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1. INTRODUCTION
We devote this note to expose an explicit form of the twisted Alexander invariant

for irreducible metabelian $SL_{2}(\mathbb{C})$-representations of knot groups. This work was mo-
tivated by the characterization of irreducible metabelian $SL_{2}(\mathbb{C})$ -representations in [9],
concerning the conjugacy classes of $SL_{2}(\mathbb{C})$-representations. We can correspond the set
of conjugacy classes of $SL_{2}(\mathbb{C})$ -representations to an affine variety called the chamcter
variety (for details, we refer to [2, 7]). The conjugacy classes of irreducible metabelian
$SL_{2}(\mathbb{C})$-representations forms the fixed points on the character variety under an involu-
tion ( $\mathbb{Z}_{2}$-action). Since the twisted Alexander invariant has the invariance under con-
jugation of representations, it is expected that the feature of conjugacy classes of irre-
ducible metabelian $SL_{2}(\mathbb{C})$-representations is carried over into the computation result of
the twisted Alexander invariant for irreducible metabelian $SL_{2}(\mathbb{C})$ -representations. In
particular, we consider the composition of $SL_{2}(\mathbb{C})$-representations with the adjoint ac-
tion. Since the adjoint action connects the homology of group with the cotangent space
on the character variety, we can expect that the twisted Alexander invariant have a more
significant feature concerning the linear map induced by the involution on the cotangent
space at a fixed point. Our main theorem is stated as follows:

Main Theorem If an $SL_{2}(\mathbb{C})$ -representation $\rho$ of $\pi_{1}(E_{K})$ is metabelian and longitude-
regular (requiring irreducibility and some additional conditions), then the twisted Alexan-
der invariant for the composition of $\rho$ with the adjoint action factors into the product

$(t-1)\triangle_{K}(-t)P(t)$

where $\Delta_{K}(t)$ is the Alexander polynomial of $K$ and $P(t)$ is a Laurent polynomial satisfying
that $P(t)=P(-t)$ .

Throughout this note, we use the symbol $K$ for a knot in $S^{3}$ and $E_{K}$ for the knot
exterior $S^{3}\backslash N(K)$ where $N(K)$ is an open tubular neighbourhood of $K$ . Hence $\pi_{1}(E_{K})$

denotes the knot group of $K$ .
In the Main theorem, it seems that the symmetry of $P(t)$ corresponds to the feature of

the conjugacy class of $\rho$ as a fixed point under the involution and the Alexander polynomial
with the variable multiplied with-l seems to be the effect by the linear map induced by
the involution on the cotangent space at the fixed point.
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We aim to observe the twisted Alexander invariant for the composition of irreducible
metabelian $SL_{2}(\mathbb{C})$ -representations with the adjoint action (for the definition, see Sec-
tion 2) and compute concrete examples. For this purpose, we need a pair of a suit-
able presentations of knot groups and explicit forms of irreducible metabelian $SL_{2}(\mathbb{C})arrow$

representations. X.-S. Lin [6] has introduced such a useful presentation of knot groups by
using free Seifert surfaces for knots.

Instead of giving the rigorous proof to our main theorem, we discuss the details of
construction and computation for Lin $s$ special presentations of knot groups and show
computation procedures of the twisted Alexander invariant via concrete examples.

ORGANIZATION

First we will review the twisted Alexander invariant for the composition of $SL_{2}(\mathbb{C})-$

representations with the adjoint action in Section 2. Section 3 shows a brief exposition
of metabelian $SL_{2}(\mathbb{C})$ -representations of knot groups and its characterization in the char-
acter variety. Section 4 gives a review on special presentations of knot groups, by using
free Seifert surfaces, and the detail on how to write down such presentations via the
concrete example for the trefoil knot. In Section 5, we will state our main theorem on
the twisted Alexander invariant for the composition of irreducible metabelian $SL_{2}(\mathbb{C})-$

representations with the adjoint action and the sketch of the proof. Last, we calculate
the twisted Alexander invariants of the trefoil knot, figure eight knot and $5_{2}$ knot for the
composition of irreducible metabelian $SL_{2}(\mathbb{C})$-representations with the adjoint action in
Section 6.

2. REVIEW OF THE TWISTED ALEXANDER INVARIANT

We review the definition of twisted Alexander invariant. We follow the definition in the
way of Wada [12] by using Fox differential calculus on knot groups. To define the twisted
Alexander invariant, we need a presentation and two homomorphisms of a knot group.

One homomorphism is the abelianization homomorphism of a knot group. The abelian-
ization homomorphism is the quotient one by the commutator subgroup and the quotient
group is called the abelianization of a group. It is known that the abelianization of a
fundamental group is isomorphic to the first homology group. Since the abelianization of
a knot group is a free abelian group with rank one, we express this abelianization as the
multiplicative group $\langle t\rangle$ . We denote by $\alpha$ the following abelianization of $\pi_{1}(E_{K})$ :

$\pi_{1}(E_{K})arrow\langle t\rangle$ , $\mu\mapsto t$

where $\mu$ is a meridian of the knot $K$ . The other homomorphism is called a representation
of a knot group. Representations means homomorphisms from a group into a linear
automorphism group of a vector space. In this note, we consider representations into
$SL_{2}(\mathbb{C})$ , i.e., a representation $\rho$ is a homomorphism from $\pi_{1}(E_{K})$ into $SL_{2}(\mathbb{C})$ and we take
the composition of an $SL_{2}(\mathbb{C})$ -representation with the adjoint action.

Definition 2.1. The Lie group $SL_{2}(\mathbb{C})$ acts on the Lie algebra $5[_{2}(\mathbb{C})$ by conjugation:

$A:\epsilon t_{2}(\mathbb{C})arrow\epsilon 1_{2}(\mathbb{C})$

$v\mapsto AvA^{-1}$
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where $A\in SL_{2}(\mathbb{C})$ . This is called the adjoint action of $A$ and denoted by the symbol
$Ad_{A}$ .

The Lie algebra $\epsilon \mathfrak{l}_{2}(\mathbb{C})$ is generated by the following three matrices over $\mathbb{C}$ :

(1) $E=(\begin{array}{ll}0 10 0\end{array})$ , $H=(\begin{array}{ll}1 00-1 \end{array})$ , $F=(\begin{array}{ll}0 01 0\end{array})$ .

