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Cauchy problem for the complex Ginzburg-Landau
equation with harmonic oscillator
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1. Introduction and results

Let N € N. This paper is concerned with the following Cauchy problem for the com-
plex Ginzburg-Landau equation with Laplacian replaced with Hamiltonian for harmonic
oscillator:

ou . .
CCLyn . |5+ (HQ) A+ Pt (s +iB)ulr?u —7yu =0 onRYxR,,
i u(z,0) = up(z), T € RV,

where A,k € R, := (0,00), @, 3,7 € R, p > 0 and g > 2 are constants, and u = u(z,1) is
a complex-valued unknown function. In particular, the case where = 0, i.e., (CGL)gn g
is a Cauchy problem for the usual complex Ginzburg-Landau equation which is also re-
garded as the special case of initial-boundary value problem of the form

ou . . —2

a—(A+za)Au+(n+zﬂ)|u|‘1 u—yu=0 on Q x Ry,
(CGL)g, u=20 on 00 x R,

u(z,0) = up(z), z€Q,

where © C RY is a general domain with boundary 9. For physical background of the
complex Ginzburg-Landau equation see e.g., Aranson-Kramer [1].
The purpose of this paper is to discuss the following three problems.

(Problem 1) Existence of global strong solutions to (CGL)gw ,,-

(Problem 2) Uniqueness of global strong solutions to (CGL)gn -

(Problem 3) Existence of global strong solutions to (CGL)gn,o
by letting p | 0 in (CGL)gn -
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Figure 1: The boundary of CGL(yo) is given by a pair of hyperbolas.

To clarify the problem we review the known results. Ginibre-Velo [2] established the
existence (except uniqueness) of global strong solutions to (CGL)gn o with up € H}(RY)N
L(RY) under the condition that

a B —-1 2 lzy| =1 1
1. — — :—— . > —_—
(1.1) (/\,K>€C’G'L(cq ) —{(z,y)eR,xy 0 or z] |y|<6q}’
q—2
2 =
(1.2) “ 2/q—1

(see Figure 1). Condition (1.1) plays an essential role in deriving the estimates of
(@ /2)[IVut)Z2 + (1/) lu®)]|Z.,
1
2(g—
Ao + ()52 Y s
for some ¢ > 0. In [2, Proof of Proposition 5.1] they used compactness methods; however,
their proof is much complicated since both the nonlinear term and the initial data are
regularized. The result is extended to problem (CGL),, , in a bounded domain 2 (see

Okazawa-Yokota (5, Theorem 1.1 with p = 2]). However, when  is an unbounded general
domain and g > 2 is not restricted by N, there seems to be no work except the case where

G g) € S(¢;) = {(z,y) € R% Jy] < 21;} c CGL(c]Y),
|18

(= Ileq)-

This implies that the mapping u — — (A + ia)Au + (k + i3)|u|?"%u is accretive in L?(€2).
In this case the existence and uniqueness of global strong solutions to (CGL)q , with
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uy € L%(2) are obtained in [5, Theorem 1.3 with p = 2]. Therefore the problem lies in
the case where {2 is unbounded and (a/A, 8/k) € CGL(c;') \ S(c;'). In this paper we
give a partial answer to the case where Q = R" via compactness methods by adding the

harmonic oscillator |z|2.
Before stating our results, we define a global strong solution to (CGL)gn -

Definition 1.1. A function u(-) € C([0, 00); L2(R")) is said to be a global strong solution
to (CGL)gn ,, if u(-) has the following properties:

(a) u(t) € H2(RY) N L2a~D(RN), |z|?u(t) € L2(RN) a.a. t > 0;
(b) (Bu/8t)(-), Au(:), |zlPu(-), [ul"~*u(-) € L*(0, T; L*(RY)) for every T > 0;
(c) u(-) satisfies the equation in (CGL)gw~ , a.e. on R, as well as the initial condition.

First we give an answer to Problem 1. Using the compactness of (—A + u2|z|?)7!
(p > 0) in L%(RYN) (see Okazawa [4]), we can establish the existence of global strong
solutions to (CGL)gw , with ug € H'(RV) N D(|z[) N L4(RY) under condition (1.1). Here
D(|z]) is regarded as a Hilbert space given by

D(lz|) := {u € L*(R"); |z|u € L*(RY)},
(4, V) p(izpy = (4, v)r2 + (|z]u, |z|v) L2, u,v € D(|z}).

