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Abstract

Steady simple shear models of a continuum whose Cauchy stress depends
also on the gradient of the density of the body are studied. The density
gradient-dependent stress model arises from a study of granular flows. The
problems under consideration are boundary value problems of the second
order ordinary differential equations, and their existence results are proved
in this paper.

1 Introduction

In this study we are concerned with steady simple shear flows of a continuum whose
Cauchy stress depends also on the gradient of the density of the body. Such a model
arises from a study of a flow of granular materials. Granular materials are some
sorts of materials which consist of grains. In certain situations granular matter
behaves in fluid-like manner, for example, quicksand, avalanches, and so on. Even
it flows, however, the profile of the flow is completely different from that of usual
liquids. Granular bodies are naturally inhomogeneous. Since effect of interstices of
the particles on motion may not negligible, a term corresponding to inhomogeneity
of the body should appear in the constitutive equation for a flow of such matter
(see, for example, [7]).

A flow of granular materials as complex continua has been studied in fluid
mechanics [1, 8, 5] and in mechanical engineering [4, 18, 20]. Rajagopal and Mas-
soudi [20] proposed the constitutive equations of granular materials, and since then
Boyle and Massoudi [4], Rajagopal, Troy and Massoudi [19], Yalamanchili, Gudhe
and Rajagopal [22] etc. have studied in the framework of [20]. Mathematical
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works (including mathematical modeling) have also been studied in the last decade
[19, 13, 15, 16]. We call the body under consideration is of Korteweg type, since
such a material was firstly considered by Korteweg [12].

In this paper we follow Rajagopal and Massoudi’s model [20]. Especially, we
focus further on simple shear models to investigate minute flow profiles derived by
the density gradient-dependence of the stress.

2 Steady simple shear flow down on an inclined

plane

2.1 Governing equations

Governing equations of a continuum model with the density gradient- dependent
stress tensor are given as follows:

o +div(ov) =0 in £,

g% =divT + ob in Q, (2.1)

T = (—p + aldivv -+ agtI'M)]I -+ G3D + G4M in Q.

Here, Q(C R®) is a domain where a material occupies; = (z,y,2)T € & v =
(v1,v9,v3)T(x,t) is the velocity vector field; o = g(wx,t) is the density; p(e) =
p(o(z, t)) is the pressure of barotropic type; —g—t = % + (v - V); T is the Cauchy
stress tensor; b = (by, by, b3)T(x,t) is the external body forces; (divT); = % +
% + %is; D = D(v) = (Vv + [Vv]T) is the symmetric part of the velocity
gradient; M = Vp®V the symmetric tensor corresponding to the density gradient;
a;(0) = aj(o(x,t)) is material moduli.

The constitutive equation (2.1); depends on the density gradient through the
symmetric tensor M. This form of relation is a subclass of [20]. Furthermore, we
assume that the stress under consideration is isotropic, therefore the stress (2.1)s
satisfies T = TT. When a; = a4 = 0, (2.1) becomes the system of compressible
Navier—Stokes equations. The coefficients a2 and a, indicate the magnitude of the

effect of material inhomogeneity on the motion.

2.2 Steady simple shear flow down on an inclined plane

We consider the steady planar flow model as follows. In this case we assume that
Q= {(z,9,2)|0 <y < h}, v = (u(y),0,0)T, o = o(y) and b = (gsinh, —g cos §,0)*
with the depth of the layer flow h, the acceleration gravity g and the angle of



inclination 6. Then, the stress takes the form of
—p+ax(d)?  aszu'/2 0
T= asu'/2 —p+a(d)? 0 ) (2.2)
0 0 —p + az(d')’

where a(g) = a2(g) + a4(p). Thus, when a4 does not vanish, this model can exhibit
the normal-stress differences even in a simple shear flow.

&

Figure 1: steady simple shear flow down on an inclined plane

For boundary conditions we assign the balance between the external pressure
and the stress vector at the surface, and also assign so-calledNavier’s slip on the
bed, namely

surface (y=h) Tn = —p.n, bed (y =0) v+ klITn=0,

where p, is the external pressure, & the slip rate, I[If = f — (f - n)n the tangential
part, n the unit outward normal to the boundary.

