
A NOTE ON DEGREES OF TWISTED ALEXANDER
POLYNOMIALS

TAKAYUKI MORIFUJI

ABSTRACT. In this short note we discuss degrees of twisted Alexander polynomials and
demonstrate an explicit example for knots which is related to the degree formula due to
Friedl, Kim and Kitayama.

1. INTRODUCTION
In this note we consider degrees of twisted Alexander polynomials. Recently Friedl,

Kim and Kitayama showed the following theorem.

Theorem 1.1 (Friedl-Kim-Kitayama [1]). Let $N$ be an irreducible 3-manifold with empty
or toroidal boundary such that $N\neq S^{1}\cross D^{2}$ . Let $\rho$ : $\pi_{1}Narrow GL(d, F)$ be a representation
over a field $F$ with involution and let $\alpha$ : $\pi_{1}Narrow \mathbb{Z}$ be an admissible epimorphism (namely

$\alpha$ is non-trivial if it is restricted to any boundary component). If $\rho$ is conjugate to its dual
and if the twisted Alexander polynomial $\tau(N, \alpha\otimes\rho)\in F(t)$ does not vanish, then

$\deg\tau(N, \alpha\otimes\rho)\equiv d\Vert\alpha\Vert$ $mod 2$

holds, where $\Vert\alpha\Vert$ denotes the Thurston norm of $\alpha\in H^{1}(N, \mathbb{Z})=Hom(\pi_{1}N, \mathbb{Z})$ .

Remark 1.2. When $d=2$ and the image $\rho(\pi_{1}N)$ is in $SL(2, \mathbb{C})$ , the above theorem
implies that $\tau(N, \alpha\otimes\rho)\in \mathbb{C}(t)$ is of even degree (see Remark 2.1 for the precise definition
of degree of a rational function).

The purpose of this note is to give an example for the torus boundary case such that
the highest and the next coefficients of the twisted Alexander polynomial of the exterior
of a knot never vanish simultaneously as functions on the character variety of nonabelian
$SL(2, \mathbb{C})$-representations. This means Theorem 1.1 is optimal in the sense that the formula
holds modulo 2 but not modulo 4.

In the next section we quickly review the definition of the twisted Alexander polynomial,
due to Wada [8] (so we will use different notations from those of Theorem 1.1). An explicit
example for knots will be given in Section 3.

2. TWISTED ALEXANDER POLYNOMlALS

Let $K$ be a knot in the 3-sphere $S^{3}$ and $N(K)$ be an open tubular neighborhood of
$K$ . For a knot group $G(K)=\pi_{1}E(K)$ , namely the fundamental group of the exterior
$E(K)=S^{3}-N(K)$ of $K$ , we choose and fix a Wirtinger presentation

$G(K)=\langle x_{1},$
$\ldots,$

$x_{k}|r_{1},$
$\ldots,$

$r_{k-1}\rangle$ .
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Then the abelianization homomorphism
$\alpha:G(K)arrow H_{1}(E(K), \mathbb{Z})\cong \mathbb{Z}=\langle t\rangle$

is given by
$\alpha(x_{1})=\cdots=\alpha(x_{k})=t$ .

Here we specify a generator $t$ of $H_{1}(E(K), \mathbb{Z})$ and denote the sum in the infinite cyclic
group $\mathbb{Z}$ multiplicatively.

Next we take a linear representation $\rho:G(K)arrow SL(2, \mathbb{C})$ . The tensor product of two
representations $\alpha$ and $\rho$ is defined by

$(\alpha\otimes\rho)(x)=\alpha(x)\rho(x)$

for $x\in G(K)$ . These maps naturally induce two ring homomorphisms $\tilde{\alpha}$ : $\mathbb{Z}[G(K)]arrow$

$\mathbb{Z}[t, t^{-1}]$ and $\tilde{\rho}$ : $\mathbb{Z}[G(K)]arrow M(2, \mathbb{C})$ , where $\mathbb{Z}[G(K)]$ is the group ring of $G(K)$ over $\mathbb{Z}$

and $M(2, \mathbb{C})$ is the matrix algebra of degree 2 over $\mathbb{C}$ . Combining them, we obtain a ring
homomorphism

$\tilde{\alpha}\otimes\tilde{\rho}:\mathbb{Z}[G(K)]arrow M(2, \mathbb{C}[t, t^{-1}])$ .
Let $F_{k}$ denote the free group on generators $x_{1},$ $\ldots,$

$x_{k}$ and
$\Phi:\mathbb{Z}[F_{k}]arrow M(2, \mathbb{C}[t, t^{-1}])$

be the composition of the surjective homomorphism $\mathbb{Z}[F_{k}]arrow \mathbb{Z}[G(K)]$ induced by the
presentation of $G(K)$ and the tensor representation $\tilde{\alpha}\otimes\tilde{\rho}$ .