In particular, when we regard $5[_{2}(\mathbb{C})$ as a 3-dimensional vector space over $\mathbb{C}$ , the adjoint
action turns into a homomorphism from $SL_{2}(\mathbb{C})$ into $Aut(g1_{2}(\mathbb{C}))\simeq Aut(\mathbb{C}^{3})$ . It is also
known that the determinant of the adjoint action is always 1. More precisely if an element
$A\in SL_{2}(\mathbb{C})$ has the eigenvalues $\xi^{\pm 1}$ , then the composition $Ad_{A}$ has the eigenvalues $\xi^{\pm 2}$

and 1 (see Eq. (6) for example). Hence the composition of an $SL_{2}(\mathbb{C})$ -representation $\rho$

with the adjoint action gives an SL3 $(\mathbb{C})$-representation of $\pi_{1}(E_{K})$ :

$Ad\circ\rho$ : $\pi_{1}(E_{K})arrow^{\rho}SL_{2}(\mathbb{C})arrow Aut(\epsilon 1_{2}(\mathbb{C}))Ad$ .

These compositions with the adjoint action appear homology of groups with coefficient in
$\epsilon \mathfrak{l}_{2}(\mathbb{C})$ (we refer to [10] and [11, Lecture 15] for SU(2) case).

We also review the definition of the twisted Alexander invariant for the composition of
an $SL_{2}(\mathbb{C})$-representation $\rho$ of a knot group $\pi_{1}(E_{K})$ with the adjoint action.

Definition 2.2. We choose a presentation of a knot group $\pi_{1}(E_{K})$ as
$\pi_{1}(E_{K})=\langle g_{1},$

$\ldots,$
$g_{k}|r_{1},$

$\ldots,$
$r_{k-1}\rangle$

and an $SL_{2}(\mathbb{C})$ -representation $\rho$ . Let $\Phi_{Ado\rho}$ be the linear extension of the tensor product
$\alpha\otimes Ad_{\rho}:\pi_{1}(E_{K})arrow \mathbb{C}[t^{\pm 1}]\otimes_{\mathbb{C}}$ SL3 $(\mathbb{C})$ on the group ring $\mathbb{Z}[\pi_{1}(E_{K})]$ , i.e.,

$\Phi_{Ad\circ\rho}:\mathbb{Z}[\pi_{1}(E_{K})]arrow \mathbb{C}[t^{\pm 1}]\otimes M_{3}(\mathbb{C})=M_{3}(\mathbb{C}[t^{\pm 1}])$

$\sum_{i}a_{i}\gamma_{i}\mapsto\sum_{i}a_{i}\alpha(\gamma_{i})\otimes Ad\circ\rho(\gamma_{i})$

Here we identify $\mathbb{C}[t^{\pm 1}]\otimes M_{3}(\mathbb{C})$ with $M_{3}(\mathbb{C}[t^{\pm 1}])$ . We assume that $\alpha(g_{1})\neq 1$ . Then the
twisted Alexander invariant $\triangle_{E_{K}}^{\alpha\otimes Ad\circ\rho}(t)$ is defined as the following ratio of two determi-
nants of elements in $M_{3}(\mathbb{C}[t^{\pm 1}])$ :

(2)
$\triangle_{E_{K}}^{\alpha\otimes Ad\circ\rho}(t)=\frac{\det(\Phi_{Ad\circ\rho}(\frac{\partial r_{i}}{\partial g_{j}}))_{1_{\frac{\leq}{2}}i_{\frac{\leq}{j}}k-1}\leqq\leqq k}{\det(\Phi_{Ad\circ\rho}(g_{1}-1))}$

.

Remark 2.3. When we consider the rational function

$\det(\Phi_{Ad\circ\rho}(\frac{\partial r_{i}}{\partial g_{j}}))_{1\leqq i\leqq k-1}1\leqq j\leqq k,j\neq\ell$

$\det(\Phi_{Ad\circ\rho}(g_{l}-1))$

for other generator $g_{\ell}$ satisfying that $\alpha(g_{\ell})\neq 1$ , we have the same rational function as
Eq. (2) up to a factor $\pm t^{n}(n\in \mathbb{Z})$ . In this note, we choose the last generator in a
presentation of a knot group for our concrete examples in Section 6.
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3. METABELIAN REPRESENTATIONS

We mainly consider the special $SL_{2}(\mathbb{C})$-representations, which are called metabelian. In
particular, we focus on irreducible metabelian $SL_{2}(\mathbb{C})$-representations in this note.

Definition 3.1. An $SL_{2}(\mathbb{C})$ -representation $\rho$ of $\pi_{1}(E_{K})$ is metabelian if the image of the
commutator subgroup $[\pi_{1}(E_{K}), \pi_{1}(E_{K})]$ by $\rho$ is an abelian subgroup in $SL_{2}(\mathbb{C})$ .

In the definition 3.1, we consider the condition concerning the image of the comutator
sugroup by an $SL_{2}(\mathbb{C})$ -representation. Concerning the whole image of $\pi_{1}(E_{K})$ , we often
consider the existence on a common eigenspace for all $SL_{2}(\mathbb{C})$ -elements in the image of
$\pi_{1}(E_{K})$ . According to the existence on a common eigenspace, an $SL_{2}(\mathbb{C})$ -representation
is referred to as being either reducible or irreducible.

Definition 3.2. An $SL_{2}(\mathbb{C})$-representation $\rho$ is reducible if there exists an invariant line $L$

in $\mathbb{C}^{2}$ such that $\rho(\gamma)(L)\subset L$ for all $\gamma\in\pi_{1}(E_{K})$ . This means that there exists a common
eigenvector of $\rho(\gamma)$ for all $\gamma\in\pi_{1}(E_{K})$ . Hence by taking conjugate we can assume the
image of $\pi_{1}(E_{K})$ by a reducible $SL_{2}(\mathbb{C})$ -representation is contained in upper triangular
matrices in $SL_{2}(\mathbb{C})$ . We call an $SL_{2}(\mathbb{C})$ -representation $\rho$ irreducible if $\rho$ is not reducible.

Remark 3.3. By direct computation, for upper triangular $SL_{2}(\mathbb{C})$ -matrices $A$ and $B$ we
have

$[A, B]=ABA^{-1}B^{-1}=(\begin{array}{l}1*01\end{array})$ .

Together with the fact that all upper triangular matrices with diagonal components 1
forms an abelian subgroup in $SL_{2}(\mathbb{C})$ , this means that all reducible representations are
metabelian.

The twisted Alexander invariant for reducible $SL_{2}(\mathbb{C})$-representations is calculated ex-
plicitly, in [5, 14]. Therefore we focus on irreducible metabelian $SL_{2}(\mathbb{C})$-representations of
$\pi_{1}(E_{K})$ in the subsequent sections. For the exposition on the twisted Alexander invariant
for metabelian $SL_{2}(\mathbb{C})$ -representations, we refer to [15].

