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1 Construction of the period map
In this report, we construct a period map for cubic surfaces, and we prove the injec-
tivity of the period map. Let $X=X_{F}\subset P^{3}$ be a nonsingular cubic surface defined by
$F\in C[x_{0}, \ldots, x_{3}]$ . We remark that the cubic surface $X$ has no holomorphic 2-form,
therefore we cannot have a nontrivial Hodge structure by the period integral on $X$

itself. We will consider another variety associated with $X$ . Let $B=B_{F}$ be the zeros
of the Hessian of the cubic polynomial $F$ ;

$B_{F}= \{p\in X|\det(\frac{\partial^{2}F}{\partial x_{i}\partial x_{j}}(p))_{0\leq i,j\leq 3}=0\}$ ,

and let $\phi$ : $Y=Y_{F}arrow X$ be the double cover branched along $B$ . We remark that
$B$ has at most node as its singularity, and $Y$ is the canonical resolution of the finite
double cover. Here we want to classify the isomorphism class of $X$ by using period
integral on $Y$ .

The double cover $Y$ is a minimal surface of general type with the geometric genus
$p_{g}(Y)=4$ , the irregularity $q(Y)=0$ and the square of the canonical divisor $K_{Y}^{2}=6$ .
Then the second Betti number is $h^{2}(Y, Z)=52$ . The N\’eron-Severi group NS $(Y)$ is
contained in $H^{2}(Y, Z)$ , and the Picard number depends on the equation $F$ . We can
prove that the Picard number of $Y$ for the generic equation is 28. We denote by
$H_{inv}^{2}(Y, Z)$ the subgroup of rank 28 in $H^{2}(Y, Z)$ which corresponds to the N\’eron-Severi

group of the generic equation, and we denote by $H_{var}^{2}(Y, Z)$ the subgroup of rank 24
in $H^{2}(Y, Z)$ orthogonal to $H_{inv}^{2}(Y, Z)$ by the symmetric form

{, $\rangle_{Y}$ : $H^{2}(Y, Z)\cross H^{2}(Y, Z)arrow H^{4}(Y, Z)\simeq Z$ .

We study the Hodge structure defined on $H_{var}^{2}(Y, Z)$ .
Let $(H, \langle, \rangle)$ be a lattice which is isomorphic to $(H_{var}^{2}(Y, Z), \langle, \rangle_{Y})$ . We have an

Hermitian form on $H_{C}=C\otimes_{Z}H$ by

$\langle,$ $-\rangle:H_{C}\cross H_{C}arrow C;(\alpha, \beta)\langle\alpha,\overline{\beta}\rangle$ ,
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where $\overline{\beta}$ denotes the complex conjugate of $\beta\in H_{C}$ . We define the classifying space of
the polarized Hodge structure by

$D=\{W\in$ Grass (4, $H_{C})|W\subset W^{\perp}$ , $\langle,-\rangle|_{W}>0\}$ ,

and we call elements of $D$ polarized Hodge structure on $H$ . We define the polarized
Hodge structure on $H_{var}^{2}(Y, Z)$ by the image of the injective homomorphism

$H^{0}(Y, \Omega_{Y}^{2})arrow Hom(\frac{H^{2}(Y,Z)}{H_{inv}^{2}(Y,Z)},$ $C)\simeq H_{var}^{2}(Y, C);\eta\mapsto[\alpha\mapsto\int_{\alpha}\eta]$ .

Let $C\subset$ Grass $(1, H^{0}(P^{3}, \mathcal{O}_{P^{3}}(3)))$ be the space of smooth cubic surfaces. We fix a
base point $[F_{0}]\in C$ and an isomorphism $(H_{var}^{2}(Y_{F_{0}}, Z), \langle, \rangle_{Y_{F_{0}}})\simeq(H, \langle, \rangle)$ . Then the
monodromy group $\Gamma$ is defined as the image of the monodromy representation

$\pi_{1}(C, [F_{0}])arrow$ Aut $(H, \langle, \rangle)$ ,

and we have a period map

$Carrow\Gamma\backslash D;[F][H^{0}(Y_{F}, \Omega_{Y_{F}}^{2})\subset H_{var}^{2}(Y_{F}, C)\simeq H_{var}^{2}(Y_{F_{0}}, C)\simeq H_{C}]$ ,

where the isomorphism $H_{var}^{2}(Y_{F}, C)\simeq H_{var}^{2}(Y_{F_{0}}, C)$ is defined by a path from $[F_{0}]$ to
$[F]$ in $C$ . This map gives the period map $\Psi$ : $Marrow\Gamma\backslash D$ , where $\mathcal{M}=C/PGL(4)$ is
the moduli space of nonsingular cubic surfaces.

