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ABSTRACT. The Reidemeister-Turaev torsion is an invariant of 3-manifolds equipped
with Spi$n$ structures. Here, a $Spin^{c}$ structure of a 3-manifold is a homology class of
non-singular vector fields on it. Each Seifert fibered 3-manifold has a standard $Spin^{c}$

structure, which is represented as a non-singular vector field the set of whose orbits gives a
Seifert fibration. This short note provides an algorithm for computing the Reidemeister-
Turaev torsion of the standard $Spin^{c}$ structure on a Seifert fibered 3-manifold. The
machinery used to compute the torsion is that of punctured Heegaard diagrams.

INTRODUCTION
Reidemeister-Turaev torsion is an invariant of 3-manifolds equipped with Spi$n$ struc-

tures. This invariant is defined by Turaev [12] as a refinement of the Reidemeister torsion,
which is one of the most well-known classical invariant of 3-manifolds. A Spi$n$ structure
can be represented as a homology class of non-singular vector fields on the ambient 3-
manifold. On the other hand, a branched standard spine of a 3-manifold carries a non-
singular vector field. The computation of the Reidemeister-Turaev torsion using branched
standard spines is first introduced in [3] for the case with non-empty boundary and then
in [1] for the closed case. In [6], the author developed the method via Heegaard splittings
compatible with the branched standard spines. In [7], the author introduced a Heegaard-
type diagram, which we call a punctured Heegaard diagram, to present a branched spine
and this diagram allows to compute the Reidemeister-Turaev torsion quite easily. In the
case of closed 3-manifolds, a punctured Heegaard diagram is exactly a Heegaard diagram
with a fixed complementary region of slopes satisfying a special condition, see Section 1.5.

In the present paper, we introduce the method for constructing punctured Heegaard
diagrams of Seifert fibered 3-manifolds equipped with standard Spi$n$ structures as a par-
allel construction of [11] and then explain how to compute its Reidemeister-Turaev tor-
sion. Each Seifert fibered 3-manifold has a standard Spi$n$ structure, which is represented
as non-singular vector fields everywhere tangent to its Seifert fibration. Recall that most
Seifert fibered 3-manifolds admits a unique Seifert fibration, see Section 1. For such Seifert
fibered 3-manifolds, the Reidemeister-Turaev torsion of the standard Spi$n$ structure can
be regarded as the principal values of the Reidemeister torsion of the manifold. Note
that a general algorithm for computing Reidemeister-TMraev torsions of any 3-manifold
equipped with any $Spin^{c}$ structure has already been described by Turaev ([16, 17]) by
means of surgery presentations on links in $S^{3}$ .

In the final section, we observe that the Reidemeister-Turaev torsions of the standard
Spi$n$ structures of a Seifert fibered 3-manifold have standard values among the set of the
Reidemeister-Turaev torsions of all Spi$n$ structures on the manifold.
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Notation 0.1. Let $X$ be a subset of a given topological space or a manifold $Y$ . Through-
out this paper, we will denote the interior of $X$ by Int $X$ , the closure of $X$ by $\overline{X}$ and the
number of components of $X$ by $\# X$ . We will use $\eta(X;Y)$ to denote a regular neighbor-
hood of $X$ in $Y$ . If the ambient space $Y$ is clear from the context, we simply denote it
by $\eta(X)$ . By 3-manifold, we always mean a connected, compact and oriented one, with
or without boundary, unless otherwise mentioned.

1. PRELIMINARIES

1.1. Spi$n^{}$ structures. Let $M$ be a closed smooth 3-manifold. Two non-singular vector
fields $\mathcal{V}_{1}$ and $\mathcal{V}_{2}$ on $M$ are said to be homologous if there exists a closed 3-ball $B\subset M$ such
that the restrictions of $\mathcal{V}_{1}$ and $\mathcal{V}_{2}$ to $M\backslash$ Int $B$ are homotopic as non-singular vector fields.
A Spi$n^{}$ structure is a homology class [V] of non-singular vector fields $\mathcal{V}$ . We denote by
Spi$n^{}$ $(M)$ the set of Spi$n^{}$ structure on $M$ . The action of $H_{1}(M)$ to Spi$n^{}$ $(M)$ is defined
through Reeb surgery, see [17, 9] for details.

