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1. INTRODUCTION

The study of groups of homology cylinders over a surface was initiated by Goussarov
[4] and Habiro [5] in their surgery theory and then deep relationships to mapping class
groups and Johnson homomorphisms were given in Garoufalidis-Levine [2] and Levine [9].
Recently their structures are intensively studied by many people from various contexts.

Here we focus on abelian quotients of the homology cobordism group of homology
cylinders. This group was shown to be infinitely generated by $Cha-\mathbb{R}iedl$-Kim [1] by
using the invariant which we call the H-torsion here. The purpose of this paper is to
use another invariant called the Magnus representation to obtain abelian quotients of the
same group and generalize it to higher dimensional cases.

All manifolds are assumed to be smooth throughout this paper, while similar statements
hold for other categories.

This research was partially supported by KAKENHI (No. 21740044), Ministry of Edu-
cation, Science, Sports and Technology, Japan.

2. HOMOLOGY CYLINDERS

Let $\Sigma_{g,1}$ be a compact oriented surface of genus $g\geq 1$ with one boundary component.
We take a base point $p$ of $\Sigma_{g,1}$ on the boundary $\partial\Sigma_{g,1}$ and $2g$ oriented loops $\gamma_{1},\gamma_{2},$ $\ldots,\gamma_{2g}$

as in Figure 1. These loops form a spine $R_{2g}$ of $\Sigma_{g,1}$ and therefore give a basis of $\pi_{1}\Sigma_{g,1}$ as a
free group of rank $2g$ . The boundary loop $\zeta$ is given by $\zeta=[\gamma_{1}, \gamma_{g+1}][\gamma_{2}, \gamma_{g+2}]\cdots[\gamma_{g},\gamma_{2g}]$ .

$p$

FIGURE 1. Our basis of $\pi_{1}\Sigma_{g,1}$

Put $H:=H_{1}(\Sigma_{g,1})$ . The group $H$ can be identified with $\mathbb{Z}^{2g}$ by choosing $\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{2g}\}$

as a basis of $H$ , where we write $\gamma_{j}$ again for $\gamma_{j}$ as an element of $H$ . This basis is a
symplectic basis with respect to the intersection pairing on $H$ .
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Definition 2.1. A homology cylinder over $\Sigma_{g,1}$ consists of a compact oriented 3-manifold
$M$ with two embeddings $i_{+},$ $i_{-}$ : $\Sigma_{g,1}\mapsto\partial M$ , called the markings, such that:

(i) $i+$ is orientation-preserving and $i_{-}$ is orientation-reversing;
(ii) $\partial M=i_{+}(\Sigma_{g,1})\cup i_{-}(\Sigma_{g,1})$ and $i_{+}(\Sigma_{g,1})\cap i_{-}(\Sigma_{g,1})=i_{+}(\partial\Sigma_{g,1})=i_{-}(\partial\Sigma_{g,1})$;

(iii) $i_{+}|_{\partial\Sigma_{g,1}}=i_{-}|_{\partial\Sigma_{g1};}$

(iv) $i_{+},$ $i_{-}:H_{*}(\Sigma_{g,1})arrow H_{*}(M)$ are isomorphisms, namely $M$ is a homology product
over $\Sigma_{g,1}$ .

We denote a homology cylinder by $(M, i_{+}, i_{-})$ or simply $M$ .
Two homology cylinders $(M, i_{+}, i_{-})$ and $(N,j_{+},j_{-})$ over $\Sigma_{g,1}$ are said to be isomorphic

if there exists an orientation-preserving diffeomorphism $f$ : $Marrow N\underline{\simeq}$ satisfying $j+=foi+$
and $j_{-}=foi_{-}$ . We denote by $C_{g,1}$ the set of all isomorphism classes of homology cylinders
over $\Sigma_{g,1}$ . We define a product operation on $C_{g,1}$ by

$(M, i_{+}, i_{-}) \cdot(N,j_{+},j_{-}):=(M\bigcup_{i_{-}\circ(j_{+})^{-1}}N, i_{+},j_{-})$

for $(M, i_{+}, i_{-}),$ $(N,j_{+},j_{-})\in C_{g,1}$ , which endows $C_{g,1}$ with a monoid structure. The unit
is $(\Sigma_{g,1}\cross[0,1], id\cross 1, id\cross O)$ , where collars of $i_{+}(\Sigma_{g,1})=($id $\cross 1)(\Sigma_{g,1})$ and $i_{-}(\Sigma_{g,1})=$

$(id\cross 0)(\Sigma_{g,1})$ are stretched half-way along $(\partial\Sigma_{g,1})\cross[0,1]$ so that $i_{+}(\partial\Sigma_{g,1})=i_{-}(\partial\Sigma_{g,1})$ .
Example 2.2. For each diffeomorphism $\varphi$ of $\Sigma_{g,1}$ which fixes $\partial\Sigma_{g,1}$ pointwise, we can
construct a homology cylinder by setting