Consequently, we derive the boundary value problem of the second order ordi-
nary differential equations for steady simple shear flows:

(as(e(¥))¥'(¥))'/2 + o(y)gsind =0 for 0 < y < h,

{—p(e(v)) + alo®))(d (¥))*} — oly)gcosb =0 for 0 <y<h,

as(o(R))w/'(R) =0,  —p(e(h)) + alo(R))('(h))? = —pe,

u(0) — kaz(e(0))w'(0) = 0. -
2.3

(2.3) is the coupled problem of u and g, nevertheless we can decouple the prob-
lem by integrating equation (2.3);. Taking into account the boundary conditions
(2.3)5 and (2.3)s, the velocity u(y) can be uniquely determined by g in the following
formula:

u(y) =k/0 2g(s)gsin0ds+/0ya%%ﬂ$/ 20(s)gsin fds. (2.4)
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Thus we only need to consider the problem for g, t.e.,

{ {—p(e(y)) + (ale)))(€())?} — e(y)gcosd =0 for 0 <y < h, 25)
—p(o(h)) + a(e(h))(¢'(h))? = —pe.

Integrating (2.5); and using the boundary condition (2.5),, we derive

—a(e(®))(@®))? = pe — ple(w)) + gcosb / o(s)ds for 0 <y <h.

Moreover, we assume the forms of the coefficient a and the pressure p as follows:
a(g) = a < 0:constant, p(p)=peo, po>0. (2.6)

According to Boyle and Massoudi [4], the negative sign of coefficient a is adopted.
Taking into account (2.6), the problem becomes the following integro-differential
equation.

h
__a(gf(y))Z’ = pe — poo(y) + gcosH/ o(s)ds for 0 <y < h. (2.7)
Yy

Since the quadric dependence of the density gradient, (2.7) is a degenerate non-
linear equation. In order to remove the difficulties caused by the degeneracy and
non-linearity, we assume that the density function is monotonically decreasing. Of
course, the density of a layer low does not always behave monotonically. However,
so-called stratified flow is often assumed to hold a monotonically decreasing density,
we therefore seek a monotonically decreasing solution of (2.7) as the first step to
examine this model.

Under the monotonic condition ¢'(y) < 0 for 0 < y < h, problem (2.7) is
equivalent to

dy) =- Tf(f), (2.8)

where T denotes the right-hand side of (2.7), namely, we define the operator T as

TF(y) = pe — pof () + g cost / f(s)ds (2.9)

for 0 <y < h.
When we know the boundary data g(h) = b, then (2.8) is equivalent to the
following integral equation.

o(y) =b+ /y‘h \/i(:)ds.
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We should remark that the boundary condition stated in (2.5), cannot determine
the Dirichlet deta o(h) uniquely by itself. Therefore we assign the Dirichlet condi-
tion for p besides (2.5),, and in this case the problem becomes

_b+/ \/TQ( ds forO<y<h, (2.10)

h)—b>0 d(h)=-d <0,

under the compatibility condition
—ad® = p, — pob. (2.11)

Here, we note that the boundary condition (2.10), — (2.11) is equivalent to (2.5),.
Holding the relation (2.11), the Dirichlet data and the Neumann data of ¢ can vary.

We proved the existence theorem for problem (2.10), thus we can ultimately
obtain a solution for (2.3). The following theorem is proved in § 3.

Theorem 2.1 Leta<0,h>0,p.>0,p0>0,9g>0,0<0<7/2,6>0,d>0,
and —ad? = p, — pob. Problem (2.10) has a non-negative solution o satisfying

dy) <0, o(h)=b, d(h)=-d, 0ecC'[0,h], (2.12)

and a solution holding (2.12) is unique.

This existence theorem needs no additional conditions besides the compatibility
condition, hence the monotonically decreasing density solution to the steady simple
shear flow (2.3) always exists.