1.2. Review of the Reidemeister-Turaev torsion. Let $F$ be a field and let $E$ be
an n-dimensional vector space over $F$ . For two ordered bases $b=(b_{1}, \ldots, b_{n})$ and $c=$

$(c_{1}, \ldots, c_{n})$ of $E$ , we write $[b/c]=\det(a_{ij})\in F^{\cross}$ , where $b_{i}= \sum_{j=1}^{n}a_{ij}c_{j}$ . The bases $b$ and
$c$ are said to be equivalent if $[b/c]=1$ .

Let $C=(0arrow C_{m}\partial_{m}arrow C_{m-1}\partial_{m-1}arrow\cdotsarrow C_{1}arrow C_{0}aarrow 0)\partial_{-1}$ be a finite dimensional chain
complex over $F$. For each $0\leq i\leq m$ , set $B_{i}={\rm Im}\partial_{i},$ $Z_{i}=Ker\partial_{i-1}$ and $H_{i}=Z_{i}/B_{i}$ . The
chain complex is said to be acyclic if $H_{i}=0$ for all $i$ . Suppose that $C$ is acyclic and $C_{i}$ is
endowed with a distinguished basis $c_{\eta}$ for each $i$ . Choose an ordered set of vectors $b_{i}$ in $C_{i}$

for each : $0\leq i\leq m$ such that $\partial_{i-1}(b_{i})$ forms a basis of $B_{i-1}$ . By the above construction,
$\partial_{i}(b_{i+1})$ and $b_{i}$ are combined to be a new basis $\partial_{i}(b_{i+1})b_{i}$ of $C_{i}$ . With this notation, the
torsion of $C$ is defined by

$\tau(C):=\prod_{i=0}^{m}[\partial_{i}(b_{i+1})b_{i}/c_{i}]^{(-1)^{i+1}}\in F^{\cross}$ .

Let $M$ be a compact connected orientable smooth manifold of an arbitrary dimension.
Let $X$ be a CW-decomposition of $M,\hat{X}arrow X$ be its maximal abelian covering and $F$ be
a field. We can equip $\hat{X}$ with the CW-structure naturally induced by that of $X$ , and then
we regard $C_{*}(\hat{X})$ as a left $\mathbb{Z}[\pi_{1}(X, *)]$ -module via the monodromy. Let $\{e_{i}^{k}\}$ be the set
of all oriented k-cells in $X$ , and $\{\hat{e}_{i}^{k}\}$ be a family of their lifts to $\hat{X}$ . Give an orientation
with each of these cells and order the cells $\{\hat{e}_{i}^{k}\}$ , for each $k$ , in an arbitrary way. Then
this family gives an ordered $\mathbb{Z}[H_{1}(X)]$ -basis of $C_{k}(\hat{X})$ . In this way, we can regard $C_{*}(\hat{X})$

as an ordered, based chain complex.
Let $\varphi:\mathbb{Z}[H_{1}(X)]arrow F$ be a ring homomorphism. If the based chain complex C’(X) $=$

$F\otimes_{\varphi}C_{*}(\hat{X})$ over $F$ is acyclic, the ( $\varphi$-twisted) Reidemeister torsion of $M$ is defined as
$\tau^{\varphi}(M):=\tau(C_{*}^{\varphi}(X))\in F^{\cross}/\pm\varphi(H_{1}(M))$ .

Otherwise, set $\tau^{\varphi}(M)$ $:=0\in F$ .
Let $M$ be a smooth 3-manifold and let $X$ be its CW-decomposition. A family of cells

of $\hat{X}$ is said to be fundamental if over each cell of $X$ exactly
$\wedge$

one cell of this family
lies. When we choose a fundamental family $\{\hat{e}_{i}^{k}\}$ of cells of $X$ and orient and order
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these cells in arbitrary way, this family becomes a free $\mathbb{Z}[H_{1}(X)]$-basis of $C_{k}(\hat{X})$ . (i.e.
$C_{k}(\hat{X})=\oplus_{i}\mathbb{Z}[H_{1}(X)]\hat{e}_{i}^{k})$ . In this way, we can regard $C_{*}(\hat{X})$ as a chain complex with
basis.

A Spi$n^{}$ structure [V] on $M$ instructs to obtain a fundamental family of cells of $\hat{X}$ , and
hence the Reidemeister torsion is refined to be an invariant $\tau^{\varphi}(M, [\mathcal{V}])\in F/\pm 1$ of $Spin^{c}$

structures on $M$ , see [12, 13, 15, 17]. In [1, 3], this construction is described via the notion
of bmnched standard spine.