$(\Sigma_{g,1}\cross[0,1], id\cross 1, \varphi\cross 0)$

with the same treatment of the boundary as above. It is easily checked that the isomor-
phism class of $(\Sigma_{g,1}\cross[0,1], id\cross 1, \varphi\cross 0)$ depends only on the (boundary fixing) isotopy
class of $\varphi$ and that this construction gives a monoid homomorphism from the mapping
class group $\sqrt{}(4_{g,1}$ to $C_{g,1}$ . In fact, it is an injective homomorphism (see Garoufalidis-Levine
$\Lambda t_{g,1}[2,Section2.4]$

and Levine [9, Section 2.1] $)$ . We may regard $C_{g,1}$ as an enlargement of

Example 2.3 (Levine [9]). Let $L$ be a pure string link of $g$ strings. We can embed
a g-holed disk $D_{g}^{2}$ into $\Sigma_{g,1}$ as a closed regular neighborhood of the union of the loops
$\gamma_{g+1},$ $\gamma_{g+2},$ $\ldots,$ $\gamma_{2g}$ in Figure 1. Let $C$ be the complement of an open tubular neighborhood
of $L$ in $D^{2}\cross[0,1]$ . By choosing a framing of $L$ , we can fix a diffeomorphism $h$ : $\partial Carrow\underline{\simeq}$

$\partial(D_{g}^{2}\cross[0,1])$ . Then the manifold $M_{L}$ obtained from $\Sigma_{g,1}\cross[0,1]$ by removing $D_{g}^{2}\cross[0,1]$

and regluing $C$ by $h$ becomes a homology cylinder with the same marking as the trivial
homology cylinder.

In [2], Garoufalidis-Levine further introduced the following equivalence relation among
homology cylinders.

Definition 2.4. Two homology cylinders $(M, i_{+}, i_{-})$ and $(N, i_{+}, i_{-})$ over $\Sigma_{g,1}$ are said to
be homology cobordant if there exists a compact oriented smooth 4-manifold $W$ such that:

(1) $\partial W=MU(-N)/(i_{+}(x)=j_{+}(x), i_{-}(x)=j_{-}(x))$ $x\in\Sigma_{g,1}$ ;
(2) The inclusions $M\mapsto W,$ $N\mapsto W$ induce isomorphisms on the integral homology.

We denote by $\mathcal{H}_{g,1}$ the quotient set of $C_{g,1}$ with respect to the equivalence relation of
homology cobordism. The monoid structure of $C_{g,1}$ induces a group structure of $\mathcal{H}_{g,1}$ .
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We call $\mathcal{H}_{g,1}$ the homology cobordism group of homology cylinders. It is known that the
composition $\mathcal{M}_{g,1}\mapsto C_{g,1}arrow \mathcal{H}_{g,1}$ is an injective group homomorphism.

The group $\mathcal{M}_{g,1}$ and the monoid $C_{g,1}$ share many properties. The most fundamental
one is given by the action on $H$ . We can define a map

$\sigma$ : $C_{g,1}arrow$ Aut $H$

by assigning to $(M, i_{+}, i_{-})$ $\in C_{g,1}$ an automorphism $i_{+}^{-1}oi_{-}$ of $H$ . This map extends the
natural action of $\mathcal{M}_{g,1}$ on $H$ and it is a monoid homomorphism. We can check that the
image consists of the automorphisms of $H$ preserving the intersection pairing. Therefore,
under the identification $H\cong \mathbb{Z}^{2g}$ mentioned above, we have an epimorphism

$\sigma:C_{g,1}arrow Sp(2g, \mathbb{Z})$ .
We put $\mathcal{I}C_{g,1}$ $:=Ker\sigma$ , which is an analogue of the Torelli group $\mathcal{I}_{g,1}=Ker(\sigma$ : $\mathcal{M}_{g,1}arrow$

Sp$(2g, \mathbb{Z}))$ . We can see that $\sigma$ induces a group homomorphism $\sigma$ : $\mathcal{H}_{g,1}arrow$ Sp$(2g, \mathbb{Z})$ and
we denote its kernel by $\mathcal{I}\mathcal{H}_{g,1}$ .

3. MAGNUS REPRESENTATION AND $H$-TORSION FOR HOMOLOGY CYLINDERS

Here, we recall two invariants for homology cylinders from [15]. For our purpose, it
suffices to consider a simplified version corresponding to commutative rings.

Since $H=H_{1}(\Sigma_{g,1})$ is a free abelian group, its group ring $\mathbb{Z}[H]$ can be embedded in the
fractional field $\mathcal{K}_{H}$ $:=\mathbb{Z}[H](\mathbb{Z}[H]-\{0\})^{-1}$ . Let $(M,i_{+},i_{-})\in C_{g,1}$ be a homology cylinder.
Since $H_{1}(M)\cong H_{1}(\Sigma_{g,1})$ , the field $\mathcal{K}_{H_{1}(M)}$ $:=\mathbb{Z}[H_{1}(M)](\mathbb{Z}[H_{1}(M)]-\{0\})^{-1}$ is defined.
We regard $\mathcal{K}_{H}$ and $\mathcal{K}_{H_{1}(M)}$ as local coefficient systems on $\Sigma_{g,1}$ and $M$ respectively. By an
argument using covering spaces, we have the following.