Theorem 1.1. The period map $\Psi$ is injective.

Indeed, this theorem depends on the injectivity of another period map constructed
by Allcock-Carlson-Toledo [1]. In the next section, we review the work of Allcock-
Carlson-Toledo.

2 The period map by Allcock-Carlson-Toledo
Let $X=X_{F}\subset P^{3}$ be a nonsingular cubic surface defined by $F(x_{0}, \ldots, x_{3})$ , and let
$V=V_{F}\subset P^{4}$ be the cubic 3-fold defined by the equation $F(x_{0}, \ldots, x_{3})=x_{4}^{3}$ . Then
the natural projection

$\rho:Varrow P^{3};[x_{0}:\cdots:x_{3}:x_{4}]\mapsto[x_{0}:\cdots:x_{3}]$

is the triple Galois cover branched along $X$ . Let $\sigma$ be a generator of the Galois group.
Since $H^{3}(V, Z)$ has no invariant vector by the Galois action, we consider $H^{3}(V, Z)$ as
a $Z[\omega]$ -module of rank 5 by $\omega\alpha=\sigma^{*}(\alpha)$ for $\alpha\in H^{3}(V, Z)$ , where $\omega\in C$ denotes a
primitive 3-rd root of unity. By using the alternating form

$\langle$ , $\rangle_{V}$ : $H^{3}(V, Z)\cross H^{3}(V, Z)arrow H^{6}(V, Z)\simeq Z$ ,
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we define a Hermitian form on $H^{3}(V, Z)$ by

$h_{V}$ : $H^{3}(V, Z)\cross H^{3}(V, Z)arrow Z[\omega];(\alpha, \beta)\langle\alpha,$ $\omega\beta\rangle_{V}-\omega\langle\alpha,$ $\beta\rangle_{V}$ .

Then we have a natural isomorphism of Hermitian space $H^{3}(V, C)_{\omega}\simeq C\otimes_{Z[\omega]}H^{3}(V, Z)$ ,
where

$H^{3}(V, C)_{\omega}=\{\alpha\in H^{3}(V, C)|\sigma^{*}(\alpha)=\omega\alpha\}$

is the eigenspace of $\omega$ in $H^{3}(V, C)$ by the action $\sigma^{*}$ , and the Hermitian form on
$H^{3}(V, C)_{\omega}$ is defined by

$H^{3}(V, C)_{\omega}\cross H^{3}(V, C)_{\omega}arrow C;(\alpha, \beta)(\omega^{2}-\omega)\langle\alpha,\overline{\beta}\rangle_{V}$.

Let $(H’, h)$ be a Hermitian $Z[\omega]$ -lattice which is isomorphic to $(H^{3}(V, Z), h_{V})$ . The
period domain of Allcock-Carlson-Toledo is defined by

$D’=\{E\in$ Grass (4, $C\otimes_{Z[\omega]}H’)|h|_{E}>0\}$ ,

which is isomorphic to the 4-dimensional complex ball

$\triangle=\{(a_{1}, \ldots, a_{4})\in C^{4}||a_{1}|+\cdots+|a_{4}|<1\}$ .