We deal with $SL_{2}(\mathbb{C})$ -representations in the difference between reducible ones and
metabelian ones. Such the difference is expressed as only finite number of conjugacy
classes.

Remark 3.4. It has been shown in [6, 8] that the conjugacy classes of irreducible
metabelian $SL_{2}(\mathbb{C})$-representations of $\pi_{1}(E_{K})$ is finite and the number is given by

$\frac{|\triangle_{K}(-1)|-1}{2}$

where $\Delta_{K}(t)$ the Alexander polynomial of $K$ . For explicit forms of irreducible metabelian
$SL_{2}(\mathbb{C})$-representations, see Proposition 5.3.

To characterize these conjugacy classes, we define an involution on the set of $SL_{2}(\mathbb{C})-$

representations of a knot group by using scalar multiplication for matrices. For $\rho$ is an
$SL_{2}(\mathbb{C})$-representation of $\pi_{1}(E_{K})$ , we can define a new $SL_{2}(\mathbb{C})$ -representation $(-1)^{[\cdot]}\rho$ as

$(-1)^{[\cdot]}\rho:\pi_{1}(E_{K})arrow SL_{2}(\mathbb{C})$

$\gamma\mapsto(-1)^{[\gamma]}\rho(\gamma)$
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where $[\gamma]$ is the homology class of $\gamma$ in $H_{1}(E_{K};\mathbb{Z})\simeq \mathbb{Z}$ . It is easy to see that the
correspondence $\rho\mapsto(-1)^{[\cdot]}\rho$ is an involution and induces the involution on the set of
conjugacy classes.

Remark 3.5. It is shown in [9] that every irreducible metabelian $SL_{2}(\mathbb{C})$ -representation $\rho$

of $\pi_{1}(E_{K})$ is conjugate to $(-1)^{[\cdot]}\rho$ . Moreover it is also shown that an irreducible $SL_{2}(\mathbb{C})-$

representation $\rho$ is metabelian if it is conjugate to $(-1)^{[\cdot]}\rho$ . This means that the conju-
gacy classes of irreducible metabelian $SL_{2}(\mathbb{C})$ -representations form the fixed points in the
$SL_{2}(\mathbb{C})$-character variety of $\pi_{1}(E_{K})$ under the involution.

Remark 3.6. The higher rank analog (SL$n(\mathbb{C})$ cases) in Remark 3.5 is given by H. Boden
and S. Riedl in [1].

We can expect that the invariance of irreducible metabelian representation under the
action of $\mathbb{Z}_{2}$ gives rise to significant features of the twisted Alexander invariant for irre-
ducible metabelian representations. For the computation procedure of the twisted Alexan-
der invariant, we need a suitable presentation of a knot group to write down irreducible
metabelian $SL_{2}(\mathbb{C})$ -representations explicitly.

4. REVIEW OF LIN PRESENTATIONS

To investigate metabelian $SL_{2}(\mathbb{C})$ -representations, it is useful to use the special pre-
sentations of knot groups, introduced by X.-S. Lin in [6]. We call such presentations $Lin$

presentations of $\pi_{1}(E_{K})$ . We review the definition of Lin presentations and show how to
obtain such presentation of $\pi_{1}(E_{K})$ with an explicit example.

4.1. Definition of Lin presentations. In the definition of Lin presentations, we need
free Seifert surfaces of knots. We start with the definition of free Seifert surfaces.

Definition 4.1. A Seifert surface of a knot is free if the complement of an open tubular
neighbourhood of $S$ in $S^{3}$ is a handlebody. Hence $\pi_{1}(S^{3}\backslash N(S))$ is a free group with rank
$2g$ where $N(S)$ is an open tubular neighbourhood of $S$ and $g$ is the genus of $S$ .

For example, we can see a free Seifert surface of the trefoil knot as in Figure 1. To see

$=$

FIGURE 1. A free Seifert surface $S$ of the trefoil knot

that the Seifert surface as in Figure 1 is free, we make a Heegaard splitting of $S^{3}$ by using
the Seifert surface along the following procedure:

1. Decompose $S^{3}$ into the union $B_{1}\cup B_{2}$ of two 3-balls where $B_{1}$ contains the Seifert
surface $S$ as the left side in Figure 2.

2. Remove two l-handles along the loops $x_{1}$ and $x_{2}$ outside the Seifert surface $S$ from
$B_{1}$ and attach these two l-handles to $B_{2}$ as the right side in Figure 2.
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$x_{1}$
$x_{2}$ $x_{1}$ $x_{2}$

$arrow$

$H_{1}=S\cross[-1,1]$ $H_{2}=\overline{S^{3}\backslash H_{1}}$

FIGURE 2. Heegaard decomposition by the free Seifert surface of the trefoil knot

We define a Lin presentation of $\pi_{1}(E_{K})$ associated with a free Seifert surface $S$ of a knot
$K$ . The generators consist of the generators $x_{1},$

$\ldots,$ $x_{2g}$ of $\pi_{1}(S^{3}\backslash N(S))$ and a meridian $\mu$ .
The relations are given by $2g$ loops in the spine of $S$ . Here the spine of a Seifert surface
is a deformation retract of the Seifert surface. That deformation retract is given by a
bouquet of circles $a_{1},$ $\ldots,$ $a_{2g}$ since a Seifert surface is a compact connected surface with
one boundary circle. The homotopy class of the loop $a_{1}^{+}$ (resp. $a_{i}^{-}$ ), given by pushing up
(resp. down) the loop $a_{i}$ , is expressed as a word in $x_{1}\ldots,$ $x_{2g}$ . One can see the relation
$\mu a_{1}^{+}\mu^{-1}=a_{1}^{-}$ for these two words $a_{i}^{+}$ and $a_{i}^{-}$ . We have a presentation which consists of
$2g+1$ generators and $2g$ relations as follows.

Definition 4.2. We choose a free Seifert surface $S$ of a knot $K$ . When we denote by
$x_{1},$ $\ldots,$$x_{2g}as$

the generators of the free group $\pi_{1}(S^{3}\backslash N(S))$ , we can express the knot group

$\pi_{1}(E_{K})=\langle x_{1},$
$\ldots,$ $x_{2g},$

$\mu|\mu a_{i}^{+}\mu^{-1}=a_{i}^{-},$ $i=1,$ $\ldots,$
$2g\rangle$

where $a_{\dot{\iota}}^{\pm}$ are words in $x_{1},$ $\ldots,$ $x_{2g}$ and denote the homotopy classes of loops given by
pushing up and down the loop $a_{i}$ in the spine $\vee a_{i}$ of $S$ . We call this presentation a $Lin$

presentation associated with $S$ .