Lemma 3.1. $i\pm:H_{*}(\Sigma_{g,1},p;i_{\pm}^{*}\mathcal{K}_{H_{1}(M)})arrow H_{*}(M,p;\mathcal{K}_{H_{1}(M)})$ are isomorphisms as right
$\mathcal{K}_{H_{1}(M)}$ -vector spaces.
This lemma plays an important role in defining our invariants below.

(I) Magnus representation
By using the spine $R_{2g}$ taken in the previous section, we identify $\pi_{1}\Sigma_{g,1}=\langle\gamma_{1},$

$\ldots,$
$\gamma_{2g}\rangle$

with a free group $F_{2g}$ of rank $2g$ . Since $R_{2g}\subset\Sigma_{g,1}$ is a deformation retract, we have
$H_{1}(\Sigma_{g,1},p;i_{\pm}^{*}\mathcal{K}_{H_{1}(M)})\cong H_{1}(R_{2g},p;i_{\pm}^{*}\mathcal{K}_{H_{1}(M)})$

$=C_{1}(\overline{R_{2g}})\otimes_{F_{2g}}i_{\pm}^{*}\mathcal{K}_{H_{1}(M)}\cong \mathcal{K}_{H_{1}(M)}^{2g}$

with a basis $\{\tilde{\gamma_{1}}\otimes 1, \ldots,\overline{\gamma_{2g}}\otimes 1\}\subset C_{1}(\overline{R_{2g}})\otimes_{F_{2g}}i_{\underline{\pm}}^{*}\mathcal{K}_{H_{1}(M)}$ as a right free $\mathcal{K}_{H_{1}(M)}$ -module,

where $\tilde{\gamma_{i}}$ is a lift of $\gamma_{i}$ on the universal covering $R_{2g}$ of $R_{2g}$ . We denote by $\mathcal{K}_{H_{1}(M)}^{2g}$ the
space of column vectors with $n$ entries in $\mathcal{K}_{H_{1}(M)}$ .

Definition 3.2. (1) For $M=(M, i_{+}, i_{-})\in C_{g,1}$ , we denote by $r’(M)\in$ GL$(2g, \mathcal{K}_{H_{1}(M)})$

the representation matrix of the right $\mathcal{K}_{H_{1}(M)}$ -isomorphism

$\mathcal{K}_{H_{1}(M)}^{2g}\cong H_{1}(\Sigma_{g,1},p;i_{-}^{*}\mathcal{K}_{H_{1}(M)})arrow H_{1}(\Sigma_{g,1},p;i_{+}^{*}\mathcal{K}_{H_{1}(M)})\cong \mathcal{K}_{H_{1}(M)}^{2g}i_{+}^{-1}\circ i-\underline{\simeq}$

(2) The Magnus representation for $C_{g,1}$ is the map $r$ : $C_{g,1}arrow$ GL $(2g, \mathcal{K}_{H})$ which assigns
to $M=(M, i_{+}, i_{-})\in C_{g,1}$ the matrix $r(M)$ $:=i_{+r’(M)}^{-1}$ obtained from $r’(M)$ by applying
$i_{+}^{-1}$ to each entry.
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We call $r(M)$ the Magnus matrix for $M$ . The map $r$ has the following properties:

Theorem 3.3 ([15, 14]). (1) (Crossed homomorphism) For $M_{1},$ $M_{2}\in C_{g,1_{f}}$ we have

$r(M_{1}\cdot M_{2})=r(M_{1})\cdot\sigma(M_{1})r(M_{2})$ .

In particular, the restwiction of $r$ to $\mathcal{I}C_{g,1}$ is a homomorphism.
(2) (Symplecticity) For any $M\in C_{g,1}$ , we have the equality

$\overline{r(M)^{T}}\tilde{J}r(M)=^{\sigma(M)}\tilde{J}$,

where $\overline{r(M)^{T}}$ is obtained from $r(M)$ by taking the tmnspose and applying the involution
induced from the map $(H\ni x\mapsto x^{-1}\in H)$ to each entry, and $\tilde{J}\in$ GL$(2g, \mathbb{Z}[H])$ is
the matrix which appeared in Papakyriakopoulos’ paper [12] and it is mapped to the usual
symplectic matrix by applying the trivializer $\mathbb{Z}[H]arrow \mathbb{Z}$ to each entry.
(3) (Homology cobordism invariance) The map $r:C_{g,1}arrow$ GL $(2g, \mathcal{K}_{H})$ induces a crossed
homomorphism $r:\mathcal{H}_{g,1}arrow$ GL $(2g, \mathcal{K}_{H})$ and its restriction to $\mathcal{I}\mathcal{H}_{g,1}$ is a homomorphism.