We fix an isomorphism $(H^{3}(V_{F_{0}}, Z), h_{V_{F_{0}}})\simeq(H’, h)$ . Then an element of $D’$ is defined
by

$H^{2,1}(V_{F})_{\omega}\subset H^{3}(V_{F}, C)_{\omega}\simeq C\otimes_{Z[\omega]}H^{3}(V_{F}, Z)\simeq C\otimes_{Z[\omega]}H^{3}(V_{F_{0}}, Z)\simeq C\otimes_{Z[\omega]}H’$ ,

where the isomorphism $H^{3}(V_{F}, Z)\simeq H^{3}(V_{F_{0}}, Z)$ is defined by a path from $[F_{0}]$ to $[F]$

in $C$ . This gives a period map

$\Psi’$ : $\Lambda 4arrow\Gamma’\backslash D’;[F][H^{2,1}(V)_{t\iota 1}\subset C\otimes_{Z[(v]}H’]$ ,

where $\Gamma’$ is the monodromy group.

Theorem 2.1 (Hartling [4], Allcock-Carlson-Toledo [1]). The period map $\Psi’$ is injec-
tive.

This theorem depends on the Torelli theorem for cubic 3-folds by Clemens-Griffiths
[2] and Tjurin [6].

3 Relation between the period maps $\Psi$ and $\Psi’$

In this section, we will see that the polarized Hodge structure $(H_{var}^{2}(Y, Z), \langle, \rangle_{Y})$

is obtained from the Hodge structure of Allcock-Carlson-Toledo $(H^{3}(V, Z), h_{V})$ . Let
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$(H’, h)$ be a Hermitian $Z[\omega]$-lattice which is isomorphic to $(H^{3}(V, Z), h_{V})$ . The cyclic
group $Z/3Z$ acts on $H^{f}$ by

$Z/3Z\cross H’arrow H’;([m], u)\omega^{m}u$ ,

and we have a alternating form on $H’$ by

$\wedge^{2}z^{H’}arrow Z;u\wedge v\mapsto\frac{1}{\omega^{2}-\omega}(h(u, v)-\overline{h(u,v)})$ .

Let $\alpha_{0)}\ldots,$ $\alpha_{4},$ $\beta_{0},$

$\ldots,$
$\beta_{4}$ be a symplectic basis of $H’$ . We set $\theta=\sum_{i=0}^{4}\alpha_{i}\wedge\beta_{i}\in\bigwedge_{Z}^{2}H’$ ,

which does not depend on the choice of the symplectic basis. We define a symlnetric
form on $\bigwedge_{Z}^{2}H’$ by

$\langle$ , $\rangle_{h}$ : $\bigwedge_{Z}^{2}H’\cross\bigwedge_{Z}^{2}H’$ $arrow$ $\bigwedge_{Z}^{10}H’\simeq Z$ ;
$(u_{1}\wedge u_{2}, v_{1}\wedge v_{2})$ $\frac{1}{6}\theta^{\wedge 3}\wedge u_{1}\wedge u_{2}\wedge v_{1}\wedge v_{2}$ .

We denote by $( \bigwedge_{Z}^{2}H^{f})_{0}$ the kernel of the alternating form $\bigwedge_{Z}^{2}H^{f}arrow$ Z. Then we have
a lattice $(( \bigwedge_{Z}^{2}H’)_{0}^{z/3Z}, \langle, \rangle_{h})$ . We set a C-linear map $j$ by

$j: C\otimes_{Z[\omega]}H^{f}\simeq H_{C,\omega}^{f}\subset H_{c}’=C\otimes_{Z}H’;1\otimes v\mapsto\frac{1}{\omega^{2}-\omega}(\omega^{2}\otimes v-1\otimes\omega v)$ .

Then a Hodge structure of Allcock-Carlson-Toledo $E\subset C\otimes_{Z[\omega]}H’$ gives a polarized
Hodge structure on $(( \bigwedge_{Z}^{2}H’)_{0}^{z/3Z}, \langle, \rangle_{h})$ by

$j(E)$ A $\overline{j(E^{\perp})}\subset(\wedge^{2}cH_{C}’)_{0}^{z/3Z}$

Theorem 3.1 ([5]). There is a natural isomorphism of polarized Hodge structures

$((\wedge^{2}{}_{Q}H^{3}(V, Q)(1))_{0}^{Ga1(\rho)},$
$\frac{1}{3}\langle,$ $\rangle_{h_{V}})\simeq(H_{var}^{2}(Y, Q), \langle, \rangle_{Y})$ .