4.2. How to compute relations in Lin presentations. In this section, we describe
relations of Lin presentations in details via the trefoil knot. To obtain relations of a
Lin presentation associated with a free Seifert surface $S$ , it is enough to write down the
loops $a_{\dot{\iota}}^{\pm}$ given by pushing up and down $a_{i}$ in the spine of $S$ as element in $\pi_{1}(S^{3}\backslash N(S))$ .
Hence by chasing the intersection of $a_{i}^{\pm}$ with the cocores of l-handles in the handlebody
$S^{3}\backslash N(S)$ , we can describe the homotopy classes of $a^{\dot{\pm}}$ as words in the generators of
$\pi_{1}(S^{3}\backslash N(S))$ . We denote by $x_{i}$ the generator in $\pi_{1}(S^{3}\backslash N(S))$ corresponding to a 1-
handle in $S^{3}\backslash N(S)$ and by $D_{i}$ the cocore of the l-handle as in Figure 3. We set the
orientations $x_{i}$ and $D_{i}$ such that the intersection is positive.

Lemma 4.3. We suppose that a loop $\gamma$ in $S^{3}\backslash N(S)$ intersects with $D_{j_{1}},$ $D_{j_{2}},$
$\ldots$ in this

order. When we denote by $\epsilon_{k}\in\{\pm 1\}$ the sign of the intersection of $\gamma$ with the disk $D_{j_{k}}$ ,
the homotopy class of $\gamma$ is given by the word $x_{j_{1}}^{\epsilon_{1}}x_{j_{2}}^{\epsilon 2}\cdots$ .
Example 4.4. The example of the trefoil knot. For the Seifert surface $S$ in Figure 1, the
spine of $S$ is given by the bouquet $S^{1}\vee S^{1}$ as in Figure 4.

By pushing up and down this spine $a_{1}\vee a_{2}$ , we have the closed loops $a_{1}^{+},$ $a_{2}^{+},$ $a_{1}^{-}$ and
$a_{2}^{-}$ in the complement of the Seifert surface $S$ as in Figures $5$ & $6.$
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$x_{1}$
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1

$1$

$t1$

:
1
$11$

1

1

in $S^{3}$
$\prime 1|$

FIGURE 3. The cocores in l-handles

$rightarrow$

$h.e$ .

FIGURE 4. The spine of Seifert surface for the trefoil knot

The fundamental group $\pi_{1}(S^{3}\backslash N(S))$ is a free group and generated by the homotopy
classes of $x_{1}$ and $x_{2}$ . The homotopy classes of the closed loops $a_{1}^{\pm}$ and $a_{2}^{\pm}$ are expressed
as words in $x_{1}$ and $x_{2}$ . One can find that

(3) $a_{1}^{+}=x_{1}$ , $a_{1}^{-}=x_{1}x_{2}^{-1}$ ,

(4) $a_{2}^{+}=x_{2}^{-1}x_{1}$ , $a_{2}^{-}=x_{2}^{-1}$

where we use the same symbols for the homotopy classes of $a_{i}^{\pm}(i=1,2)$ for simplicity.

$arrow^{pushingup}$

FIGURE 5. The loops $a_{1}^{+}$ and $a_{2}^{+}$ obtained by pushing up the spine

FIGURE 6. The loops $a_{1}^{-}$ and $a_{2}^{-}$ obtained by pushing down the spine
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We deduce the above relations in (3)& $(4)$ from counting the intersection of the closed
loops $a_{1}^{\pm}$ and $a_{2}^{\pm}$ with the cocores $D_{1}$ and $D_{2}$ in the handlebody of $S^{3}\backslash N(S)$ as in Figure 7.
The closed loop $a_{1}^{+}$ has the only positive intersection with $D_{1}$ . The closed loop $a_{1}^{-}$ has one
positive intersection with $D_{1}$ and one negative intersection with $D_{2}$ in this order. Hence
we also see the expressions $a_{1}^{+}=x_{1}$ and $a_{1}^{-}=x_{1}x_{2}^{-1}$ in Eq. (3) by Lemma 4.3. We can
see the expression in Eq. (4) similarly.

$a_{1}^{-}$

$a_{2}^{-}$

FIGURE 7. The intersections $a_{1}^{-}$ and $a_{2}^{-}$ with $D_{1}$ and $D_{2}$

We also see how the relations $\mu a_{i}^{+}\mu^{-1}=a_{t}^{-}$ is illustrated for the trefoil knot. For
example, the closed loops $a_{1}^{\pm}$ are obtained by pushing up and down the spine $a_{1}$ along the
normal direction of the Seifert surface $S$ as in Figures $5$ & $6.$ Hence we put an annulus
between $a_{1}^{+}$ and $a_{1}^{-}$ . This annulus intersects with the trefoil knot at the two points as
in Figure 8. By attaching two meridians to avoid the intersection points of the annulus
with the trefoil knot, we can see the disk whose boundary is homotopic to the closed loop
$\mu a_{1}^{+}\mu^{-1}(a_{1}^{-})^{-1}$ .

FIGURE 8. The homotopy between $a_{1}^{+}$ and $a_{1}^{-}$

5. MAIN THEOREM

In this section, We state the explicit form of the twisted Alexander invariant for the com-
position of irreducible metabelian $SL_{2}(\mathbb{C})$ -representations with the adjoint action and give
a sketch of the proof. In our theorem, we require a little more strong technical condition for
metabelian representations than irreducibility. This condition is called longitude-regular.
The irreducibility of representations is included in longitude-regularity (for details about
the longitude-regularity, we refer to [15] $)$ . Our main theorem is stated as follows.

Theorem 5.1. Let $\rho$ be an $SL_{2}(\mathbb{C})$ -representation of a knot group $\pi_{1}(E_{K})$ . If $\rho$ is
metabelian and longitude-regular, then the twisted Alexander invariant $\Delta_{E_{K}}^{\alpha\otimes Ad\circ\rho}(t)$ is $exarrow$

pressed as
$\Delta_{E_{K}}^{\alpha\otimes Ado\rho}(t)=(t-1)\triangle_{K}(-t)P(t)$
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where $\triangle_{K}(t)$ is the Alexander polynomial of $K$ and $P(t)$ is a Laurent polynomial satisMng
that $P(t)=P(-t)$ .