Now let us consider the $(k-1)\cross k$ matrix $M$ whose $(i, j)$-component is the $2\cross 2$ matrix

$\Phi(\frac{\partial r_{i}}{\partial x_{j}})\in M(2, \mathbb{C}[t, t^{-1}])$ ,

where $\partial/\partial x$ denotes the free differential calculus. For $1\leq j\leq k$ , let us denote by $M_{j}$ the
$(k-1)\cross(k-1)$ matrix obtained from $M$ by removing the jth column. We regard $M_{j}$ as
a $2(k-1)\cross 2(k-I)$ matrix with coefficients in $\mathbb{C}[t, t^{-1}]$ . Then Wada’s twisted Alexander
polynomial of a knot $K$ associated to a representation $\rho$ : $G(K)arrow SL(2, \mathbb{C})$ is defined to
be a rational function

$\triangle_{K,\rho}(t)=\frac{\det M_{j}}{\det\Phi(1-x_{j})}$

and well-defined up to multiplication by $t^{2n}(n\in \mathbb{Z})$ . Namely it is independent of the
choice of the presentation of $G(K)$ .

Remark 2.1. The degree of a rational function $f_{I}(t)/f_{2}(t)\in \mathbb{C}(t)$ is defined as follows.
For a given $f(t)= \sum_{i=k}^{l}c_{\dot{\eta}}t^{i}\in \mathbb{C}[t, t^{-1}]$ with $c_{k}\neq 0$ and $c_{l}\neq 0,$ $\deg f(t)$ is defined to be
$l-k$ . For $f_{1}(t)/f_{2}(t)(f_{j}(t)\in \mathbb{C}[t, t^{-1}])$ , we define $\deg f_{1}(t)/f_{2}(t)=\deg f_{1}(t)-\deg f_{2}(t)$ .

Remark 2.2. (1) It is known that the twisted Alexander polynomial $\triangle_{K,\rho}(t)$ has a
$mu1tip1icationbyt^{n}(n\in \mathbb{Z})Moreoveritisshownin[1]thattheequa1ityholdsreciprocalproperty(see[2]f.ordetails).Name1y\Delta_{K,\rho}(t)=\Delta_{K,\rho}(t^{-1})ho1dsupto$

up to multiplication by $t^{2n}(n\in \mathbb{Z})$ .
(2) For a nonabelian representation $\rho:G(K)arrow SL(2, \mathbb{C})$ , namely the image $\rho(G(K))$

is a nonabelian subgroup of $SL(2, \mathbb{C})$ , the twisted Alexander polynomial $\triangle_{K,\rho}(t)$

associated to $\rho$ is always a polynomial for any knot $K$ (see [4]).

122



3. EXAMPLE

Let us consider the knot $K=8_{4}$ which is the 2-bridge knot $K(19,5)$ . The Alexander
polynomial of $K$ is $\triangle_{K}(t)=2t^{4}-5t^{3}+5t^{2}-5t+2$ and thus the genus $g_{K}$ of $K$ is two.
In particular the knot $K=8_{4}$ is not fibered. The knot group $G(K)$ has a presentation

$G(K)=\langle a,$ $b|w^{2}a=bw^{2}\rangle$ , $w=(ba^{-1})^{2}ba(b^{-1}a)^{2}$ .
Let $\rho$ : $G(K)arrow SL(2, \mathbb{C})$ be a map defined by

$\rho(a)=(\begin{array}{ll}s 10 s^{-1}\end{array})$ and $\rho(b)=(\begin{array}{lll}s 02- y s^{-1}\end{array})$ ,

where $s\neq 0,$ $y\in \mathbb{C}$ . Here the entry $2-y$ is chosen so that the product of $\rho(a)$ and $\rho(b)^{-1}$

has trace $y$ . Then $\rho$ is a nonabelian representation of $G(K)$ if and only if a pair of complex
numbers $(s, y)$ satisfies $\phi(x, y)=0$ , where we put $x=s+s^{-1}$ (namely tr $(\rho(a))=x$ ) and
the Riley polynomial $\phi(x, y)$ is given by an irreducible polynomial

$\phi(x, y)=-1+x^{2}-(5-x^{4})y+(10-13x^{2}+3x^{4})y^{2}+10(2-x^{2})y^{3}$

$-(15-21x^{2}+5x^{4})y^{4}-(21-10x^{2})y^{5}+(7-12x^{2}+3x^{4})y^{6}$

$+(8-2x^{2}-x^{4})y^{7}-(1-2x^{2})y^{8}-y^{9}$ .