Theorem 1.1. Let NeN, A>0,k>0, a,8,7y € R and u > 0. Assume that condition
(1.1) is satisfied. Then for any up € HY(RY)ND(|z|)NLI(RY) there exists a global strong
solution u(-) € C([0, 00); L*(R")) to (CGL)gn , such that

(1.3) u(") € C([0, 00); H'(RY) N D(Jz|) N LY(RY)),
with the estimates for everyt > 0
(1.4) [u(®)llze < €™ luollze,
t

(1.5)  Eu(u(t))+n /0 {821(A — w2 PYu(s)lI32 + l|u(s) | Tamn } ds < €9 B, (uo),
where 52 )

Eu(u) := [ VullZ2 + lllzlullZ] + =llullf,

2 q

v+ := max{v,0} and § >0, n > 0 are constants depending only on A\, k,a, 3, q

Secondly we give an answer to Problem 2 under the additional condition

4
_ >
(1.6) 2<qg< 2= 2+N‘—2 (V2 3),
00 (N =1,2).

This condition appeared in proving the uniqueness of solutions to (CGL)gw,q or (CGL)q, 4
(see Ginibre-Velo [3, Proposition 4.2] and Okazawa-Yokota [6, Theorem 1.2]).
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Theorem 1.2. Let N e N, A >0, >0, a,3,y € R and p > 0. Assume that (1.1)
and (1.6) are satisfied. Then the solutions to (CGL)gw, , in the sense of Definition 1.1 are
unique. In fact, let u(-) and v(-) be global strong solutions to (CGL)gw , with initial data
u,vo € H*(RY) N D(|z|), respectively. Set w(-) :=u(-) — v(-) and wy := ug — vy. Then

t
(1.7) llw(t)lli2+/\/ els KOU (|| Vw(s)|7s + 12 lllzlw(s) I ds < o KO g3z, t > 0,
0

where K (-) is a continuous function depending only on A, k, 8,7, q, E.(u) and E,(vy).

Finally, combining Theorems 1.1 and 1.2, we can give an answer to Problem 3 under
(1.6). The following theorem is the special case of [2, Proposition 5.1] concerning the
existence; however, our approach here is much simpler than that in [2].

Theorem 1.3. Let N €N, A >0, x>0, o, 3,7 € R and u > 0. Assume that conditions
(1.1) and (1.6) are satisfied. Let {u,(-)}u>0 be a family of unique global strong solutions
to (CGL)gw , with initial data ug € H'(RY) N D(|z|?). Then

u() = limu, ()

giwes a (unique) global strong solution to (CGL)gn o with u(0) = uo.

The proofs of Theorems 1.1, 1.2 and 1.3 are given in Sections 2, 3 and 4, respectively.

2. Answer to Problem 1

First we review an abstract theorem in [5] toward Theorem 1.1. Let X be a complex
Hilbert space with inner product (-, -) and norm ||-||. Let ¢, ¢ : X — [0, 0o] be proper lower
semicontinuous convex functions on X. We assume for simplicity that the subdifferentials
Op, Oy are single-valued. Then we consider the abstract Cauchy problem in X:

(ACP) { %Qf + (A +ia)0p(u) + (k + iB)0Y(u) — yu =0,
w(0) = uo,

where A,k € Ry, o, 3,7 € R are constants. We need the following conditions on ¢, 9:
(A1) The sublevel set {u € D(p); ¢(u) < c} is compact in X for each ¢ > 0.
(A2) 3p € [2,00) such that (Cu) = |¢|Pp(u), u € D(p), ¢ € C, Re¢ > 0.
(A3) Jg € [2,00) such that ¥((u) = |¢|%(u), u € D(¥), ( € C, Re( > 0.
(A4) I, > 0 such that for u,v € D(dy) and € > 0,

IIm (Op(u) — dp(v),u — v)| < ¢,Re (p(u) — Hp(v),u — v).

(A5) ¢, > 0 such that for u € D(8yp) and € > 0,
|Im (Jp(u), 0 (u))| < cgRe (9ip(u), 0% (u)),
where 01, is the Yosida approximation of d¢: 9. :=e~1(1 — (1 +edy)71).
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The following theorem is established in [5].