Remark 5.2. Note that the assumption of longitude-regularity is a sufficient condition
for the twisted Alexander invariant to be a Laurent polynomial.

To compute the twisted Alexander invariant, we need explicit forms of irreducible
$SL_{2}(\mathbb{C})$-representations. It is shown by using a Lin presentation of a knot group in [8]
that we have the following representative in each conjugacy class of irreducible metabelian
$SL_{2}(\mathbb{C})$-representations.

Proposition 5.3 (See the proof of Proposition 1.1 and Theorem 1.2 in [8]). We $\sup-$

pose that a knot group $\pi_{1}(E_{K})$ has a $Lin$ presentation $\langle x_{1},$

$\ldots,$ $x_{2g},$ $\mu|\mu a_{i}^{+}\mu^{-1}=a_{i}^{-},$ $i=$
$1,$

$\ldots,$
$2g\rangle$ . If $\rho$ is an irreducible metabelian $SL_{2}(\mathbb{C})$ -representation, then $\rho$ is conjugate to

the $SL_{2}(\mathbb{C})$ -representation given by the following correspondence:

(5) $\mu\mapsto(\begin{array}{ll}0 1-1 0\end{array})$ , $x_{i}\mapsto(_{0}^{\xi_{i}}$ $\xi_{i}^{-1)}0$ $(i=1, \ldots, 2g)$

where every $\xi_{i}$ is a root of unity.

The twisted Alexander invariant has the invariance under conjugation of representa-
tions. Hereafter we consider irreducible metabelian $SL_{2}(\mathbb{C})$ -representations which sends
the generators in a Lin presentation to the matrices as in Proposition 5.3. By direct
calculation, we also obtain the following explicit forms of the composition of irreducible
metabelian $SL_{2}(\mathbb{C})$ -representations with the adjoint action.

$|$

Proposition 5.4. Let $\rho$ be an irreducible metabelian $SL_{2}(\mathbb{C})$ -representation of a knot
group $\pi_{1}(E_{K})$ . We suppose that the knot group $\pi_{1}(E_{K})$ has a $Lin$ presentation

$\pi_{1}(E_{K})=\langle x_{1},$
$\ldots,$ $x_{2g},$ $\mu|\mu a_{i}^{+}\mu^{-1}=a_{i}^{-},$ $i=1,$ $\ldots,$

$2g\rangle$

and $\rho$ sends the genemtors $x_{1},$
$\ldots,$ $x_{2g}$ and $\mu$ to the diagonal matrices and the trace-free

matrix as in Eq. (5).
Then the composition of $\rho$ with the adjoint action is decomposed into a direct sum

of the following l-dimensional representation $\psi_{1}$ and 2-dimensional representation $\psi_{2}$ of
$\pi_{1}(E_{K})$ ;

$Ad\circ\rho=\psi_{1}\oplus\psi_{2}$

where $\psi_{1}$ is a $GL_{1}(\mathbb{C})$ -representation and $\psi_{2}$ is a $GL_{2}(\mathbb{C})$ -representation, given by the
following correspondence:

$\psi_{1}(\mu)=-1$ , $\psi_{1}(x_{i})=1$ $(i=1, \ldots, 2g)$ ,

$\psi_{2}(\mu)=(\begin{array}{ll}0 -1-1 0\end{array})$ , $\psi_{1}(x_{i})=(_{0}^{\xi_{i}^{2}}$ $\xi_{i}^{-2)}0$ $(i=1, \ldots, 2g)$ .

Remark 5.5. The representations $\psi_{1}$ and $\psi_{2}$ are the restrictions of irreducible metabelian
$SL_{2}(\mathbb{C})$-representation $\rho$ on the subspace $V_{1}=\langle H\rangle$ and $V_{2}=\langle E,$ $F\rangle$ in $5[_{2}(\mathbb{C})$ .

The proof of our main theorem is based on Proposition 5.4. We sketch the proof the
main theorem.

165



A sketch of the proof. By Proposition 5.4 and the multiplicativity of the twisted Alexan-
der invariant (we refer to [5]), we factor the twisted Alexander invariant $\triangle_{E_{K}}^{\alpha\otimes Ado\rho}(t)$ into
the product of two twisted Alexander invariants $\Delta_{E_{K}}^{\alpha\otimes\psi_{1}}(t)$ and $\triangle_{E_{K}}^{\alpha\otimes\psi_{2}}(t)$ .

By the computation for l-dimensional representations in [5, Section 3.3 Examples and
computations of the twisted polynomials], the twisted Alexander invariant $\Delta_{E_{K}}^{\alpha\otimes\psi_{1}}(t)$ turns
into the rational function $\Delta_{K}(-t)/(-t-1)$ . On the other hand, by Wada $s$ criterion [12,
Proposition 8], twisted Alexander invariant $\triangle_{E_{K}}^{\alpha\otimes\psi_{2}}(t)$ turns into a Laurent polynomial
$Q(t)$ . Moreover by the invariance of the twisted Alexander invariant under conjugation,

one can see that $Q(t)=Q(-t)$ via conjugation by the diagonal matrix $(^{\sqrt{1}0}0-\sqrt{-1})$ . Sum-

marized the above, the twisted Alexander invariant $\Delta_{E_{K}}^{\alpha\otimes Ado\rho}(t)$ turns into the following
product:

$\triangle_{E_{K}}^{\alpha\otimes Ad\circ\rho}(t)=\triangle_{E_{K}}^{\alpha\otimes\psi_{1}}(t)\cdot\triangle_{E_{K}}^{\alpha\otimes\psi_{2}}(t)$

$= \frac{\Delta_{K}(-t)}{-t-1}$ . $Q(t)$ .

Since we assume that $\rho$ is longitude-regular, it follows from [13] that the twisted Alexander
invariant $\Delta_{E_{K}}^{\alpha\otimes Ad\circ\rho}(t)$ has zero at $t=1$ . It is known that $\Delta_{K}(-1)$ is an odd integer. Hence
we factor $Q(t)$ into the product $(t-1)(t+1)P(t)$ by the symmetry that $Q(t)=Q(-t)$ .
This completes our proof. $\square$

Remark 5.6. The factors $\Delta_{K}(-t)$ and $P(t)$ imply the features of conjugacy classes of
irreducible metabelian representations in the character variety. The points corresponding
to the conjugacy classes of irreducible metabelian representations forms the fixed points
of the character variety under an action of $\mathbb{Z}_{2}$ . The symmetry that $P(t)=P(-t)$ implies
the invariance of conjugacy classes under $\mathbb{Z}_{2}$-action as the fixed points. The Alexander
polynomial with the $variable-t$ seems to be related to the linear action on the cotangent
spaces at the fixed points induced by $\mathbb{Z}_{2}$-action.