Remark 3.1. We refer to [5], [7] for the definition of the Riley polynomial. Roughly
speaking, the Riley polynomial gives a defining equation of the nonabelian part of the
space of conjugacy classes of $SL(2, \mathbb{C})$-representations of a 2-bridge knot. See [3], [6] for
twisted Alexander polynomials and character varieties of 2-bridge knot groups.

Next let us calculate the twisted Alexander polynomial of $K$ . Put $r=w^{2}aw^{-2}b^{-1}$ and
take the free differential by the generator $a$ :

$\frac{\partial r}{\partial a}=w^{2}(1+(1-a)(w^{-1}+w^{-2})\frac{\partial w}{\partial a})$ ,

where
$\frac{\partial w}{\partial a}=-ba^{-1}-ba^{-1}ba^{-1}+ba^{-1}ba^{-1}b+ba^{-1}ba^{-1}bab^{-1}+ba^{-1}ba^{-1}bab^{-1}ab^{-1}$ .

Let $\rho(a)=A,$ $\rho(b)=B$ and $\rho(w)=W$ . For a matrix $V$ defined by
$V=-BA^{-1}-BA^{-1}BA^{-1}+tBA^{-1}BA^{-1}B+tBA^{-1}BA^{-1}BAB^{-1}$

$+tBA^{-1}BA^{-1}BAB^{-1}AB^{-1}$ ,

the numerator of the twisted Alexander polynomial is given by

$\det\Phi(\frac{\partial r}{\partial a})=t^{8}\cdot\det(I+(I-tA)(t^{-2}W^{-1}+t^{-4}W^{-2})V)$

$=(2+y)t^{8}-x(4+3y)t^{7}+$ (lower terms in $t$),

where $I$ denotes the identity matrix. On the other hand the denominator of $\triangle_{K,\rho}(t)$ is
$\det\Phi(1-y)=t^{2}-xt+1$ .

Therefore the twisted Alexander polynomial of $K=8_{4}$ is given by
$\triangle_{K,\rho}(t)=(2+y)t^{6}-2x(1+y)t^{5}+$ (lower terms in $t$ ).
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Remark 3.2. We see that each coefficient of the twisted Alexander polynomial can be
regarded as a function on the chamcter variety

$X^{nab}(K)=\{(x,y)\in \mathbb{C}^{2}|\phi(x, y)=0\}$ .

More precisely they are polynomial functions on $X^{nab}(K)$ .

Now let us assume that the highest coefficient function of $\triangle_{K,\rho}(t)$ is zero. Then we
obtain $y=-2$ . Moreover if the next coefficient function is zero (in other words if degree
of $\triangle_{K,\rho}(t)$ drops by 4), then we have $x=0$ . However we easily see that $\phi(0, -2)=1\neq 0$ .
It means that there is no character such that the highest and the next coefficient functions
of the twisted Alexander polynomial vanish simultaneously.

As was shown in [3, Section 4], for every 2-bridge knot, there is an irreducible curve
component $X_{1}$ in the character variety $X^{nab}(K)$ such that

$\deg\triangle_{K,\rho}(t)=4g_{K}-2$

for all but finitely many characters. In this example, the character variety $X^{nab}(8_{4})$ is
irreducible (namely $X^{nab}(8_{4})=X_{1}$ ), and if the highest coefficient function of $\triangle_{K,\rho}(t)$

vanishes (namely $y=-2$), the equation
$\phi(x, -2)=1+45x^{2}+250x^{4}=0$

has four roots
$x= \frac{\sqrt{-9\pm\sqrt{41}}}{10}$ , $- \frac{\sqrt{-9\pm\sqrt{41}}}{10}$ .

Then we can easily check that the corresponding twisted Alexander polynomials are of
degree four (because of symmetry of coefficients).

Remark 3.3. It is easy to see that the above argument can be applied to any nonfibered
2-bridge knot $K$ with $g_{K}\geq 2$ . However, at the present moment, we do not have this kind
of example for closed 3-manifolds.
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