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Remarks on the motion of non-closed planar curves
governed by shortening-straightening flow
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Abstract

We consider a motion of non-closed planar curves with infinite length. The motion is
governed by a steepest descent flow for the geometric functional which consists of length
functional and total squared curvature. We call the flow the shortening-straightening flow.
In this note, we announce a result of long time existence of shortening-straightening flow

for non-closed planar curves with infinite length.

1 Introduction

In this note, we announce a result given in [9]. Let 7 be a planar curve, k be the curvature, and
s denote the arc-length parameter of y. For ¥, we consider the following geometric functional

(1.1) E(‘y)=/12/7ds+/):lc2ds,

where 1 is a given constant. The steepest descent flow for (1.1) is given by the system
(1.2) oy = (=292 — i+ A%K)v,

where v is the unit normal vector of the curve pointing in the direction of the curvature. Re-
moving A2 from the first term of E (), the term denotes the length functional of y. We call the
steepest descent flow for length functional the curve shortening flow. On the other hand, the sec-
ond term in (1.1) is well known as the total squared curvature. The steepest descent flow for the
functional is called the curve straightening flow. Thus we call (1.2) the shortening-straightening
flow in this note.

There are various studies about the steepest descent flow for geometric functional defined on
closed curves, for example, the shortening flow ({1], [4], [5]), the straightening flow for curve
with fixed total length ([7], [11], [12]), and the straightening flow for curve with fixed local
length ([6], [8]). We mention the known results of shortening-straightening flow. In 1996, it
has been proved by A. Polden ([10]) that the equation (1.2) admits smooth solutions globally
defined in time, when the initial curve is closed and has finite length (i.e., compact without
boundary). Furthermore, G. Dziuk, E. Kuwert, and R. Schétzle ([3]) extended the Polden’s
result of [10] to closed curves with finite length in R”.
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We are interested in the following problem: “What is the dynamics of non-closed planar
curves with infinite length governed by shortening-straightening flow?” In this note, we prove
that there exists a long time solution of shortening-straightening flow starting from smooth
planar curve with infinite length. Namely, we consider the following initial-boundary value
problem:

oy =(-2d2x — k3 + A%x)v,
(8S) 7(0,8) = (0,0), x(0,£) =0,
7(x,0) = w(x),

where let 1(x) = (¢ (x), W(x)) : [0,00) — R? satisfy the following conditions:

(C2) |}/0'(x)} =1,

(C3) Ik € L*(0,00) forall m> 0,

(C4) Jim ¢(x) =, lim ¢'(x) =1,

(C5) y(x) =O0(x"%) for some o > % as x — oo, Y €L?(0,c0),

where K is the curvature of ¥. The condition (C2) and definition of y imply that ¥ has infinite
length. Moreover, from the conditions (C1)~(CS5), we see that 7y starts from the origin and is
allowed to have self-intersections, but must be close to an axis in C! sense as x — o. Then the
main result of this note is stated as follows:

Theorem 1.1. ([9]) Let yo(x) be a planar curve satisfying (C1)~(C5). Then there exists a
smooth curve Y (x,t) : [0,00) X [0,00) — R? satisfying (SS) on [0,R) x [0,R) for sufficiently
large R.

We construct a solution of (SS) by making use of the Arzela-Ascoli theorem. To define
an approximate sequence, we solve (1.2) for a certain compact case with fixed boundary (see
Section 2).

The paper is organized as follows: In Section 2, we prove that, for planar curves with
finite length, there exists a unique classical solution of (1.2) under certain boundary conditions.
Making use of result obtained in Section 2, we prove a existence of solution of (SS) in Section
3.

2 Compact case with fixed boundary

In this section, we consider (1.2) for planar curves with finite length under certain boundary
conditions. Let I'g(x) : [0,L] — R? be a smooth planar curve and ko(x) denote the curvature.
Let T'o(x) satisfy

@) |F®@[=1, To(0)=(0,0), ToL)=(R0), ko(0)=ko(L)=0,
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where L > 0 and R > 0 are given constants. In this section, let us consider the following initial
boundary value problem:

oy = (=20%k — K3+ A2k)v,
(CSS) Y(O’t) = (010)’ Y(L,t) = (R’O)a K(O,t) = K(L’t) =0,
Y(xa 0) = F()(X).

The purpose of this section is to prove a long time existence of solution of (CSS).