Remark 3.4. Definition 3.2 and Theorem 3.3 (1), (2) are extensions of those for the
mapping class group $\mathcal{M}_{g,1}$ (see Morita [10] and Suzuki [16]). By a theorem of Dehn-
Nielsen, the group $\mathcal{M}_{g,1}$ is naturally embedded in the automorphism group Aut $F_{2g}$ of
$F_{2g}\cong\pi_{1}\Sigma_{g,1}$ as the subgroup consisting of automorphisms which fix $\zeta$ . The Magnus
representation for $\mathcal{M}_{g,1}$ is a restriction of that for Aut $F_{2g}$ using Fox derivations. In
particular, we see that $r(\mathcal{M}_{g,1})\subset$ GL$(2g, \mathbb{Z}[H])$ . Note that there exists a homology
cylinder $M\in C_{g,1}$ satisfying $r(M)\not\in$ GL$(2g, \mathbb{Z}[H])$ (see Example 3.7).

At present, no embedding of $C_{g,1}$ or $\mathcal{H}_{g,1}$ to the automorphism group of some group
is known. However, by using a completion $F_{2g}^{acy}$ of $F_{2g}$ called the acyclic closure (or
HE-closure), which was defined by Levine [7, 8], we can define a homomorphism

Acy : $C_{g,1}arrow$ Aut $F_{2g}^{acy}$

and it factors through $\mathcal{H}_{g,1}$ . This extends the embedding $\mathcal{M}_{g,1}\mapsto$ Aut $F_{2g}$ and the
Magnus representation for homology cylinders is derived from that for Aut $F_{2g}^{acy}$ (see [13]
for details). In this paper, we only use the following properties of $F_{n}^{acy}(n\geq 2)$ :

(i) $F_{n}^{acy}$ includes $F_{n}$ and it is strictly bigger than $F_{n}$ .
(ii) The embedding $F_{n}\mapsto F_{n}^{acy}$ induces an isomorphism $H_{1}(F_{n})arrow H_{1}(F_{n}^{acy})\underline{\approx}$ .
(iii) Any endomorphism of $F_{n}$ which induces an isomorphism on $H_{1}(F_{n})$ is extended

to an isomorphism of $F_{n}^{acy}$ .
(iv) Aut $F_{n}^{acy}$ includes Aut $F_{n}$ and the action of Aut $F_{n}$ on $H_{1}(F_{n})\cong \mathbb{Z}^{n}$ is extended

to that of Aut $F_{n}^{acy}$ on $H_{1}(F_{n}^{acy})\cong H_{1}(F_{n})$ , which is expressed by an epimorphism
$\sigma$ : Aut $F_{n}^{acy}arrow$ GL $(n, \mathbb{Z})$ .

(II) H-torsion
Since the relative complex $C_{*}(M, i_{+}(\Sigma_{g,1});\mathcal{K}_{H_{1}(M)})$ obtained from any smooth triangu-

lation of $(M, i_{+}(\Sigma_{g,1}))$ is acyclic by Lemma 3.1, we can consider its Reidemeister torsion
$\tau(C_{*}(M, i_{+}(\Sigma_{g,1});\mathcal{K}_{H_{1}(M)}))\in \mathcal{K}_{H_{1}(M)}^{\cross}/(\pm H_{1}(M))$, where $\mathcal{K}_{H_{1}(M)}^{\cross}$ $:=\mathcal{K}_{H_{1}(M)}-\{0\}$ is the
unit group of $\mathcal{K}_{H_{1}(M)}$ . We refer to Turaev [17] for generalities of Reidemeister torsions.

129



Definition 3.5. The H-torsion $\tau(H)$ of a homology cylinder $M=(M, i_{+}, i_{-})\in C_{g,1}$ is
defined by

$\tau(M):=^{i_{+}^{-1}}\tau(C_{*}(M, i_{+}(\Sigma_{g,1});\mathcal{K}_{H_{1}(M)}))\in \mathcal{K}_{H}^{\cross}/(\pm H)$,
where $\mathcal{K}_{H}^{\cross}=\mathcal{K}_{H}-\{0\}$ is the unit group of $\mathcal{K}_{H}$ .
The map $\tau$ : $C_{g,1}arrow \mathcal{K}_{H}^{\cross}/(\pm H)$ has the following properties:

Theorem 3.6. (1) (Crossed homomorphism [15]) For $M_{1},$ $M_{2}\in C_{g,1}$ , we have
$\tau(M_{1}\cdot M_{2})=\tau(M_{1})\cdot\sigma(M_{1})\tau(M_{2})$ .