6. EXAMPLES

This section shows three concrete examples of the twisted Alexander invariant for the
composition of irreducible metabelian $SL_{2}(\mathbb{C})$-representations with the adjoint action.

6.1. The trefoil knot. We start with the trefoil knot and irreducible metabelian $SL_{2}(\mathbb{C})-$

representations of the knot group. We use the Lin presentation associated with the free
Seifert surface as in Figure 1. Recall that the Lin presentation is expressed as

$\pi_{1}(E_{K})=\langle x_{1},$ $x_{2},$
$\mu|\mu x_{1}\mu^{-1}=x_{1}x_{2}^{-1},$ $\mu x_{2}^{-1}x_{1}\mu^{-1}=x_{2}^{-1}\rangle$ .

The number of conjugacy classes of irreducible metabelian $SL_{2}(\mathbb{C})$-representations is given
by $(|\Delta_{K}(-1)|-1)/2$ . Since the Alexander polynomial of the trefoil knot is $t^{2}-t+1$ , we have
one conjugacy class of irreducible metabelian $SL_{2}(\mathbb{C})$ -representations. By Proposition 5.3,
we can take a representative $\rho$ of this conjugacy class as follows:

$\rho:\mu\mapsto(\begin{array}{ll}0 1-1 0\end{array})$ , $x_{i}\mapsto(\begin{array}{ll}\zeta_{3}^{i} 00 \zeta_{3}^{-i}\end{array})$
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where $\zeta_{3}=e^{2\pi\sqrt{-1}/3}$ . The composition of $\rho$ with the adjoint action is expressed as

(6) $Ad\circ\rho(\mu)=(\begin{array}{lll}0 0 -10 -1 0-l 0 0\end{array})$ , $Ad\circ\rho(x_{i})=(\begin{array}{lll}\zeta_{3}^{2i} 0 00 1 00 0 \zeta_{3}^{-2i}\end{array})$

with respect to the basis $\{E, H, F\}$ of $5\mathfrak{l}_{2}(\mathbb{C})$ as in (1).
With $\alpha(\mu)=t$ and $\alpha(x_{i})=1$ in mind, we can express the twisted Alexander invariant

as the following ratio of two determinants:

$\triangle_{E_{K}}^{\alpha\otimes Ad\circ\rho}(t)=\frac{\det(\Phi_{Ado\rho}(\frac{\partial r_{i}}{\partial x_{j}}I)_{1^{\frac{\leq}{\leqq}}j^{\frac{\leq}{\leqq}}2}1i2}{\det(\Phi_{Ad\circ\rho}(\mu-1))}$

where $r_{1}=\mu x_{1}\mu^{-1}x_{2}x_{1}^{-1}$ and $r_{2}=\mu x_{2}^{-1}x_{1}\mu^{-1}x_{2}$ and $\partial r_{i}/\partial x_{j}$ is Fox differential of the
word $r_{i}$ by $x_{i}$ .

The Fox differentials $\partial r_{i}/\partial x_{j}(1\leqq i, j\leqq 2)$ turn into

$\frac{\partial r_{1}}{\partial x_{1}}=\frac{\partial}{\partial x_{1}}\mu x_{1}\mu^{-1}x_{2}x_{1}^{-1}$

$=\mu-\mu x_{1}\mu^{-1}x_{2}x_{1}^{-1}$

$=\mu-1$ ,

$\frac{\partial r_{2}}{\partial x_{1}}=\frac{\partial}{\partial x_{1}}\mu x_{2}^{-1}x_{1}\mu^{-1}x_{2}$

$=\mu x_{2}^{-1}$ ,

$\frac{\partial r_{1}}{\partial x_{2}}=\frac{\partial}{\partial x_{2}}\mu x_{1}\mu^{-1}x_{2}x_{1}^{-1}$

$=\mu x_{1}\mu^{-1}$ ,

$\frac{\partial r_{2}}{\partial x_{2}}=\frac{\partial}{\partial x_{2}}\mu x_{2}^{-1}x_{1}\mu^{-1}x_{2}$

$=-\mu x_{2}^{-1}+\mu x_{2}^{-1}x_{1}\mu^{-1}$

$=-\mu x_{2}^{-1}+x_{2}^{-1}$ .

Therefore the twisted Alexander invariant $\Delta_{E_{K}}^{\alpha\otimes Ad\circ\rho}(t)$ turns out

$\Delta_{E_{K}}^{\alpha\otimes Ad\circ\rho}(t)=\frac{\det(\Phi_{Ad\circ\rho}(\frac{\partial r_{i}}{\partial x_{j}}))_{1^{\frac{\leq}{\leqq}}j^{\frac{\leq}{\leqq}}2}1i2}{\det(\Phi_{Ad\circ\rho}(\mu-1))}$

(7)
$= \frac{\det(_{\Phi_{Ad\circ\rho}(\mu x_{2}^{-1})\Phi_{Ad\circ\rho}(-\mu x^{\frac{x}{2}1}+x_{2}^{-1})}^{\Phi_{Ad\circ\rho}(\mu-1)\Phi_{Ad\circ\rho}(\mu_{1}\mu^{-1})})}{\det(\Phi_{Ad\circ\rho}(\mu-1))}$

When we substitute (6) into the numerator and the denominator in (7), we have the
determinant in the numerator:

(8) $\det(_{-}\frac{0}{t\zeta 00}t13-4$ $–1 \frac{t_{0}^{0}0}{0}t$ $-t\zeta_{3}^{4}-1-t000$ $t\zeta_{3}^{-4}\zeta_{3}^{-2}\zeta_{3}^{2}000$ $t+100001$ $\zeta^{\frac{0}{3}2}t\zeta_{3}^{4}\zeta_{3}^{2}00)=-t^{6}-t^{5}+t^{4}+2t^{3}+t^{2}-t-1$
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and the determinant in the denominator:

(9) $\det(\begin{array}{lll}-1 0 -t0 -t-1 0-t 0 -1\end{array})=(t+1)(t^{2}-1)$ .

By replacing the numerator and denominator in (7) with the determinants (8)& $(9)$ and
reducing this rational function, we have

$\Delta_{E_{K}}^{\alpha\otimes Ado\rho}(t)=\frac{-t^{6}-t^{5}+t^{4}+2t^{3}+t^{2}-t-1}{(t+1)(t^{2}-1)}$

$= \frac{-(t-1)^{2}(t+1)^{2}(t^{2}+t+1)}{(t-1)(t+1)^{2}}$

$=-(t-1)\Delta_{K}(-t)$ .