Theorem 2.1 ([5, Theorem 4.1]). Assume that (A1)—(AS5) are satisfied. Assume that
a/X and B/k satisfy

Pl ! a é -1y

<c (A,K) € CGL(c]Y)

Then for any ug € D(p) N D(3) there exists a global strong solution u(-) € C([0,00); X)
to (ACP) such that

(a) u(-) € COV3([0,T); X), T >0,
(b) (du/dt)(-), 0p(u(-)), 0% (u(") € L*(0,T; X), T >0,
(c) p(u()) and Y(u(-)) are absolutely continuous on [0,T] for every T > 0,

with the estimates
(2.1) lu@)ll < e™lluoll, ¢ >0,

¢
(2.2) E(u(t)) + 77/0 (010 (w()| + |09 (u(s))II*) ds < €™ E(uo), ¢ >0,
where

E(u) := 6%p(u) + ¥(u),
v := max{7y, 0}, r := max{p, ¢} and d,n > 0 are constants.

Next we apply Theorem 2.1 to (CGL)gx ,- In the complex Hilbert space X := L? (RM)
we introduce two convex functions on X:

1 -
23 o= 3IVulE+#llelullz) i u e Dlp) = H'®RY) N D(ls)),
0 : otherwise,
1 :
(2.4) Y(u) = ‘q‘”'u”%q if u € D(¥) := X N LIYRN),
oY) otherwise.

Then their subdifferentials are given by

Op(u) = —Au+ p?|z[’u, u € D(dp) = H*(RY) N D(|z]?),
Op(u) = |u|?%u, we DBY)=XnNLX"DRN).

To apply Theorem 2.1 with those X, ¢ and 1, we prepare some lemmas.

Lemma 2.2. Let N € N and u > 0. Then for every u € H*(RN) N D(|z]),
2

(2.5) lullze < FIVullea|flofe]] 5

in particular,

(26) Nullull2 < V)2 + p2j2lu) .
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Proof. Let u € CP(RY) and € > 0. Let |z|. := |z|(1 +¢|z|)~* be the Yosida approxima-
tion of |z| and z. := z(1 + ¢|z|)~!. Then we can obtain

2.7) N [ AL e < o ulis el + elule el

In fact, observing

N(1 +elz)™! = diva, + e|z/|.(1 +¢|z|) ™
< divz. + €z,

we see from integration by parts that

N/R @), </ (div z.)[u(z )|2da:+s/ (elefu(z) | dz

N 1+€|Z‘l

~ 9 / 20+ Re (u(e) Va(@)) dz + elfull | leleu] .
R
< 2|Vl ||leleu| L, + llull 2] zlew]| 12-

Since C$°(RY) is dense in H!(RY), (2.7) is true also for v € H'(R"). Letting ¢ | 0 in
(2.7) for u € HY(R") N D(|z|), we obtain (2.5). (2.6) is a consequence of (2.5). O

Lemma 2.3 ([5, Lemma 6.2]). Let ¢ > 2. Then for u € H*(R") and ¢ > 0,

(2.8) Im (—Au, 8¢ (1)) 2] < Re( —Au, 0y (u)).

2\/
Lemma 2.4. Let V : RN — R be a nonnegative function. Then fore > 0 and u € L2(RY)
with Vu € L¥(RV),
(29)  Vudh@e = [ Viedds e [ ViaPodas

RN RN

where u, 1= (14 €0y) " u. Consequently, (Vu,8v.(u))r2 is real and nonnegative.

Proof. Let € > 0 and u € L2(RY) with Vu € L2(RY). Setting u. := (1 + €0¢) lu, we
see that
U= +elue| T2, 0 (u) = |uel?u,

Substituting these identities into (Vu, 8%, (u))12, we can obtain (2.9). O

Lemma 2.5. Let ¢ > 2. Then for u € D(dp) and € > 0,
-2
(2.10) [Im (Op(u), Oe(uw)) 2] < \/q—Re (Op(u), Oe(u)) 2

Lemma 2.5 is a consequence of Lemmas 2.3 and 2.4 with V(z) := p?|z|?; note that
Op = —A + V(x).
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Proof of Theorem 1.1. Let X := L%(RY). Let ¢ and ¢ be defined as (2.3) and (2.4).
We see from (2.6) that (—A + p?|z|?>)~! is bounded. In fact, (2.6) implies that for every
ue HARY) A D(jzP),

2
Nullullze < 1VullZ2 + p2 |||zl
= (=D + #¥|z|*)u, u)L2
<=2 + p¥|el*yullaflull 2.

Since the potential |z|? blows up as |z| — oo, it follows from [4, Theorem 4.1] that
(—A + p?|z)?)~! is compact in X and hence (A1) is satisfied. (A2) (with p = 2) and
(A3) are trivial by definition. Since dy is nonnegative selfadjoint in X, (A4) is satisfied
with ¢, = 0. Lemma 2.4 implies that (A5) is satisfied with