2.1 Short time existence
First we show a short time existence of solution to (CSS). For this purpose, let
22) Y(x,1) = To(x) +d(x,)vo(x),

where d(x,t) : [0,L] x [0,00) — R is unknown scalar function and v (x) is the unit normal vector
of To(x), ie., vo(x) = R (x) = (§ 31 )T0'(x). Under the formulation (2.2), the boundary
condition ¥(0,#) = (0,0) and y(L,¢) = (R,0) is reduced to

(2.3) d(0,t) =d(L,t)=0.
With the aid of Frenet-Serret’s formula I'y” = kovg and vy’ = —koI'¢/, we have

oY = (1 — kod)To' + drduy,
R, Y = —dly' + (1 — kod) 1y,
02y = (—ko'd — 2kodxd)Ty’ + (02d + ko — ko’d) v,
_ Oy Ry _ dhd(ka/d + 2ko0:d) + (1~ kod) (9d + ko — ko'd)

EXV {(1 = kod)? + (3:d)2}*?
Thus the condition x(0,¢) = x(L,?) = 0 is equivalent to
(2.4) 92d(0,t) = 92d(L,t) = 0.
Since

s(x,t) = /(;x |0 y(x,t)| dx = Ax{(l —ko(x)d(x,t))z + (axd(x,t))z}l/z dx,

we have

25 _
ax

Combining the relation (2.5) with

@.5) {(1 = ko(®)d(x,1))* + (3ed(x,))2}/* = I1al.

9 _ a/ox

ds  ds/ox’




we obtain
a . ax

os  |wl

Then we see that
P O [ O ( Acd(dckod + 2kocd) + (1 — kod)(d2d + ko — ko’ d)
vl \ vl

’ al 1val®

This is reduced to

1 7
07K = ——=d2 03 — —— 0 | yu| 3 + { —— 07 [Yal + —= 6 (O |7al) }as,

|7l |7l [l | dl
where
03 = Oyd(drkod + 2kod;d) + (1 — kod) (92d + ko — ko’d).
Setting
0 = dvkod + kodrd,
= 0,dd2d + oy (kod — 1),
oy = 0, ddd + (32d)? + oy ® + 3.0 (kod — 1),
we have
o2
aledIZ%’ 93|Yd|=—|—yj—|§+%-
Thus 9%k is written as
I’k = ——532 —1—7(7a28xa3-—3a3a4)+1—89a22a3.
|7l %l |%al
Since k = 03/ |y4|* and
oY = didvy,
we have
2 14 6 36 o3’ )Lza 1
% {"Waz"“ B e A } T—kod
= ——4a;d+c1>(d).
|74l

Setting 4(d) = (-2/ l‘yd|4)8f , the problem (CSS) is written in terms of d as follows:
did = A(d)d + ®(d),

(2.6) ‘ d(0,2) =d(L,t) =d"(0,t) =d"(L,t) =0,
d(x,0) = do(x) =

37
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We find a smooth solution of (2.6) for a short time. To do so, we need to show the operator
A(dp) is sectorial. Since A(dy) = —2d¢, first we consider the boundary value problem

dto+pe ="/,

where U is a constant. The solution of (2.7) is written as

L
2.8) o(x) = /0 Glx,&)f(€)dE,

where G(x, ) is a Green function given by

@@ +a@eE) o 0<x<E,
2.9) G &) ="
m(gl(x)gz(§)+g3(x)g4(é)) for & x<L.

Here the functions g1, g2, g3, g4, and constants Ko, K1, K2, i, are given by

21(¢) = cos . & sinh . § — sin . § cosh g,

g2(§) = S cospl — %cosu*Csinhu*C + % sin g, cosh g,
23(&) = cos w, & sinh i § + sin . & cosh . &,

g4(€) = —ett sinp, & + %sinu*é'coshp,@—}— %cosu*gsinhu*g,

Ko = 2cos? g, Lsinh? p, L +2 sin? WL cosh? 1, L,
U
_ &l —cos2u.L K e — sin2p,L pl/4

Kl 2 ) 2 = 2 9 u*_ \/i

By virtue of (2.8) and (2.9), we see that the solution of (2.7) satisfies

(2.10) lellwso.s < ClAlzrory-

Using the a priori estimate (2.10), we show that the operator 4(dp) generates an analytic semi-
group on L?(0,L). Then, along the same line as in [10], we obtain the following:

Lemma 2.1. Let 'y be a smooth curve satisfying (2.1). Then there exists a constant T > 0 such
that the problem (2.6) has a unique smooth solution for0 <t T.