3 Proof of Theorem 2.1

3.1 Auxiliary estimates

First, we consider the problem (2.10) on some subinterval [hi,h] (0 < h; < h),
instead of [0, A].
Let o be a monotonically decreasing solution satisfying (2.7). Then Tf(y) > 0.

It deduces that .
cos6
o) < 2+ 220 [ o).
Po Po y

Gronwall’s inequality implies

o cos §(h—y)
g(y)sg-eg oo (3.1)
0
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(3.1) therefore gives

gcosogh—-az
To(y) <pe~poa(y)+gcos6’/ i 7o ds
Y 0
gcos@(h—y)
=pe 7 —poo(y)
g cos 8(h—y)
<pe ®m  —pob=: M(y), (3.2)

0<-d(y) =4 T%(j—) <y M_Lay—) (3.3)

where b = p(h) > 0.
Consequently,

Since (3.3), we have
To(y) = pe — poe(h) + pole(h) — o(y)) + g cos / o(s)ds

h
= —ad® + py / 0'(s)ds + gcosé / o(s)ds

> —ad? — pO/ \/ ds—l—gcos&/ (s)ds
> —ad® —po\/——_-a—(h—y) + gcos8b(h — y), (3.4)

where d = —¢'(h) > 0. Moreover,

M(y) = p. (egm:oh_y — 1) +pe — Pob < pe- g—ccﬁgﬂ "% —ad?. (3.5)
0
Thus,

De - ‘gcos:;(,[‘h—' P egcoszoh_y — ad?
(h—y) + gcosOb(h — y)

—a

Z_adz_po{\/%.gf_es_"_(h_—_y_).;—“%ﬂ+d}(h_y)

Do
+ gcosbb(h — y)
> —ad® — pod(h — y)

\/pe gcosO(h — y) zw_so(h_—uz}
— Do —_—_— e PO
—a

0 (h—y).

(3.6)



Here,
o2 N 2 podlh—y)  pi(h—y)* pi(h—y)?
ad” = pod(h —y) = —a (d —a + 4(—a)? 4(—a)?
B b=\ pih—y)?
s (d - 2 ) —4a
> _Po(h— y)“’,
- —4a

therefore (3.6) leads

geb_\/_r;g_ﬂ@_—_y_)—z _pi(’l:—y—)}(h—y)
—a Do —4a

To(y) > po {
=:m(y)(h — y). (3.7)

Here,

cos 6b 3 cosO(h — geoso(h—y)  po(h —
m(y)zpo{g —\/f—--g—————-—( y)-e P0 ————————0( y)}

Do —a Do —4a
__gcosbtb
2
+ o gcosb [ pe gcosf(h—y) .e%gz:ﬂ“po(h—y)
2po —a Do —4a
gcos b
=T + ma(y).

It is easy to see that m(y) > m(h;) and m,(y) > my(hy)-
Let o = 9‘2:;39, A = po/(—4a), B = /p.ce*/(—a), C = ab and X = /h — hy.

If h — hy <1, then m;(h;) > 0 is equivalent to
AX?+ BX -C<0.

Let
—B ++vB? +4AC
2A '
Hence, if X satisfies X < X, then we have AX?2+ BX — C < 0.

Consequently, we obtain the following lemma.

Xy =

Lemma 3.1 Let > 0,0< h; < h,p.>0,p>0,-a2>0,9g>0,0<0 <7/2
b>0,d>0, —ad® = p. — pob and a = gcos@/py. If h — h; satisfies

2
—a)? z o o
h—hy <6 ;:mjn{i(T“)- (_\/peo‘e +\/p°‘e + 95 ) ,1}, (3.8)
Dh —a —a —a

then m;(hy) > 0 and m(h;) > g cos0b/2.
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3.2 Proof of local existence theorem

Let h, hi, Pe, Po, —G, g, 0, b, d and a be the same as in Lemma 3.1. Moreover,
taking (3.3) into account, we define the function space as follows.