6.2. The figure eight knot. We consider the figure eight knot and the free Seifert
surface illustrated as in Figure 9.

$=$

FIGURE 9. A free Seifert surface $S$ of the figure eight knot

The spine of the Seifert surface $S$ is a bouquet $a_{1}\vee a_{2}$ of two circles and the closed
loops corresponding to generators of $\pi_{1}(S^{3}\backslash N(S))$ are illustrated as in Figure 10.

FIGURE 10. The spine of $S$ and the generators $x_{1}$ and $x_{2}$ of $\pi_{1}(S^{3}\backslash N(S))$

The Lin presentation associated with the Seifert surface $S$ is expressed as
$\pi_{1}(E_{K})=\langle x_{1},$ $x_{2},$ $\mu|\mu a_{1}^{+}\mu^{-1}=a_{1}^{-},$ $\mu a_{2}^{+}\mu^{-1}=a_{2}^{-}\rangle$

$=\langle x_{1},$ $x_{2},$ $\mu|\mu x_{1}\mu^{-1}=x_{1}x_{2}^{-1},\mu x_{2}x_{1}\mu^{-1}=x_{2}\rangle$ .

The number of conjugacy classes of irreducible metabelian $SL_{2}(\mathbb{C})$-representations is
given by $(|\Delta_{K}(-1)|-1)/2$ . Since $\Delta_{K}(t)=t^{2}-3t+1$ for the figure eight knot, we have two
conjugacy classes of irreducible metabelian $SL_{2}(\mathbb{C})$ -representations. The representatives
of these conjugacy classes is given by the following $SL_{2}(\mathbb{C})$ -representations $\rho_{1}$ and $\rho_{2}$ :

$\rho_{k}:\mu\mapsto(\begin{array}{ll}0 1-1 0\end{array})$ , $x_{1}\mapsto(\begin{array}{ll}\zeta_{5}^{k} 00 \zeta_{5}^{-k}\end{array})$ , $x_{2}\mapsto(\begin{array}{ll}\zeta_{5}^{2k} 00 \zeta_{5}^{-2k}\end{array})$ $(k=1,2)$
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where $\zeta_{5}=e^{2\pi\sqrt{-1}/5}$ . The composition of $\rho_{k}$ with the adjoint action is expressed as

$Ad\circ\rho_{k}(\mu)=(\begin{array}{lll}0 0 -10 -1 0-1 0 0\end{array})$ , $Ado\rho_{k}(x_{i})=(\begin{array}{lll}\zeta_{5}^{2ki} 0 00 1 00 0 \zeta_{5}^{-2ki}\end{array})$ $(i=1,2)$ .

The twisted Alexander invariant for $\rho_{k}$ is given by

$\triangle_{E_{K}}^{\alpha\otimes Ad\circ\rho_{k}}(t)=\frac{\det(\Phi_{Ad\circ\rho_{k}}(\frac{\partial r_{i}}{\partial x_{j}}))_{1^{\frac{\leq}{\leqq}}j2}1i_{\frac{\leq}{\leqq}}2}{\det(\Phi_{Ad\circ\rho_{k}}(\mu-1))}$

where $r_{1}=\mu x_{1}\mu^{-1}x_{2}x_{1}^{-1}$ and $r_{2}=\mu x_{2}x_{1}\mu^{-1}x_{2}^{-1}$ .
The Fox differentials $\partial r_{i}/\partial x_{j}(1\leqq i,j\leqq 2)$ turn into

$\frac{\partial r_{1}}{\partial x_{1}}=\mu-\mu x_{1}\mu^{-1}x_{2}x_{1}^{-1}$ , $\frac{\partial r_{1}}{\partial x_{2}}=\mu x_{1}\mu^{-1}$

$=\mu-1$ ,

$\frac{\partial r_{2}}{\partial x_{1}}=\mu x_{2}$ , $\frac{\partial r_{2}}{\partial x_{2}}=\mu-\mu x_{2}x_{1}\mu^{-1}x_{2}^{-1}$

$=\mu-1$ .

For $\rho_{1}$ , the numerator of the twisted Alexander invariant is expressed as

$\det(\Phi_{Ado\rho_{1}}(\frac{\partial r_{i}}{\partial x_{j}}I)_{1\leqq j\leqq 2}1\leqq i\leqq 2,$
$= \det(\frac{0}{0,t0}t1$ $–1 \frac{t_{0}^{0}0}{0}t$ $-t\zeta_{5}^{-4}-1000^{t}$

$\frac{\zeta_{5}00}{-0}1-2t$ $-t_{0}^{0}-1001$ $-1\zeta_{5}^{2}0^{t}00)$

$=(t^{2}+3t+1)(t^{4}-(\zeta_{5}^{2}+\zeta_{5}+\zeta_{5}^{-1}+\zeta_{5}^{-2}+3)t^{2}+1)$

$=(t^{2}+3t+1)(t^{2}-1)^{2}$

$=(t^{2}+3t+1)(t-1)^{2}(t+1)^{2}$

Since the denominator of the twisted Alexander invariant is given by $(t-1)(t+1)^{2}$ (see
Eq. (9) $)$ , we have

$\Delta_{E_{K}}^{\alpha\otimes Ad\circ\rho_{1}}(t)=\frac{(t^{2}+3t+1)(t-1)^{2}(t+1)^{2}}{(t-1)(t+1)^{2}}$

$=(t-1)\triangle_{K}(-t)$ .

For the other irreducible metabelian $SL_{2}(\mathbb{C})$-representation $\rho_{2}$ , we have the same result
as that for $\rho_{1}$ .

6.3. $5_{2}$ knot. Last we consider the $5_{2}$ knot and the free Seifert surface illustrated as in
Figure 11. This knot is often called a twist knot with type $(-2,3)$ . The trefoil knot,
the figure eight knot and $5_{2}$ are the first three non-trivial examples in twist knots. (We
follows the convention of twist knots along [3, 4]. $)$

The spine of the Seifert surface $S$ is a bouquet $a_{1}\vee a_{2}$ of two circles and the closed
loops corresponding to generators of $\pi_{1}(S^{3}\backslash N(S))$ are illustrated as in Figure 12.