Lemma 2.1 implies the existence of unique solution of (2.6) for a short time:

Theorem 2.1. Let T'o(x) be a smooth curve satisfying (2.1). Then there exist a constant T > 0
and a smooth curve Y(x,t) such that y(x,t) is a unique classical solution of the problem (CSS)
for0<t T.
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2.2 Long time existence
Next we shall prove a long time existence of solution to (CSS). Let us set
F* =292k +k° — A%k
Then the gradient flow (1.2) is written as
dy=—-F*v.
Since the arc length parameter s depends on time #, the following rule holds:
Lemma 2.2. Under (1.2), the following commutation rule holds:
9,9; = 9,0, — kKF* 9.

Lemma 2.2 gives us the following:
Lemma 2.3. Let y(x,t) satisfy (1.2). Then the curvature K(x,t) of y(x,t) satisfies
(2.11) ok = —9rF* — k?Fh

= 29k - 5k202Kk + A29% K — 6x(dsk)? — K° + A1,

Furthermore, the line element ds of y(x,t) satisfies
(2.12) dds = kF*ds = 2kd2k + k* — A2k?)ds.

Here we introduce the following notation:

Definition 2.1. ([2]) Let q" (9! k) be a symbol of a polynomial as follows:
Ny
q'(9/x) =Y. Cu]] 0"
m i=1

with all the cy,, less than or equal to | and
N

Z(cm,.+l)=r

i=1
Jor every m, where C,, are constant coefficients.
By virtue of Lemmas 2.2 and 2.3, we have
Lemma 2.4. For any j € N, the following formula holds:

(2.13) 00k = =23/ — 5K29/ 2k + A20/ 2+ A2/ (9) k) + ¢/ (91 k).
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Proof. The case j = 0 in (2.13) has been already proved in Lemma 2.3, where ¢°(dsk) =
—6K(dsx)? — k5 and ¢3(x) = k3. Next suppose that the formula (2.13) holds for j — 1. Then

we have
80/ = 3,0,0/ 1 — kF* 9/ x
=0y {29/ k- 5,K29/ e+ 229/ T e + A2q/ 12 (971 k) + ¢/ T4 (9] K) }
—- k(292 + 1 — Ax?)dlx
= —20/ " — 5620/ 2+ 229/ P i+ A3 (97 k) + /3 (97 k).
We complete the proof. U

From the boundary condition of (CSS), we see that the curvature k satisfies the following:

Lemma 2.5. Let k(x,t) be the curvature of y(x,t) satisfying (CSS). Then, for any m € N, it
holds that

(2.14) 32" k(0,¢) = 2™k (L,t) = 0.

Proof. First we show the case where m = 1, 2. Differentiating the boundary condition ¥(0,7) =
(0,0) and y(L,?) = (R,0) with respect to ¢, we have 9,7(0,¢) = d;y(L,t) = 0. From x(0,7) =
x(L,t) = 0 and the equation (1.2), we see that 92k (0,¢) = d?x(L,t) = 0. Since J,;x(0,¢) =
9 k(L,t) = 0, the equation (2.11) yields d#x(0,¢) = 9} x(L,t) = 0.

Next, suppose that 92" k(0,¢) = 92"k (L,t) = 0 holds for any natural numbers n < m. Lemma
2.4 gives us

atasZm—ZK — _2as2m+2K.__ SKZaSZmK_l_lzaSZmK_*_AZquﬁ-l(asZm——ZK) + q2m+3(as2m—lx).

Since any monomials of q2"*!(92~2k) and q*™+3(92™ k) contain at least one of the terms
¥k (1=0,1,2,---,m—1), we obtain 32"+2x(0,1) = 92" +2x(L,t) = 0. =

Let us define L? norm with respect to the arc length parameter of y. For a function f(s)

defined on ¥, we write
1
14
Hﬂw={AV®Vw}.

Iy = sup ]If(S)I,

s€[0,.Z2(7)

Similarly we define

where .Z(y) denotes the length of y. Here we prepare the following interpolation inequalities:
Lemma 2.6. Let y(x,t) be a solution of (CSS). Let u(x,t) be a function defined on 7y and satisfy
32™u(0,¢) = d¥ u(L,t) =0

SJor any m € N. Then, for integers 0 < p q r, it holds that

r—.