—a

X = {f(y) >0,0< —f'(y) < M) g hi<y<h, f(h)= b} - (39

Applying the same way as that used in (3.4), (3.6) and (3.7), for any f € X it
holds that

Tf(y) 2 m(y)(h—y) for hy <y<h, (3.10)
and m(y) > m(h;) > 0. Thus the operator J can be defined over X. Let F = Jf,
namely,

h
/T
F(y)EJf(y):b-l—/ ffls)ds for hy <y<h.
Y —
Here,
gcos@(h—y
0< 7)< BN form<y<h (3.11)
0

follows from (3.10). Repeating the same calculation carried out in (3.2) and (3.3),
we obtain

OS—F'(y)z\/If%QS —Ml—(aqz for h; <y < h.

Besides, F clearly satisfies F' > 0 and F'(h) = b. After all, F' also belongs to X.
The operator J is well-defined over X.
Moreover, we obtain the following estimates concerning J.

Lemma 3.2 Let A, hy, pe, Po, —@, g, 0, b, d and o be the same as in Lemma 3.1.
For any f, g € X it holds that

{po + gcosb(h — hy)}v/h — hy

195~ Joll < e T el )
ot goos 0Bk s — g, (313)

If)Y =gy
||( ) —(Jg) “ < /_—am(hl)
where || f|| = SUPy; <y<h |f (W)l

Proof.
From Lemma 3.1 and (3.10) we have T f(y) > m(h,)(h—y) and Tg(y) > m(h,)(h—
y) for f, g € X. These estimates lead

\/ Ti (s) _ \/ T:q_(S)

ds =

L[ 0Tl ,
V=aJ, VTG +v/T(s)

[Jf(y) —Jagw)l < /h
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ITf —Tgl| [ ds _Tf=Tgl —
= v=a J, 2y/m)h—s) +/—am(h) h—y, (314)

|Tﬂw—ny@nsLwaﬂw—g@»+gamq/(ﬂﬂ—gwnﬁ

< {po+gcosf(h—y)}If -4l (3.15)
(3.14) and (3.15) therefore conclude (3.12).
Since
' ’ 1 ITf(y) — Tg(y)| ITf—Tgl
J — — . ?
(O = 00 1= =2 A+ v T = Ve
(3.13) also follows from (3.15). .

Furthermore, Lemma 3.1 leads the following lemma.

Lemma 3.3 Let h, hy, pe, po, —a, g, 0, b, d and a be the same as in Lemma 3.1,
and let 0 < C < 1. If h — h, satisfies

—ag cos 6bC
—h <0y = 16
h=hy <8 = o  go0s0)? (3.16)

besides (3.8), then the operator J is contraction, i.e.,
13f = Jgll <Clf —gll-
Lemmata 3.2 and 3.3 derive the following local existence theorem.

Theorem 3.1 Let h, hy, pe, po, —a, g, 0, b, d, a and C be the same as in Lemma
3.3. The integral equation (2.10) has a unique solution on [hy, h], which belongs to
X.

Proof.
Let fo be an arbitrary function in X, and we define f;1; = Jf; ( = 0,1,2,...)
successively. Lemma 3.1 deduces {f;}32, C X.

From Lemma 3.3 and (3.11) it holds that for any 7 =0,1,2,...

gcosf(h—h,)

: ;P
| =il SCUf5 = fimall - < fi = fll S C7- ;Ze 7o
Consequently, we obtain the convergence result, namely, for m, n € N (m > n)

gcosO(h—hy)

m—1 m—1
| fm — full < Z | fi41— fill < ZC’j . i—:e P0 — 0 (m,n—0). (3.17)

Moreover, from (3.12) and (3.13) we have

gcos@(h—hy)

o Clfi=fill _ _CIA = foll _ oy pee™
”fj+1 fj“S N < S-———-——m <’ —————————po\/h__hl.
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Similarly, it holds that for m, n € N (m > n)

gcos(h~hy)
PO

I £, —fH_ZIIfJH f||<ZC’J e — —0 (0. (318)

(3.17) and (3.18) indicate that {f;} converges to a function in C*[h,, k], and the
limit solves the integral equation (2.10) on [h;, h]. The uniqueness of the solution
is derived by the contraction property of J. The necessary conditions obtained in
§ 3.1 imply the solution belongs to X. 1

Remark 3.1 Theorem 3.1 implies that the integro-differential equation (2.7) has
a unique monotonically decreasing solution on [h, k).

