \mid h|_E > 0 \},
\]
which is isomorphic to the 4-dimensional complex ball
\[
 \Delta = \{ (a_1, \ldots, a_4) \in \mathbb{C}^4 \mid |a_1| + \cdots + |a_4| < 1 \}.
\]
We fix an isomorphism $(H^3(V_{F_0}, \mathbb{Z}), h_{V_{F_0}}) \simeq (H', h)$. Then an element of D' is defined by
\[
 H^{2,1}(V_{F})_\omega \subset H^3(V_F, \mathbb{C})_\omega \simeq \mathbb{C} \otimes_{\mathbb{Z}[\omega]} H^3(V_F, \mathbb{Z}) \simeq \mathbb{C} \otimes_{\mathbb{Z}[\omega]} H^3(\mathbb{R} \otimes_{\mathbb{Z}} \mathbb{C}),
\]
where the isomorphism $H^3(V_F, \mathbb{Z}) \simeq H^3(V_{F_0}, \mathbb{Z})$ is defined by a path from $[F_0]$ to $[F]$ in C. This gives a period map
\[
 \Psi' : \mathcal{M} \to \Gamma' \backslash D'; \quad [F] \mapsto [H^{2,1}(V)_\omega \subset \mathbb{C} \otimes_{\mathbb{Z}[\omega]} H'],
\]
where Γ' is the monodromy group.

Theorem 2.1 (Hartling [4], Allcock-Carlson-Toledo [1]). *The period map Ψ' is injective.*

This theorem depends on the Torelli theorem for cubic 3-folds by Clemens-Griffiths [2] and Tjurin [6].

3 Relation between the period maps Ψ and Ψ'

In this section, we will see that the polarized Hodge structure $(H^2_{\text{var}}(Y, \mathbb{Z}), \langle, \rangle_Y)$ is obtained from the Hodge structure of Allcock-Carlson-Toledo $(H^3(V, \mathbb{Z}), h_V)$. Let
\((H', h)\) be a Hermitian \(\mathbb{Z}[\omega]\)-lattice which is isomorphic to \((H^3(V, \mathbb{Z}), h_\nu)\). The cyclic group \(\mathbb{Z}/3\mathbb{Z}\) acts on \(H'\) by
\[
\mathbb{Z}/3\mathbb{Z} \times H' \longrightarrow H'; \quad ([m], u) \longmapsto \omega^m u,
\]
and we have an alternating form on \(H'\) by
\[
\bigwedge^2_{\mathbb{Z}} H' \longrightarrow \mathbb{Z}; \quad u \wedge v \longmapsto \frac{1}{\omega^2 - \omega} (h(u, v) - \overline{h(u, v)}).
\]
Let \(\alpha_0, \ldots, \alpha_4, \beta_0, \ldots, \beta_4\) be a symplectic basis of \(H'\). We set \(\theta = \sum_{i=0}^4 \alpha_i \wedge \beta_i \in \bigwedge^2_{\mathbb{Z}} H'\). Then we have a lattice \((\bigwedge^2_{\mathbb{Z}} H')_0^{\mathbb{Z}/3\mathbb{Z}}, \langle, \rangle_h\). We define a symmetric form on \(\bigwedge^2_{\mathbb{Z}} H'\) by
\[
\langle , \rangle_h : \bigwedge^2_{\mathbb{Z}} H' \times \bigwedge^2_{\mathbb{Z}} H' \longrightarrow \bigwedge^{10}_{\mathbb{Z}} H' \cong \mathbb{Z}; \quad (u_1 \wedge u_2, v_1 \wedge v_2) \longmapsto \frac{1}{6} \theta \wedge^3 u_1 \wedge u_2 \wedge v_1 \wedge v_2.
\]
We denote by \((\bigwedge^2_{\mathbb{Z}} H')_0\) the kernel of the alternating form \(\bigwedge^2_{\mathbb{Z}} H' \rightarrow \mathbb{Z}\). Then we have a lattice \((\bigwedge^2_{\mathbb{Z}} H')_0^{\mathbb{Z}/3\mathbb{Z}}, \langle, \rangle_h\). We set a \(\mathbb{C}\)-linear map \(j\) by
\[
j : \mathbb{C} \otimes_{\mathbb{Z}[\omega]} H' \simeq H'_C, \omega \subset H'_C = \mathbb{C} \otimes_{\mathbb{Z}} H'; \quad 1 \otimes v \longmapsto \frac{1}{\omega^2 - \omega} (\omega^2 \otimes v - 1 \otimes \omega v).
\]
Then a Hodge structure of Alcock-Carlson-Toledo \(E \subset \mathbb{C} \otimes_{\mathbb{Z}[\omega]} H'\) gives a polarized Hodge structure on \((\bigwedge^2_{\mathbb{Z}} H')_0^{\mathbb{Z}/3\mathbb{Z}}, \langle, \rangle_h\) by
\[
j(E) \wedge \overline{j(E^\perp)} \subset (\bigwedge^2 cH'_C)_0^{\mathbb{Z}/3\mathbb{Z}}.
\]
Theorem 3.1 ([5]). There is a natural isomorphism of polarized Hodge structures
\[
((\bigwedge^2 QH^3(V, Q)(1))_0^{\text{Gal}(\rho)}, \frac{1}{3} \langle, \rangle_{h^\nu}) \simeq (H^2_{\text{var}}(Y, Q), \langle, \rangle_Y).
\]
Let \((H, \langle, \rangle)\) be a lattice which is isomorphic to \((H^2_{\text{var}}(Y, \mathbb{Z}), \langle, \rangle_Y)\), and let
\[
\iota : ((\bigwedge^2 H'_Q)_0^{\mathbb{Z}/3\mathbb{Z}}, \frac{1}{3} \langle, \rangle_h) \simeq (H_Q, \langle, \rangle).
\]
be the isomorphism of lattices given by Theorem 3.1 for a base point \([F_0] \in C\). Then Theorem 3.1 means that the diagram
\[
\begin{array}{ccc}
& & \mathcal{M} \\
\Psi' \downarrow & \nearrow \psi & \\
\Gamma \backslash D' & \longrightarrow & \Gamma \backslash D
\end{array}
\]
is commutative, where the morphism \(\Phi\) is defined by
\[
\Phi : D' \longrightarrow D; \quad E \longmapsto \iota(j(E) \wedge \overline{j(E^\perp)}).
\]
And we can prove that \(\Phi : D' \rightarrow D\) is injective. These imply Theorem 1.1.
4 Geometry of lines