9-p
(2.15) 105 ull 2 < N9 ull ;" 105 ull 5 -
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Moreover, for integers 0 < p < g v, it holds that

2(r—g)-1 2(qg—p)+1

(2.16) 108ul - < V2l|0Full ;"7 ll9full ;" .
Proof. By the boundary condition of u, for any positive integer »n, we have
1972, = /(8;’u)2ds = -/a:—lu-a:+1uds < [|or="ul ||+ ul) .
*Jy 14 s s

This implies that log||d;u||;, is concave with respect to 7 > 0. Thus we obtain the inequality
(2.15).

Next we turn to (2.16). Since it holds that 9>"u(0) = d%"u(L) = 0 for any m € N, the
intermediate theorem implies that there exists at least one point0 & L such that 92" 1u =0
at x = &. Hence, for each non-negative integer n, there exists a point 0 < &, < L such that
d'u =0 at x = £,. Then we obtain

1 1
@.17) l6ull e < V2ll07ul, |97+ ullZ;

Combining (2.15) with (2.17), we obtain (2.16). O

By virtue of Lemma 2.5, we are able to apply Lemma 2.6 to 9"k for any non-negative
integer n. Making use of boundedness of energy functional at y = I'g, we derive an estimate for

Ixll2-

Lemma 2.7. Let 'y be a solution of (CSS). Then the curvature x satisfies
2.18) 1512, < WholZago. + A% (L) ).

Proof. Since the equation in (CSS) is the steepest descent flow for E(y) = IIKH,Z% +22%(y),
we have

I1xliZ: +A22(7) < llkolZ2g 1) + A2L(T0).

Since it is clear that £(y) > R, we obtain (2.18). (.

We shall prove a long time existence of solution to (CSS) by using the energy method. To
do so, we prepare the following:

Lemma 2.8. For any non-negative integer j, it holds that

(2.19) 07|17z = =214 2| 1, - 2% |0/

A2 / 243/ x) ds + / (3 k).
Y Y

Ly
dt
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Proof. By virtue of Lemma 2.4, we have
d .2 , , .
= Jlaixllz; = /Y 20/x0,9] K ds + /y (9 x)2kF™ ds
= /28{1({—23{*41(— 5k29/t2K + 129/ 2+ A2/ 3 (9 k) + ¢/ 3 (9! K‘)} ds
Y
+/xasfx(2afx+ K = Ak2)ds.
¥

By integrating by parts, we get
/Kzajxaﬁzxds = —/{ZKasxajK8{+1K+ 2(9{T1x)?} ds.
Y 14

Consequently we obtain (2.19). a

Using Lemmas 2.7 and 2.8, we derive the estimate for the derivative of 197 x|| %2 with respect
tot.

Lemma 2.9. For any non-negative integer j, we have
& Nadxlz; <l e +cleg .

Proof. By Lemma 2.8, it is sufficient to estimate the right-hand side of (2.19). First we focus
on the term [, q2/+4(9{ x) ds. By Definition 2.1, we have

2j+4 a]K Znac,,,l

with all the ¢,,; less than or equal to j and

Npn
Y (em+1)=2j+4
=1

for every m. Hence we have
. 4 . N
|*7+4(a/x)| < ZHlac'"’Kl
m |=1

Setting
Nm
Qm = 1_[ la;”d Kl ’

=1

it holds that

[1a#+4@i0) ds <3, [ Omds
Y mJY
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We now estimate any term Q,, by Lemma 2.6. After collecting derivatives of the same order in
O, We can write

J j
(2.20) On = 1‘[ 9ik|™ with Y omi(i+1) =2/ +4.
i=0 i=0

Then
J i | Olmi J i | Olmi 14 / amt
J 0nas= [ XTjoéxi" as < [T ( [ |0t ’"’d) 3§ (X
Y Yi=0 i=0 \"7Y i=0

where the value A; are chosen as follows: 4; = 0 if a,,; = 0 (in this case the correspondlng term
is not present in the product) and A; = (2j+4) /(Qmi(i+1)) if 04 # 0. Clearly, omidi = = ++14 >