In particular, the restriction of $\tau$ to $\mathcal{I}C_{g,1}$ is a homomorphism.
(2) (Cha-Friedl-Kim [1, Theorem 3.10]) If $(M,i_{+}, i_{-}),$ $(N,j_{+},j_{-})\in C_{g,1}$ are homology
cobordant, then there exists $q\in \mathcal{K}_{H}^{\cross}$ such that

$\tau(M)=\tau(N)\cdot q\cdot\overline{q}\in \mathcal{K}_{H}^{\cross}/(\pm H)$ .
Note that the restriction of $\tau$ to $\mathcal{M}_{g,1}$ is trivial since $\Sigma_{g,1}\cross[0,1]$ is simple homotopy
equivalent to $\Sigma_{g,1}\cross\{1\}$ .
Example 3.7. Let $L$ be the string link of 2 strings depicted in Figure 2. We can construct
a homology cylinder $(M_{L}, i_{+}, i_{-})\in C_{2,1}$ as mentioned in Example 2.3.

FIGURE 2. String link $L$

A presentation of $\pi_{1}M_{L}$ is given by
$i_{+}(\gamma_{1})i_{-}(\gamma_{3})^{-1}i_{+}(\gamma_{4})i_{-}(\gamma_{1})^{-1}$

$i_{+}(\gamma_{4})i_{-}(\gamma_{3})i_{+}(\gamma_{4})^{-1}z^{-1}$ ,
$\langle$ $i_{+}(\gamma_{1}),..,i_{+}(\gamma_{4})i_{-}(\gamma_{1}),\ldots,i_{-}(\gamma_{4})z$

.
$i_{-}(\gamma_{3})i_{+}(\gamma_{3})^{-1}i_{-}(\gamma_{3})^{-1}z,i_{-}(\gamma_{4})z^{-1}i_{+}(\gamma_{4})^{-1}z[i_{+}(\gamma_{1}),i_{+}(\gamma_{3})]i_{+}(\gamma_{2})zi_{-}(\gamma_{2})^{-1}[i_{-}(\gamma_{3}),i_{-}(\gamma_{1})]$

,
$\rangle$ .

The Magnus matrix and H-torsion are computed from this presentation by using Fox
derivations and they are given by

$r(M_{L})=(\begin{array}{llll}1 0 0 00 1 0 0\frac{-\gamma_{1}^{-1}}{\gamma_{3}^{-1}+\gamma_{4}^{-1}-1} \frac{\gamma_{3}^{-1}}{\gamma_{3}^{-1}+\gamma_{4}^{-1}-1} \frac{\gamma_{4}^{-1}(\gamma_{4}^{-1}-1)}{\gamma_{3}^{-1}+\gamma_{4}^{-1}-1}\frac{\gamma_{1}^{-1}\gamma s\gamma_{4}^{-1}}{\gamma_{3}^{-1}+\gamma_{4}^{-1}-1} \frac{\gamma_{3}^{-1}-1}{\gamma_{3}^{-1}+\gamma_{4}^{-1}-1} \frac{-\gamma_{3}^{-1}\gamma_{4}^{-1}+\gamma_{3}^{-1}+2\gamma_{4}^{-1}-1}{\gamma_{3}^{-1}+\gamma_{4}^{-1}-1}\end{array})-1$
’

$\tau(M_{L})=-1+\gamma_{3}-\gamma_{3}\gamma_{4}$ .
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Note that
$-1-1\gamma_{3}+\gamma_{4}-1$

$\det(r(M_{L}))=\gamma_{3}\gamma_{4}\overline{\gamma_{3}^{-1}+\gamma_{4}^{-1}-1}$ .

4. ABELIAN QUOTIENTS

Abelian quotients of a monoid or group are helpful in extracting information on the
structure of the monoid or group. Here, we focus on abelian quotients of $C_{g,1}$ and $\mathcal{H}_{g,1}$

and compare them to the corresponding result for $\mathcal{M}_{g,1}$ .
Before discussing, as commented in [3], we point out that $C_{g,1}$ has the monoid $\theta_{\mathbb{Z}}^{3}$ of

homology 3-spheres as a big abelian quotient. In fact, we have a forgetful homomorphism
$F:C_{g,1}arrow\theta_{\mathbb{Z}}^{3}$ defined by $F(M, i_{+}, i_{-})=S^{3}\# X_{1}\# X_{2}\#\cdots\# X_{n}$ for the prime decomposition
$M=M_{0}\# X_{1}\# X_{2}\#\cdots\# X_{n}$ of $M$ where $M_{0}$ is the unique factor having non-empty boundary
and $X_{i}\in\theta_{\mathbb{Z}}^{3}(1\leq i\leq n)$ . The map $F$ owes its well-definedness to the uniqueness of the
prime decomposition of 3-manifolds and it is a monoid epimorphism.

The underlying 3-manifolds of homology cylinders obtained from $\mathcal{M}_{g,1}$ are all $\Sigma_{g,1}\cross[0,1]$

and, in particular, irreducible. Therefore it seems more reasonable to compare $\mathcal{M}_{g,1}$ with
the submodule $C_{g,1}^{irr}$ of $C_{g,1}$ consisting of all $(M, i_{+}, i_{-})$ with $M$ irreducible.