In this section, we explain the isomorphism in Theorem 3.1. Let $\Lambda(P^n)$ be the Grassmannian variety of lines in P^n. Let X be a nonsingular cubic surface. We define a subvariety of $P^3 \times \Lambda(P^3)$ by

$$ Y = \{(p, L) \in P^3 \times \Lambda(P^3) \mid \text{mult}_p(L.X) \geq 3\}, $$

which is the double cover branched along B by the first projection

$$ \phi : Y \rightarrow X; \ (p, L) \mapsto p. $$

We define a divisor on Y by

$$ Y_{\infty} = \{(p, L) \in P^3 \times \Lambda(P^3) \mid p \in L \subset X\} = L_1^+ \cup \cdots \cup L_{27}^+. $$

We remark that X contains 27 lines L_1, \ldots, L_{27} in P^3, and L_i^+ denotes the component of Y_{∞} which corresponds to L_i. Then we can prove that

$$ H_{\text{inv}}^2(Y, Z) = \phi^*H^2(X, Z) + \sum_{i=1}^{27} Z[L_i^+]. $$

Let

$$ \pi : Y \rightarrow Z \subset \Lambda(P^3); \ (p, L) \mapsto L $$

be the second projection, where Z denotes its image. Then π is the birational morphism which contracts curves L_i^+, and we have an isomorphism of Hodge structures

$$ H_{\text{prim}}^2(Z, Q) \simeq H_{\text{var}}^2(Y, Q), \quad (1) $$

where $H_{\text{prim}}^2(Z, Q)$ is the subspace in $H^2(Z, Q)$ orthogonal to the class of the hyperplane section by the Plücker embedding of $\Lambda(P^3)$.

Next we review some results on Fano surface of lines on cubic 3-folds by Clemens-Griffiths [2] and Tjurin [6]. Let $V \subset P^4$ be a nonsingular cubic 3-fold, and let

$$ S = \{L \in \Lambda(P^4) \mid L \subset V\} $$

be the Fano surface of lines on V. Then there are isomorphisms of Hodge structures

$$ \bigwedge^2 QH^1(S, Q) \simeq H^2(S, Q), \quad (2) $$

$$ H^3(V, Q)(1) \simeq H^1(S, Q) \ (3) $$

by [2], [3] or [6].
Let $X \subset \mathbb{P}^{3}$ be a nonsingular cubic surface, and let $V \subset \mathbb{P}^{4}$ be the cubic 3-fold which is the triple Galois cover $\rho : V \rightarrow \mathbb{P}^{3}$ branched along X. If L is a line on V, then the image of the projection $\rho(V)$ is a line of \mathbb{P}^{3} which is contained in X or intersects X with the multiplicity 3. Therefore we have the triple Galois cover

$$S \rightarrow Z; \; L \mapsto \rho(L),$$

and we have an isomorphism of Hodge structures

$$H^{2}(S, \mathbb{Q})^{\text{Gal}(\rho)} \simeq H^{2}(Z, \mathbb{Q}). \quad (4)$$

By these isomorphisms (1) – (4), we have the isomorphism in Theorem 3.1.

References