Let $(H, \langle, \rangle)$ be a lattice which is isomorphic to $(H_{var}^{2}(Y, Z), \langle, \rangle_{Y})$ , and let

$\iota:((\wedge^{2}H_{Q}^{f})_{0}^{z/3Z}, \frac{1}{3}\langle, \rangle_{h})\simeq(H_{Q}, \langle, \rangle)$ .

be the isomorphism of lattices given by Theorem 3.1 for a base point $[F_{0}]\in C$ . Then
Theorem 3.1 means that the diagram

$\mathcal{M}$

$\Gamma’\backslash D^{f}\Psi’\swarrow$

$arrow^{\Phi}$

$\Gamma\backslash D\searrow^{\Psi}$

is commutative, where the morphism $\Phi$ is defined by

$\Phi:D’arrow D;E\iota(j(E)\wedge\overline{j(E^{\perp})})$ .

And we can prove that $\Phi$ : $D’arrow D$ is injective. These imply Theorem 1.1.
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4 Geometry of lines
In this section, we explain the isomorphism in Theorem 3.1. Let $\Lambda(P^{n})$ be the Grass-
mannian variety of lines in $P^{n}$ . Let $X$ be a nonsingular cubic surface. We define a
subvariety of $P^{3}\cross\Lambda(P^{3})$ by

$Y=\{(p, L)\in P^{3}\cross\Lambda(P^{3})|mult_{p}(L.X)\geq 3\}$ ,

which is the double cover branched along $B$ by the first projection

$\phi:Yarrow X;(p, L) p$ .

We define a divisor on $Y$ by

$Y_{\infty}=\{(p, L)\in P^{3}\cross\Lambda(P^{3})|p\in L\subset X\}=L_{1}^{+}\coprod\cdots\coprod L_{27}^{+}$ .

We remark that $X$ contains 27lines $L_{1},$
$\ldots,$

$L_{27}$ in $P^{3}$ , and $L_{i}^{+}$ denotes the component
of $Y_{\infty}$ which corresponds to $L_{i}$ . Then we can prove that

$H_{inv}^{2}(Y, Z)=\phi^{*}H^{2}(X, Z)+\sum_{i=1}^{27}Z[L_{i}^{+}]$ .

Let
$\pi:Yarrow Z\subset\Lambda(P^{3});(p, L) L$

be the second projection, where $Z$ denotes its image. Then $\pi$ is the birational mor-
phism which contracts curves $L_{i}^{+}$ , and we have an isomorphism of Hodge structures

$H_{prim}^{2}(Z, Q)\simeq H_{var}^{2}(Y, Q)$ , (1)

where $H_{prim}^{2}(Z, Q)$ is the subspace in $H^{2}(Z, Q)$ orthogonal to the class of the hyper-
plane section by the Pl\"ucker embedding of $\Lambda(P^{3})$ .

Next we review some results on Fano surface of lines on cubic 3-folds by Clemens-
Griffiths [2] and Tjurin [6]. Let $V\subset P^{4}$ be a nonsingular cubic 3-fold, and let

$S=\{L\in\Lambda(P^{4})|L\subset V\}$

be the Fano surface of lines on $V$ . Then there are isomorphisms of Hodge structures

$\wedge^{2}{}_{Q}H^{1}(S, Q)\simeq H^{2}(S, Q)$ , (2)

$H^{3}(V, Q)(1)\simeq H^{1}(S, Q)$ (3)

by [2], [3] or [6].
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Let $X\subset P^{3}$ be a nonsingular cubic surface, and let $V\subset P^{4}$ be the cubic 3-fold
which is the triple Galois cover $\rho$ : $Varrow P^{3}$ branched along $X$ . If $L$ is a line on $V$ , then
the image of the projection $p(V)$ is a line of $P^{3}$ which is contained in $X$ or intersects
$X$ with the multiplicity 3. Therefore we have the triple Galois cover

$Sarrow Z;L\rho(L)$ ,

and we have an isomorphism of Hodge structures

$H^{2}(S, Q)^{Ga1(\rho)}\simeq H^{2}(Z, Q)$ . (4)

By these isomorphisms (1) $-(4)$ , we have the isomorphism in Theorem 3.1.
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