In contrast with the fact that $\mathcal{M}_{g,1}$ is a perfect group for $g\geq 3$ (see Harer [6]), many
infinitely generated abelian quotients for monoids and homology cobordism groups of
irreducible homology cylinders have been found until now. For example, we have the
following results:

$\bullet$ In [15, Corollary 6.16], we showed the submonoids $C_{g,1}^{irr}\cap \mathcal{I}C_{g,1}$ and $Ker(C_{g,1}^{irr}arrow$

$\mathcal{H}_{g,1})$ have abelian quotients isomorphic to $(\mathbb{Z}\geq 0)^{\infty}$ . The proof uses the H-torsion
$\tau$ and its non-commutative generalization.

$\bullet$ Morita [11, Corollary 5.2] used what is called the trace maps to show that $\mathcal{I}\mathcal{H}_{g,1}$

has an abelian quotient isomorphic to $\mathbb{Z}^{\infty}$ .
$\bullet$ In [3, Theorem 2.6], we showed that $C_{g,1}^{irr}$ has an abelian quotient isomorphic to

$(\mathbb{Z}_{\geq 0})^{\infty}$ by using sutured Floer homology (a variant of Heegaard Floer homology).
However, this abelian quotient does not induces that of $\mathcal{H}_{g,1}$ .

Let us focus on abelian quotients of $\mathcal{H}_{g,1}$ . By taking into account the similarity be-
tween the two groups $\lambda 4_{g,1}$ and $\mathcal{H}_{g,1}$ , it had been conjectured that $\mathcal{H}_{g,1}$ was perfect.
However, Cha-Friedl-Kim [1] found a method for extracting homology cobordant invari-
ants of homology cylinders from the H-torsion $\tau$ : $C_{g,1}arrow \mathcal{K}_{H}^{\cross}/(\pm H)$ , which is a crossed
homomorphism, as follows.

First they consider the subgroup $A\subset \mathcal{K}_{H}^{\cross}$ defined by
$A:=\{f^{-1}\cdot\varphi(f)|f\in \mathcal{K}_{H}^{\cross}, \varphi\in Sp(2g, \mathbb{Z})\}$,

by which we can obtain a homomorphism
$\tau:C_{g,1}arrow \mathcal{K}_{H}^{\cross}/(\pm H\cdot A)$ .

Note that $f=\overline{f}$ holds in $\mathcal{K}_{H}^{\cross}/(\pm H\cdot A)$ since $-I_{2g}\in$ Sp $(2g, \mathbb{Z})$ . Second, they used the
equality mentioned in Theorem 3.6 (2). Namely, if we put

$N:=\{f\cdot\overline{f}|f\in \mathcal{K}_{H}^{\cross}\}$ ,

then we obtain a homomorphism
$\tilde{\tau}:\mathcal{H}_{g,1}arrow \mathcal{K}_{H}^{\cross}/(\pm H\cdot A\cdot N)$ .
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Note that $f^{2}=1$ holds for any $f\in \mathcal{K}_{H}^{\cross}/(\pm H\cdot A\cdot N)$ .
The structure of $\mathcal{K}_{H}^{\cross}/(\pm H\cdot A\cdot N)$ is given as follows. Recall that $\mathcal{K}_{H}=\mathbb{Z}[H](\mathbb{Z}[H]-$

$\{0\})^{-1}$ . The ring $\mathbb{Z}[H]$ is a Laurent polynomial ring of $2g$ variables and it is a unique
factorization domain. Thus every Laurent polynomial $f$ is factorized into irreducible poly-
nomials uniquely up to multiplication by a unit in $\mathbb{Z}[H]$ . Therefore, for every irreducible
polynomial $\lambda$ , we can count the exponent of $\lambda$ in the factorization of $f$ . This counting
naturally extends to that for elements in $\mathcal{K}_{H}^{\cross}$ . Under the identification by $\pm H\cdot A\cdot N$ ,
an element in $\mathcal{K}_{H}^{\cross}/(\pm H\cdot A\cdot N)$ is determined by the exponents of all Sp $(2g, \mathbb{Z})$-orbits
of irreducible polynomials (up to multiplication by a unit in $\mathbb{Z}[H]$ ) modulo 2. Hence
$\mathcal{K}_{H}^{x}/(\pm H\cdot A\cdot N)$ is isomorphic to $(\mathbb{Z}/2\mathbb{Z})^{\infty}$ . Finally by using $(\mathbb{Z}/2\mathbb{Z})$-torsion of the knot
concordanoe group, they show the following:

Theorem 4.1 (Cha-Friedl-Kim [1]). The homomorphism
$\tilde{\tau}:\mathcal{H}_{g,1}arrow \mathcal{K}_{H}^{\cross}/(\pm H\cdot A\cdot N)$

is not surjective but its image is isomorphic to $(\mathbb{Z}/2\mathbb{Z})^{\infty}$ .