243 > 2 and by the condition (2.20),

o1 L omi(i+1)
=1.
i=o,§:¢o’ll i 0’2& 2J+4
Let k; = otyyiA; — 2. The fact o,;A; > 2 implies k; > 0. Then we have
192 ]| o, = il i1,

otz < 2% g 7 1 7,

+2-2i
ol < oy e e

These imply
195l < 27 (02l
with
_ i+3~ o
" j+L

Multiplying together all the estimates, we see that

(2.21) /des < H22 Ilaj+1K||am16m1 amt 1 sz)

< Clod* ] oo ||L;°°‘m'“ om)

Then we compute

J a’""(i'{_%)_)%- _ Z{:Oami(i+%)_1

J
Z OmiOmi = Z
i=0

= j+1 o j+1
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and using again the rescaling condition in (2.20),

J 3 o Omi(i+1) = 137 i — 1
Zamiami= T
i=0 J
_ YA S o Omi— ] 4 +6— 3 Om
J+1 2+1)
Since
L Lo i+l 2j+4
O 2 Omi = -,
,Z:‘) ' ,=zo 1+l
we get
J 2/2+4j+1 ]
OO < 2t =2 = ——
g,) miOmi (J+1)2 (j+1)2

Hence, we can apply the Young inequality to the product in the last term of inequality (2.21).
Then we have

[ @mas < O |02+ k2 + Co Iy < S 13 [ s+ Con 1l

for arbitrarily small 8,, > 0 and some constant C,, > 0. The exponent f3 is given by

B=Y (1 — o) = 22tz Oni(l = Om)
i=0 1— Z{;ogm_o 2— 5 CiOmi

- 4j+6-3] o Omi : . -
_ 221!=0 Omi — J+1 =22(1+ 1)2{:0 ami_4l—6+2{=0 Omi

2 A6 T O 4j+4—4j—6+5_o0m
2j+3)3 i —2(2j +3
_ &+ )2}2006»:: 2j+ )=2(2j+3)'
X0 Omi—2

Therefore we conclude
; 2 4j+6
| @us < 8 a7+l + Gl

Repeating this argument for all the Q,, and choosing suitable &,, whose sum over m is less than
one, we are able to verify that there exists a constant C depending only on j € N such that

. . . 2 4 . 6
[ adnds < |+l + el

Reasoning similarly for the term % +5(37 ' k), we obtain

. . . 2 4 . ]O
/y a8(3j+ ) ds < || x|, + Cllxl| .
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Hence, from (2.19), we get
0107l = =2l 27, — 227 |97+ x|
+Az/q2j+4(asjlc)ds+/q2j+6(asj+1K)
t Y
<-A? ||asf+1x||§3 +Clxl+ - ||8sj+21<||§3 +Celll5
<l Clxl™,
where C depends only on ;. 0

Since the arc length parameter s depends on ¢, we need to estimate the local length of y(x,z).

Lemma 2.10. Let y(x,t) be a solution of (CSS) for 0 <t T. Then there exist positive constants
C1 and C, such that the inequalities

(222) < laXY(x’t)l < Cl (FOaT)a

1
Ci(To,T)
(2.23) |97 10x¥(x,2)|] < Ca(To, T)
hold for any (x,t) € [0,L] x [0, T| and integer m > 1.

We omit the proof. For the proof of Lemma 2.10, see [9]. By virtue of Lemma 2.10, we
prove that the system (CSS) has a unique global solution in time.

Theorem 2.2. Let I'y be a smooth planar curve satisfying the condition (2.1). Then there exists
a unique classical solution of (CSS) for any time t > 0.

Proof. Suppose not, then there exists a positive constant T such that y(x,) does not extend
smoothly beyond 7. It follows from Lemmas 2.7 and 2.9 that

197 xliZ2 < 167" kollZ2(0,0) +CT

holds for any 0 < ¢ < T and non-negative integer m. This yields that there exists a constant C
such that

(2.24) l9yylz <C
for ¢ € [0,T]. Here we have
229 oY= 18" 3y =P(1der), .8 a1 ')

where P is a certain polynomial. By virtue of (2.24), (2.25), and Lemma 2.10, we see that there
exists a constant C such that

19" Yl 20,0y < €

for any 7 € [0,7] and m € N. Then y(x,?) extends smoothly beyond 7 by Theorem 2.1. This is
a contradiction. We complete the proof. U
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3 Non-compact case

In this section, we shall prove Theorem 1.1. Let 1 (x) = (¢ (x), w(x)) : [0,50) = R? be a smooth
curve, and Ky denote the curvature. Let 9y satisfy the conditions (C1)~(CS5). Recall that ¥ has

infinite length.
Let us fix sufficiently small p > 0. The conditions (C4) and (C5) imply that, for p > 0, there
exists a constant M > 0 such that '