169



$=$

FIGURE 11. A free Seifert surface $S$ of the $5_{2}$ knot

FIGURE 12. The spine of $S$ and the generators $x_{1}$ and $x_{2}$ of $\pi_{1}(S^{3}\backslash N(S))$

The Lin presentation associated with the Seifert surface $S$ is expressed as

$\pi_{1}(E_{K})=\langle x_{1},$ $x_{2},$ $\mu|\mu a_{1}^{+}\mu^{-1}=a_{1}^{-},$ $\mu a_{2}^{+}\mu^{-1}=a_{2}^{-}\rangle$

$=\langle x_{1},$ $x_{2},$ $\mu|\mu x_{1}\mu^{-1}=x_{1}x_{2}^{-1},$ $\mu x_{2}^{-2}x_{1}\mu^{-1}=x_{2}^{-2}\rangle$ .

The number of conjugacy classes of irreducible metabelian $SL_{2}(\mathbb{C})$-representations is
given by $(|\Delta_{K}(-1)|-1)/2$ . Since $\Delta_{K}(t)=2t^{2}-3t+2$ for the $5_{2}$ knot, we have three
conjugacy classes of irreducible metabelian $SL_{2}(\mathbb{C})$ -representations. The representatives
of these conjugacy classes is given by the following $SL_{2}(\mathbb{C})$-representations $\rho_{k}(k=1,2,3)$ :

$\rho_{k}:\mu\mapsto(\begin{array}{ll}0 1-1 0\end{array})$ , $x_{1}\mapsto(\begin{array}{ll}\zeta_{7}^{k} 00 \zeta_{7}^{-k}\end{array})$ , $x_{2}\mapsto(\begin{array}{ll}\zeta_{7}^{2k} 00 \zeta_{7}^{-2k}\end{array})$

where $\zeta_{7}=e^{2\pi\sqrt{-1}/7}$ . The composition of $\rho_{k}$ with the adjoint action is expressed as

$Ado\rho_{k}(\mu)=(\begin{array}{lll}0 0 -10 -1 0-1 0 0\end{array})$ , $Ado\rho_{k}(x_{i})=(\begin{array}{lll}\zeta_{7}^{2ki} 0 00 1 00 0 \zeta_{7}^{-2ki}\end{array})$ $(i=1,2)$ .

The twisted Alexander invariant for $\rho_{k}$ is given by

$\triangle_{E_{K}}^{\alpha\otimes Ad\circ\rho_{k}}(t)=\frac{\det(\Phi_{Ad\circ\rho_{k}}(\mathscr{N}_{X_{j}}^{\partial r}))_{1i\leqq 2}1^{\frac{\leq}{\leqq}}j\leqq 2}{\det(\Phi_{Ad\circ\rho_{k}}(\mu-1))}$

where $r_{1}=\mu x_{1}\mu^{-1}x_{2}x_{1}^{-1}$ and $r_{2}=\mu x_{2}^{-2}x_{1}\mu^{-1}x_{2}^{2}$ .
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The Fox differentials $\partial r_{i}/\partial x_{j}(1\leqq i,j\leqq 2)$ turn into

$\frac{\partial r_{1}}{\partial x_{1}}=\mu-\mu x_{1}\mu^{-1}x_{2}x_{1}^{-1}$ , $\frac{\partial r_{1}}{\partial x_{2}}=\mu x_{1}\mu^{-1}$

$=\mu-1$ ,

$\frac{\partial r_{2}}{\partial x_{1}}=\mu x_{2}^{-2}$ , $\frac{\partial r_{2}}{\partial x_{2}}=-\mu x_{2}^{-1}-\mu x_{2}^{-2}+\mu x_{2}^{-2}x_{1}\mu^{-1}+\mu x_{2}^{-2}x_{1}\mu^{-1}x_{2}$

$=-\mu x_{2}^{-1}-\mu x_{2}^{-2}+x_{2}^{-2}+x_{2}^{-1}$ .
For $\rho_{1}$ , the numerator of the twisted Alexander invariant is expressed as

$\det(\Phi_{Ado\rho_{1}}(\frac{\partial r_{i}}{\partial x_{j}}))_{1\leqq i,j\leqq 2}$

$= \det(_{-}\frac{-0}{t\zeta 00}t17-8$ $–1 \frac{t_{0}^{0}0}{0}t$ $-t\zeta_{7}^{8}-1000^{t}$ $t\zeta_{7}^{-8}+t\zeta_{7}^{-4}\zeta_{7}10_{0}^{0}+\zeta_{7}^{6}\zeta_{7,0}^{-2}$ $2t_{0}^{0}00+21$ $\zeta_{7}-10^{0}+\zeta_{7}^{-6}t(_{7}^{8}+t\zeta_{7}^{4)}\zeta_{7}^{2}00$

$=(2t^{2}+3t+2)$

. $(-(\zeta_{7}^{3}+\zeta_{7}^{-3}+2)t^{4}+(\zeta_{7}^{3}-\zeta_{7}^{2}-\zeta_{7}-\zeta_{7}^{-1}-\zeta_{7}^{-2}+\zeta_{7}^{-3}+3)t^{2}-\zeta_{7}^{3}-\zeta_{7}^{-3}-2)$

$=-(2t^{2}+3t+2)(\zeta_{7}^{3}+\zeta_{7}^{-3}+2)(t^{2}-1)^{2}$

$=-(2t^{2}+3t+2)(\zeta_{7}^{3}+\zeta_{7}^{-3}+2)(t-1)^{2}(t+1)^{2}$ .

Since the denominator of the twisted Alexander invariant is given by $(t-1)(t+1)^{2}$ (see
Eq. (9) $)$ , we have

$\Delta_{E_{K}}^{\alpha\otimes Ad\circ\rho_{1}}(t)=\frac{-(\zeta_{7}^{3}+\zeta_{7}^{-3}+2)(2t^{2}+3t+2)(t-1)^{2}(t+1)^{2}}{(t-1)(t+1)^{2}}$

$=-(\zeta_{7}^{3}+\zeta_{7}^{-3}+2)(t-1)\Delta_{K}(-t)$ .

Similarly, we have the twisted Alexander invariants for $\rho_{2}$ and $\rho_{3}$ as follows:
$\triangle_{E_{K}}^{\alpha\otimes Ad\circ\rho_{2}}(t)=-(\zeta_{7}+\zeta_{7}+2)(t-1)\triangle_{K}(-t)$ ,

$\triangle_{E_{K}}^{\alpha\otimes Ado\rho_{3}}(t)=-(\zeta_{7}^{2}+\zeta_{7}^{-2}+2)(t-1)\Delta_{K}(-t)$ .
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