Now we try to investigate abelian quotients of $\mathcal{H}_{g,1}$ by using the Magnus representation
$r$ . It looks easier to extract information of $\mathcal{H}_{g,1}$ from the representation $r$ together with
Cha-Fkiedl-Kim’s idea, since $r$ itself is an homology cobordism invariant as mentioned in
Theorem 3.3 (3). Consider two maps

$\hat{r}:\mathcal{H}_{g,1}arrow^{r}GL(2g, \mathcal{K}_{H})arrow \mathcal{K}_{H}^{\cross}\detarrow \mathcal{K}_{H}^{\cross}/(\pm H)$ ,
$\tilde{r}:\mathcal{H}_{g,1}arrow^{\hat r}\mathcal{K}_{H}^{\cross}/(\pm H)arrow \mathcal{K}_{H}^{\cross}/(\pm H\cdot A)$ .

While $\hat{r}$ is a crossed homomorphism, its restriction to $\mathcal{I}\mathcal{H}_{g,1}$ and $\tilde{r}$ are homomorphisms.
Note that both $\mathcal{K}_{H}^{\cross}/(\pm H)$ and $\mathcal{K}_{H}^{\cross}/(\pm H\cdot A)$ are isomorphic to $\mathbb{Z}^{\infty}$ .

Theorem 4.2. (1) For $(M, i_{+}, i_{-})\in C_{g,1}$ , the equality
$\hat{r}(M)=\overline{\tau(M)}\cdot(\tau(M))^{-1}$ $\in \mathcal{K}_{H}^{\cross}/(\pm H)$

holds.
(2) For $g\geq 1$ , the homomorphism $\tilde{r}:\mathcal{H}_{g,1}arrow \mathcal{K}_{H}^{\cross}/(\pm H\cdot A)$ is trivial.
(3) For $g\geq 2_{f}$ the homomorphism $\hat{r}:\mathcal{I}\mathcal{H}_{g,1}arrow \mathcal{K}_{H}^{\cross}/(\pm H)$ is not surjective but its image
is isomorphic to $\mathbb{Z}^{\infty}$ .

Sketch of Proof. (1) follows $hom$ the definitions of the invariants and and torsion duality.
We omit the details.

As mentioned above, the action of Sp $(2g, \mathbb{Z})$ implies that $f=\overline{f}$ for any $f\in \mathcal{K}_{H}^{\cross}/(\pm H\cdot$

$A)$ . Then our claim (2) immediately follows from (1). (We can also use the symplecticity
(Theorem 3.3 (2)) of $r$ to show (2). $)$

To show (3), we use the homology cylinder $M_{L}\in C_{2,1}$ in Example 3.7. While $M_{L}\not\in$

$\mathcal{I}C_{2,1}$ , we can adjust it by some $g_{1}\in \mathcal{M}_{2,1}$ so that $M_{L}\cdot g_{1}\in \mathcal{I}C_{2,1}$ . Since $\hat{r}$ is trivial on
$\mathcal{M}_{2,1}$ , we have

$\hat{r}(M_{L}\cdot g_{1})=\hat{r}(M_{L})=\frac{\gamma_{3}+\gamma_{4}-1}{\gamma_{3}^{-1}+\gamma_{4}^{-1}-1}\in \mathcal{K}_{H}^{\cross}/(\pm H)$ .

Take $f\in \mathcal{M}_{2,1}$ such that $\sigma(f)\in$ Sp$($4, $\mathbb{Z})$ maps
$\gamma_{1}\mapsto\gamma_{1}+\gamma_{4}$ , $\gamma_{2}\mapsto\gamma_{2}$ , $\gamma_{3}\mapsto\gamma_{2}+\gamma_{3}$ , $\gamma_{4}\mapsto\gamma_{4}$ .
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Consider $f^{m}\cdot M_{L}\in C_{2,1}$ and adjust it by some $g_{m}\in \mathcal{M}_{2,1}$ so that $f^{m}\cdot M_{L}\cdot g_{m}\in \mathcal{I}C_{2,1}$ .
Then we have

$\hat{r}(f^{m}\cdot M_{L}\cdot g_{m})=\sigma(f^{m})_{\hat{r}(M_{L})}=\frac{\gamma_{2}^{m}\gamma_{3}+\gamma_{4}-1}{\gamma_{2}^{-m}\gamma_{3}^{-1}+\gamma_{4}^{-1}-1}\in \mathcal{K}_{H}^{\cross}/(\pm H)$ .

We can check that the values $\{\frac{\gamma_{2}^{m}\gamma_{3}+\gamma_{4}-1}{\gamma_{2}^{-m}\gamma_{3}^{-1}+\gamma_{4}^{-1}-1}\}_{m=0}^{\infty}$ generate an infinitely generated

subgroup of $\mathcal{K}_{H}^{\cross}/(\pm H)$ . This completes the proof when $g=2$ . We can use the above
computation for $g\geq 3$ by a stabilization. $\square$

Consequently, we have obtained a result similar to Morita [11, Corollary 5.2] and Cha-
Friedl-Kim [1, Theorem 7.2 (2)].