G.1) sup ||o'(x)| 1] p, sup |y(x)| p, ?;p)lu/(x)l P
xX€(M o0

xE(Me0) x€(Me0)

Thus we see that p close to the axis in C' sense as x — oo.
In order to construct an approximate sequence of solution to (SS), we define a smooth curve
with finite length by using y. Let n,(x) € C;(0,+<<) be a cut-off function defined by

ny(x)=1 for any x€[0,r—1],
0 n(x) 1 for any xe€(r—1,r),
N(x)=0 for any x € [r,+e0).

Using the cut-off function, we define a curve Iy, : [0,7] — R? as

Lo (x) = (#(x), n-(x) y(x))

x€[0,r] )

Remark that the length of Ty, is finite. Let ko, denote the curvature of I'g . To begin with, we
show the following lemma:

Lemma 3.1. Letr > M. Then Ky ,(x) is smooth and satisfies
(3.2) Ko,r(r) = 0.
Proof. Let r > M. The function Ky ,(x) is written as
R(¢'x), - () W(x) + 1 ()Y (x) - (8"(x), 93;7r(x) Y(x) +20,00¥' () + (2" (x)
Io,,(x)

The expression and (3.1) imply that xp , € C(0,r). Furthermore, by the definition of n,(x), we
have g ,(r) = 0. O

To construct an approximate sequence, we consider the following initial-boundary value
problem:
oy = A’k —23%k — 3w,
(SSr) Y0,6) =(0,0), y(n)=(¢(r),0), x(0,r)=x(r1)=0,
¥(x,0) = To,-(x).

Concerning (SS,), we verify the following:
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Lemma 3.2. Let r > M. Then there exists a unique classical solution of (SS,) for any time
t>0.

Proof. Lemma 3.1 and Theorem 2.2 gives us the conclusion. ]

In what follows, let ¥,(x,#) denote the solution of (SS,), and k;(x,f) be the curvature of
%(x,t). We prove the existence of solution of (SS) by applying the Arzela-Ascoli theorem to
{#}r>m. Indeed we obtain the following:

Theorem 3.1. Let y(x) be a planar curve satisfying (C1)~(CS). Then there exists a planar
curve Yoo(x,1) : [0,00) x [0,00) — R? satisfying (SS) on [0,R) x [0,R) for any R > M.

In order to prove Theorem 3.1 by using the Arzela-Ascoli theorem, we need to show that
Y- and its derivatives are uniformly bounded with respect to » > M. Essentially the uniform
boundedness of || k|| 12 yields the required boundedness of . Thus it is sufficient to prove the
following:

Lemma 3.3. sup,¢(y/..) |5 ll2 o
We close this paper with the outline of proof of Lemma 3.3.
Outline of proof of Lemma 3.3. Let r > M. First recall that the inequality

172 < [lo, 72 + A2 (L (To,) — 0(7))

holds. Thus it is sufficient to estimate the right-hand side.
step 1. Using the definition of I'g, and the condition (C2), we verify that there exists a
constant C being independent of 7 such that

kol lIx0ll720,m) +C

for any r > M.
Next we turn to the second term £ (I'y,) — ¢ (7). Set M b r— 1. Then we have

(3.3) Z(Toy) = ¢(r) = (£1(To,) — 0(8)) + (L2(To,) — (9 (r) — 6(8))),

where
b r
L(To,) = /0 10T, (x)| dx=b, % (To,) = /b 10,To,,(x)] dx.

It is clear that the first term in the right-hand side of (3.3) is bounded and independent of r.
Hence we focus on the second term % (T ) — (¢(r) — ¢(b)).

step 2. From (3.1), for any » > M, we see that Iy .(x) is written by a variation of line
(¢(x),0) on the interval [b,7]. By virtue of a certain variational formula for the length functional
of line, we see that

(3.4) £ (o) = (07 = 9(8)) < C (Wl 0.+ |V ][220y ) -

Then the condition (C5) implies that the second term of right-hand side of (3.3) is uniformly
bounded with respect to 7.

The facts obtained from step 1 and step 2 yield that ||;||;> is uniformly bounded with
respect to 7. Therefore we complete the proof Lemma 3.3. ' O
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