3.3 Proof of Global existence therorem

In this section we shall extend the interval the solution exsists. From the result
obtained in § 3.2 the integro-differential equation

h
—a(@'(y))* = pe — Poo(y) + gcosB/ o(s)ds for hy <y < h,
y

—a(0'(h))?* = pe — poo(h),
o(h) =b

has a unique monotonically decreasing solution on [h;, h], where h — h; satisfies
(3.8) and (3.16), i.e., h — h; < min{éd;, d2}.

In order to obtain the uniform estimate used later, we take smaller h — h; for
problem (3.19) so that h — h; < min{d], d>}, where

\ 2
—a)? a(l+h) a(1+h)
5;:min{4( a) (—\/”eae +\/peae +9 coseb) ,1}. (3.20)
3 —a —a —a

Obviously, 81 < §;, therefore problem (3.19) has a unique monotonically decreasing
solution on [h1, k).
In the case h; > 0, we next consider the following problem

(3.19)

—a(n'())? = T*n(y) = vt — pon(v) +gcos9/ n(s)ds for h} <y < A%,
n'(y) <0 for b} <y < h*,
n'(h*) = d'(h*), n(h*) = o(h*),
(3.21)
where h* = (h+ h;)/2, h} = max{(3h; — h)/2, 0} and

h

Do = De +gcosb / o(s)ds (3.22)

*



with o being a solution of (3.19). Obviously, A* is the middle point of kA and h;,
and h* — bt < h— h,.
We should remark that the boundary condition (3.21)3-(3.21), is equivalent to

{ —a(n'(h*))? = pt — pon(h*),
n(k*) = b* == o(h*),

since (3.19). Hence, problem (3.21) takes the same form as problem (3.19). Ac-
cording to Theorem 3.1, the integral equation corresponding to problem (3.21)

riw =+ [ (323

is uniquely solvable on [hs, h*] (k] < hs), if h* — hy < min{é}, 85} holds, where
07 (j = 1,2) are §; in (3.8) and (3.16) for parameters appeared in problem (3.21),

respectively.
Here,
. h h Pe gcosO(h—s)
P =pe+gcosd [ o(s)ds <p.+gcosd [ —e r ds
h* h* po
h
cos§(h—s) gcosfh
< pe + gcosO/ &eg o ds=pee P = peeah- (3.24)
o Do

Consequently, from (3.24) and b* > b we have

—q)? a(1+h) a(1+h)
B b <h—h <8 < 20 —\/pe“e - Jpeae + gc"s‘”’)

2

i —a —a —a
4(—a)? Doe” prae®  gcosBb ’
S 5 _\/ e _l_ \/ € +
i —a —a —a

2
)2 * N nQ * QY *
_<_4( 2a) (_\/peae Jr\/E)eoze +g(:osHb) . (3.25)
D3 —a —a —a

This implies that

h* — b} < min{d}, 65} (3.26)

Due to (3.26), repeaing the same argument carried out in § 3.2, we can obtain a
unique solution 7 for problem (3.21) on [A7, h*].
Since g also solves problem (3.21) on [h;, h*|, namely,

h h*
—a(d (y))? = pe — poo(y) + gcosb / o(s)ds = p — poo(y) + gcosd / o(s)ds
Yy Y

for hy <y < h*, the uniqueness property derives ¢ = 7 on [h;, h*].
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Accordingly, let

[ oly) (yelh*h),
Ql‘y)‘{ n) (v € [ h), (3.27)

then p, satisfies

—G(Ql(y))z
_ { —a(¢'(y))?* (y € [h*,h])
—a(n'(y))® (y € [h1,h*])

Pe — poo(y) + gcosh / os)ds  (y € [k, h])
yh*

p; — pon(y) + gcosf / n(s)ds (y € [h3, h*])

\ y

Pe — po0(y) + g cos6 / o(s)ds (v € [h*, b))

Pe — pon(y) + g cosd ( /y ) n(s)ds + /h ) Q(S)ds) (y € [A1, P7])