Cq = q—2
NS

Therefore we can apply Theorem 2.1 with those X, ¢. Consequently, we obtain the
existence part of Theorem 1.1. As in the proof of [5, Theorem 1.1], we can prove (1.3)
by virtue of Theorem 2.1 (c). Moreover, (1.4) and (1.5) follow from (2.1) and (2.2),
respectively (see Remark 2.1 below). This completes the proof of Theorem 1.1. a

Remark 2.1. By the definition of ¢ in (2.3), Theorem 2.1 (b) asserts that
u(*), (A = p?lz?)u(-) € L*(0,T; LARY)), T >0.
This fact implies that
Au(-), |z|2u(-) € L*0,T; L*RY)), T >0.
This is a direct consequence of the following inequality (see Okazawa [4]):

(2.11) [|AulFa+pt|llef?ull}s < (A -p2lzlPYul}a+ 2N uls,  w € HARY)ND(ja]).

3. Answer to Problem 2

In this section we give the proof of Theorem 1.2.

Proof of Theorem 1.2. It suffices to prove (1.7). Let ¢ < 2*. Then H}(RN) — LI(RY).
Let u(-) and v(-) be the global strong solutions to (CGL)gw , with initial data ug,vo €

HY(R™) N D(|z]), respectively. Then w(-) := u(-) — v(-) satisfies
ow

(Y F (i) + wfalw + (s + iB) (ultu = ol ) = yw.

Making the L2-inner product of (3.1) with w, we have

1d

(3.2) 5

2
lwliZz + AWIVwlZe + £|lzlw]| ) + I = yllwlZa,
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where
I:= Re|(x +iB)(|ul"u — [v[*2v, w)za].

Since ||u|*™%u — |[v]7"%v| < (g — 1)(|u|?"2 + |v|?2)|w|, we have
(33 1< (@ = DOVRF [ (ul™ + ol Dl de
< (g - DVR2 + B(llullf® + vl ™) lwliZe,
where we used the Holder inequality in the second inequality. We see from (1.5) that
lu®)Ze < ge™ " Eu(uo),  [lv(®)lzs < qe™ ™ E,(vo).
Hence we have
(3.4 [@lIf:? + o@)5° < Kaem (o2,

where
K = q1-2/q [Ep(uo)l_wq + Eﬂ(v0)1—2/q].

On the other hand, we use the Gagliardo-Nirenberg inequality
(3.5) lwlize < Cllwl|z*Vwllzs,

where a := N(1/2-1/q) € [0,1) and C = C(q, N) is a positive constant. Applying (3.4)
and (3.5) to (3.3), we see by the Young inequality that

I} < (g — 1)y/K2 + RCK1* @D w| 33~ | Vw||24

Y4

(a-2) A
< Ko™ ulf: + 5 Vo,

where
1-a)

= (3)" - v FeK] "

A
Plugging this inequality with (3.2), we obtain

d 2 7+(a~2)
(36) a“wuiz + /\(”Vﬂ)”%z + ,LL2H|.'E|'LU||L2) < 2('}/ + Koe T-e t) “w”iz

Setting

(4=2)
K(t) = 2(7 + Kye Ts t),

we have

L P r)ar — [ K(r)dr
%[e o K(r)d “w(s)“iz] + Xe Jo K(r)d (“VM(S)“%z +M2H[$|w(s)“iz) <0.

Integrating this inequality on [0, ¢] for ¢ > 0, we obtain (1.7). O



108

4. Answer to Problem 3

Let w,(-) be the unique global strong solution to (CGL)gw , (1 > 0) constructed in
Theorems 1.1 and 1.2. To prove Theorem 1.3 we need a priori estimate of |||z|u,(-)|| .
independent of p.

Lemma 4.1. Let N, A + ia, k + i, 7, u be the same as in Theorem 1.2. Let u,(-) be the
solution to (CGL)gn , with u,(0) = ug € H'(R") N D(|z|?). Then for every ¢ > 0,

1) e (6)] 2 < e (ctluollze + ol 2 ).

where ¢ > 0 is a constant depending only on A + ia.