5. GENERALIZATION TO HIGHER-DIMENSIONAL CASES

We can consider homology cylinders over $X$ for any compact oriented connected k-
dimensional manifold $X$ with $k\geq 3$ by rewriting Definition 2.1 word-by-word. Let $\mathcal{M}(X)$ ,
$C(X)$ and $\mathcal{H}(X)$ denote the corresponding diffeotopy group, monoid of homology cylinders
and homology cobordism group of homology cylinders. We have natural homomorphisms

$\mathcal{M}(X)arrow C(X)arrow \mathcal{H}(X)$ .

Remark 5.1. In contrast with the case of surfaces, the homomorphism $\mathcal{M}(X)arrow C(X)$ is
not necessarily injective for a general manifold $X$ . In fact, if $[\varphi]\in Ker(\mathcal{M}(X)arrow C(X))$ ,
the definition of the homomorphism only says that $\varphi$ is a pseudo isotopy over $X$ .

For $k\geq 2$ and $n\geq 1$ , we put

$X_{n}^{k}:=\#(S^{1}n\cross S^{k-1})$ .

The manifold $X_{n}^{k}$ may be regarded as a generalization of a closed surface since $X_{n}^{2}=\Sigma_{n,0}$ .
Suppose $k\geq 3$ . Then $\pi_{1}X_{n}^{k}\cong\pi_{1}$ ( $X_{n}^{k}$ –Int $D^{k}$ ) $\cong F_{n}$ , where Int $D^{k}$ is an open k-ball,

and $H_{1}$ $:=H_{1}(F_{n})\cong \mathbb{Z}^{n}$ . Let $\langle x_{1},$
$x_{2},$ $\ldots,$

$x_{n}\rangle$ be a basis of $F_{n}$ (and $H_{1}$ ). We have a
monoid homomorphism

Acy : $C$ ( $X_{n}^{k}$ –Int $D^{k}$ ) $arrow$ Aut $(F_{n}^{acy})$

and it induces a group homomorphism

Acy : $\mathcal{H}$ ( $X_{n}^{k}$ –Int $D^{k}$ ) $arrow$ Aut $(F_{n}^{acy})$

Consider the composition

$\tilde{r}$ : Aut $(F_{n}^{acy})arrow^{r}$ GL $(n, \mathcal{K}_{H_{1}})arrow \mathcal{K}_{H_{1}}^{\cross}\detarrow \mathcal{K}_{H_{1}}^{\cross}/(\pm H_{1}\cdot A’)\cong \mathbb{Z}^{\infty}$ ,

where $\mathcal{K}_{H_{1}};=\mathbb{Z}[H_{1}](\mathbb{Z}[H_{1}]-\{0\})^{-1}$ and $A’;=\{f^{-1}\cdot\varphi(f)|f\in \mathcal{K}_{H_{1}}^{\cross}, \varphi\in GL(n, \mathbb{Z})\}$ .
The map $\tilde{r}$ is a homomorphism for the same reason mentioned in the previous section.

Theorem 5.2. For any $k\geq 3$ and $n\geq 2$ , we have:
(1) The homomorphism Acy: $\mathcal{H}$ ( $X_{n}^{k}$ –Int $D^{k}$ ) $arrow$ Aut $(F_{n}^{acy})$ is surjective.
(2) The image of $\tilde{r}$ is an infinitely genemted subgroup of $\mathbb{Z}^{\infty}$ . In particular, the abelian

gmups $H_{1}$ (Aut $(F_{n}^{acy})$ ) and $H_{1}(\mathcal{H}(X_{n}^{k}$ –Int $D^{k}))$ have infinite $mnk$.
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Sketch of Proof. (1) follows from a construction similar to the one used in the proof of
[13, Theorem 6.1]. To show (2), consider a homomorphism $f_{m}:F_{n}arrow F_{n}$ defined by

$f_{m}(\gamma_{1})=(\gamma_{1}\gamma_{2}^{-1}\gamma_{1}^{-1}\gamma_{2}^{-1})^{m}\gamma_{1}\gamma_{2}^{2m}$ , $f_{m}(\gamma_{i})=\gamma_{i}(2\leq i\leq n)$

for each $m\geq 1$ . The homomorphism $f_{m}$ induces an isomorphism on $H_{1}(F_{n})$ and therefore
it extends to an automorphism (denoted also by $f_{m}$ ) of $F_{n}^{\kappa y}$ . By the Fox calculus, we can
easily check that

$\tilde{r}(f_{m})=1-\gamma_{2}+\gamma_{2}^{2}-\gamma_{2}^{3}+\cdots+\gamma_{2}^{2m}$ .
Then (2) follows from the irreducibility of these polynomials when $2m+1$ is prime by a
well known fact on the cyclotomic polynomials. $\square$
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