Pe — Poo1(y) + gcos0/ 01(s)ds (y € [h*, h])

Pe — poe1(y) + gcosf ( /y : o1(s)ds + / ' 91(8)d8> (y € [A1,h"])

*

\

h
= pe — po01(y) + gcos@/ 01(s)ds. (3.28)
Yy

When h} = 0, (3.28) gives the conclusion. If not, (3.28) means the interval, which
the solution exsits, is extended by (h— h;)/2. By iterating the same argument car-
ried out above, we ultimately obtain the desired unique monotonically decreasing
solution to problem (2.7) on [0, h]. This completes the proof of Thorem 2.1.

4 Steady simple shear flow between vertical planes

4.1 Set up and mathematical issues

We next consider the steady simple shear flow between vertical planes as follows.
In this case, Q = {(z,9,2)] — h < y < h}, v = (u(9),0,0)T, ¢ = o(y) and
b = (g,0,0)T. Here, the vertical planes are set at intervals of 2h, g denotes the
acceleration gravity. The stress takes the same form as (2.2).

Hence, the governing equations (2.1) are reduced to

{ (as(e)u'(y))'/2+ oly)g=0  for —h<y<h, (1)
{-p(e()) + ale®))(@®))*’} =0 for —h <y <h. '
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Figure 2: steady simple shear flow between vertical planes

In this study we seek a symmetric solution, namely,
o(y) =e(-y), uw(y)=u(-y) for —h<y<h (4.2)

Then the coupled problem (4.1) can be decoupled, by repeating the similar argu-
ment carried for (2.3). We obtain

u(y) = u(—h) + /_i E(Zi(;—(i—%s—zds, (4.3)

where

= [ o(s)gds.

Hence, what we consider is the ordinary differential equation (4.1),. We also assume
that the pressure and the coefficient a take the form of

a(e) = a0, @ <0, p(e)=poe, po>0. (4.4)

The reason for the sign of a is the same as in (2.6). Consequently, the equation is
reduced to

{—poo(y) + avo(y)(d'(W))’} =0 for —h<y<h.

Integrating the equation above from —h to y, we derive

—Poe(y) + aoo(y)(¢'(y))* = —poo(—h) + aoe(—h)(¢'(—=h))> = C for —h <y < h.

(4.5)
Here, C is a non-positive constant by virtue of the signs of po, o and ay. This means
(2, 2)-component of the stress T does not vary in y direction, and the pressure holds
poo(y) = —C + ao0(y)(¢'(v))?. In this model the pressure is not constant even in
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a simple shear flow, and this feature is a typical property of the density-gradient

dependent stress model.
In fact, (4.5) is related to the brachistochrone curve in the following manner.

Deforming (4.5), we have
C

—A(0)=——-1 4.6
Do ( ) boo ( )
Let y = /2, o(y) = o(}/72Y) = n(Y) and R = 2;}%, then 7 satisfies the

following ordinary differential equaiton.

dn(Y)\> 2R
(%) = 4

It is well-known that (4.7) is integrable and its solution describes a cycloid,
therefore 1 can be written by parametric representation

n = R(1 — cosf),
4.8
{ Y = R(0 — sind). (48)
Hence the solution of (4.6) can be represented by the following formula
0 = R(1 — cos®),
4.9
{ y = kR(6 — sinf), (49)
where Kk = ‘T‘;Q. The domain of @ can be determined by the boundary conditions

for p, and more importantly, it is not necessary that the domain of 6 is connected.
Moreover, due to the quadric dependence of the density gradient, the equation
admits a sectionally C* solution if it holds

l'(y” — 0)| = ¢ (y" + 0)

at the point of discontinuity of o'. If ¢ satisfies the above condition, (¢’ )2 is
differentiable almost everywhere on [—h, h]. Namely, even though g is not C* and
satisfies the equation on (—h, h) only sectionally, o can solve the problem if |¢| is
absolutely continuous. This implies that a sectionally C' solution spontaneously
holds no uniqueness (examples are shown in figures 3 and 4). We need more
physically meaningful conditions to determine the one sectionally C' solution, it is
however still open.