Proof. We give a formal proof. The proof can be justified by using the Yosida approx-
imation of |z|?. Making the inner product of the equation in (CGL)gw , With lz|*u, (),
we have

42) 3 il + 7 =llaPu3, <o,
where
J := Re[(\ + ia)(—Au, + p?|z*u,, |7|*u,) 2]
Applying integration by parts and the Schwarz inequality, we obtain
(43) J 2 MlelP V7, — 4R+ @2l V| s [zl
2 =lllaluala,

where ¢ := (4/A)(A\? + a?). On the other hand, it follows from the Schwarz inequality and
(1.4) that

et ()72 < elluollea Iz, ()]
Applying this inequality to (4.3), we see from (4.2) that
1d
2dt
which implies that

llzlPua@)]l72 — celluollzellePuu (@)l = Y2 Pun®)]]z2 < O,

d
(e lePuu®)]]2) < clluollze.

Integrating this inequality on [0, ] yields (4.1). O
Now we are in position to complete the proof of Theorem 1.3 which answers to Prob-

lem 3.

Proof of Theorem 1.3. Let u,(-) be the unique global strong solution to (CGL)gw,,
with u,(0) = uo € HY(R") N D(Jz[?). Set w,,(-) := uu(-) — w,(-) for p,v € (0,1).
Similarly in deriving (3.6), we have
1d
2dt

K(t)

A
“wu,!/”%Z + Euku,u“?ﬁ + 1, < T”wu,u”%?:



where

I,, =Re[(A+ ia)(p2|x|2uﬂ — 1/2[:c|2u,,, Wyw)L2)
= M ||zlwpp 22 + (1° — V)Re [(A + io)(|2|*uy, wy ) 2],

and K (-) is the same function as in Theorem 1.2. From (4.1) we have

I,u,u Z -V A2 + a2,/‘(’2 - V2||||xluV|,L2,|wth||L2

> =M ()lp* = v*|[wupllzz,

where

M(t) := V2 + a2e™ (ct”uo“Lz + |||x]2u0”L2).

Hence we obtain
d K(t
(4.0 sl < S gl + M@l - 21,
Applying the Gronwall lemma to (4.4) yields
t
@)z < 12 =7 / el 52 1 () s,
0

This inequality implies that for every T > 0,

2 2 T fT () g
sup |lwu,(t)|l2 < |pu* —v¥ els "2 “"M(s)ds.
0<t<T 0

This implies that {u,(-)} satisfies the Cauchy condition in C([0, T]; L>(R")) and hence

there exists u € C([0, 00); L2(R¥)) such that
uu(-) = u(-) (u10) strongly in C([0,T]; L*(R™)).
We see from (1.4), (1.5) and (2.11) that
{Au,(-)} and {|u,|*?u,(-)} are bounded in L*(0,T; L*(R")).
Moreover, (4.1) implies that
{|z|>u, (")} is also bounded in L?(0,T; L*(R")).

Since A, |z|?> and /8t are weakly closed as operators in L2(0,T; L*(RY)), it follows that

Au(-), |z|?u(-), (8u/8t)(-) € L*(0,T; L*(RY)) and
Au,(-) — Au(-) weakly in L*(0,T; L*(R")),
p2zu,(-) — 0 weakly in L%(0,T; LA(RY)),
(Ou,/8t)(-) — (0u/dt)(-) weakly in L2(0,T; L*(R")).

We can also see from the demiclosedness of &y as operators in L?(0,T; L2(R")) that

lu|??u(-) € L%(0,T; L*(RV)) and
|20, (-) = [ul??u()  weakly in L*(0,T; L*(R™)).

Therefore u(-) is a global strong solution to (CGL)g o-

109
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5. Concluding remarks

We have proved the existence of global strong solutions to (CGL)gn , under the con-
ditions that

a f -

(:\', ;) S CGL(CQI),
2<g¢<?,

uo € HY(RY) N D(|z}?).

There are two comments; one is about the initial data uy and the other is about the
exponent q.

(I) If up € H*(RY), then we can approximate uy by
Upn i= (1 +n"tz|?) " u,.

As in the proof of Theorem 1.3 we can see that the corresponding solution u,(-) with
un(0) = up, converges to the desired solution.

(IT) For the uniqueness we assumed that 2 < g < 2*; and hence we obtain the solution to
(CGL)gw o for such exponent g. On the other hand, Ginibre-Velo [2] have already proved
the existence of solutions to (CGL)gw o under the mild condition that “2 < ¢ < o0”.
The key of their proof lies in the compactness of H'(2) — L%(Q) for a bounded domain
Q c R". Our method lies in another compactness H!(RV) N D(|z|) — L%(R¥). In the
future we shall improve our method by using the compactness H!(RN)ND(V) — L*(RY),
where V : RY — R is a nonnegative function satisfying
lim V(z) = 0.

|2|—00

Choosing V properly, we would show the existence under the condition that 2 < g < oco.
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