If we assume the regularity of the solution, then we obtain the uniqueness result.

Theorem 4.1 If a solution of problem (4.1) is C* under the symmetric condition
(4.2) and the boundary condition

u(h) = uo, o(h) =00, 0'(h)=0,

then the solution is unigue.
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# 15 ¢l : 33 # 8% 3 15 2

Figure 3: h=0.57, k=05, R=1, ¢'(h) =0

2 A% <3 44 # &8 1 £5 2

Figure 4: h = 0.57, £ = 0.5, R = 1, ¢/(h) = 0 with three folding points

Remark 4.1 The symmetric condition is not necessary to obtain the uniqueness.
When we obtain the C? solution under the appropriate boundary conditions, it
would be unique.

4.2 Numerics

When the domain of 6 is connected, then we can obtain the exact solution formula
for velocity u in some cases.

In order to calcurate r(y), first we consider an indefinite integral of p. Taking
into account the parametric representation of ¢ (4.9), we have

‘ gig . .
fiﬁ _ ﬁﬁ _ Rsin6 _ RSIIIH, (4.10)
dy < kR(1-cos) Ko

and then
/ggdy = /R(l —cos8)g - kR(1 — cos0)d8 = kR%g /(1 — cos 0)%dd

kR%g (:g’f — 2sinf + msinﬂcos@)

I

2 2
= kR%g {g (8 —sin ) — —8-%9 (1-— cose)} = % (3y — kosinb)
_ Rg Kzgzgr

Here, we omit the integral constant.
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Consequently, the symmetric conditions

o(-y) =ely), d(-y)=-2d®)
lead the following formula.
. x20(y)*d'(y)
r@%=TM%-%@%=—RgG@--—*ﬁ———)-

Here, we assume the form of a3 as
as(0) = azo + a0

with as; > 0 (] = 0, 1)
Especially, when a3y = 0 we have

[atatmes=—ut [ (5=

Rg xkR(6 — sin0) k2o
__ ROo\0 —SINY) e R(1 - p_ &
as; {3 R(1 — cos®) wR(1 — cosf)d 2R

B Rg 9 02 1‘5292
-—a—m{&c R(2 + cos b 2R

— gi 2 _ 2
:—-E‘g 352R M‘FSiDH(e—SiDO)—'(—I"—S.S_a)—}
as; 2 2
K',ZQ2
_2R]

3 2
= —-&Z—l {—g— + 3k%00'y — 2&292} :

Thus, in this case u can be represented by

) = () — L (2 + 3ot Wy — 27

+ 2 (:—;ﬁi — 3k20(—h)o' (—h)h — 2K® (—h)z) (4.12)
a1 2 [ 0 [ . .

Interestingly, the flow profiles are obtained by the use of numerical calculation
of the formula (4.12). In thecase g =1, R =1, h = m, a3 = 0, az = 1,
0 € [~7n/k,m/K], we obtain the density and the velocity profiles as follows. The
figures show the comparison of cases ag = 0 and ag # 0, and consider the limit
ag — 0. We remark that if ag = 0 then ¥ = 0, and when ag = 0 the solution must
be constant in this problem.



3.5

p=R{1-cos0}

/

Rl 0w

/

p=R{1-cosB)

Figure 5: k =1

W

/f
,

10
/r :

p=R({1-cos0)

[; i

R casBl / v

o

=] -3 g

Figure 6: k =1/3

EX I : H

5

p=R{1-cos6)

S 4 ST
eR{lvous) /

/ : \
Figure 7: Kk =1/15

s}

s T 18 SR sy

7]

s 5 S oo S WR vy}

e 8

e S R )

4
& .
R S — .
e i 3 BTt /
B

Figure 8: k = 1/77

i 35 7S I st}

85



86

The figures imply that the velocity of the problem with ag < 0 converges to
that of case ag = 0, even though the density function does not show the pointwise
convergence to the constant density case. Hence, the limit for the density of this
problem is likely the singular limit. We need more investigation into the density-

gradient dependent stress model.
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