Let $M$ be a Seifert fibered 3-manifold. In this paper, all Seifert fibered 3-manifolds are
assumed to be closed orientable ones having orientable base surfaces. Recall that a Seifert
fibered 3-manifold is said to be large if its base surface is different from a sphere with less
than four singular points.

We call a non-singular vector field (a Spin structure, respectively) on a Seifert fibered
3-manifold is standard if it is everywhere tangential to a Seifert fibration. In [11],
Taniguchi, Tsuboi and Yamashita introduced an algorithm to obtain a bmnched spine
of a standard vector field on an arbitrary closed Seifert fibered 3-manifold in term of
the Seifert invariants $S(g;b;(p_{1}, q_{1}), (p_{2}, q_{2}), \ldots, (p_{r}, q_{r}))$ , where $g$ is the genus of the base
surface, $b$ is its obstruction class, and $(p_{i}, q_{i}),$ $i=1,2,$ $\ldots,$

$r$ , are the types of its singu-
lar fibers. It is well-known (see e.g. [5]) that a large Seifert fibered 3-manifold except
$S(O;4;(2,1), (2,1), (2, -1), (2, -1))$ has a unique (up to isotopy) Seifert fibration.
1.3. Branched spines. Let $N$ be a compact orientable 3-manifold. A branched surface
$P\subset N$ is a union of finitely many compact smooth surfaces glued together to form a
compact subspace locally modeled on one of the three possibilities in Figure 1. Note that

FIGURE 1. Local pictures of a branched surface.

the general definition of branched surface allows more sheets than just two on one side
and one on the other side, but we only consider this situation (which is generic and stable,
i.e. corresponds to an open dense set in the space of branched surfaces).

The branch locus $S(P)$ of $P$ is the set of points none of whose neighborhoods (in $P$)
is a disk. $S(P)$ is a collection of smooth immersed curves in $P$ . Let $V(P)$ be the set of
double points of $S(P)$ . We associate with every component of $S(P)\backslash V(P)$ a vector (in $P$)
pointing in the locally one-sheeted direction, as shown in Figure 1. We call a component
of $P\backslash S(P)$ a sector of $P$ . Let $R$ be a sector of $P$ . If all branch directions along $\partial\overline{R}$ point
out from $R$ , then $P\backslash R$ is still a branched surface, see Figure 2 (i). One can regard $\eta(P)$

as an interval bundle over $P$ as drawn in Figure 2 (ii). The boundary $\partial\eta(P)$ decomposes
into two parts: the endpoints of the fibers, $\partial_{h}\eta(P)$ , and the rest, $\partial_{v}\eta(P)$ . In this paper,
all branched surfaces are assumed to be tmnsversely oriented, that is, $P$ is equipped with
a global orientation on the l-foliation of $\eta(P)$ whose leaves are fibers of $\eta(B)$ . Refer to
[4, 10] for more details about branched surfaces.

A branched surface $P\subset N$ is called a bmnched spine (of $N$ ) if $N$ collapses onto $P$ . A
branched spine $P$ is naturally stratified as $V(P)\subset S(P)\subset P$ . A branched spine $P$ is said
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(i) (ii)

FIGURE 2. (i) Removable sector; (ii) A regular neighborhood of a branched surface.

to be standard if this stratification induces a CW decomposition of $P$ , namely, there is
no loop in $S(P)$ and sectors are disks. See [2] for a precise definition. If $P$ is a branched
spine of a compact 3-manifold $N$ with $\partial N=S^{2}$ , then $P$ is also called a branched spine
of the closed 3-manifold $M$ obtained from $N$ by attaching a 3-ball to the unique 2-sphere
boundary. A branched spine of a closed 3-manifold is called a flow-spine if $\partial_{v}\eta(P)$ is an
annulus.

In [2], Benedetti and Petronio proved that every orientable 3-manifold admits a branched
(standard) spine and it naturally encodes a well-defined homotopy class of vector fields,
which is called the concave tmversing field, on the ambient manifold. We require that the
flow intersects $P$ in the same direction as the fixed transverse orientation. In the case
where $P$ is a flow-spine of a closed oriented 3-manifold $M$ , one can extend the concave
traversing field, whose orbits are the I-fibers of the regular neighborhood of the spine, to
the whole of $M$ .

1.4. Oriented, based Heegaard diagrams. Throughout the paper, we only consider
closed orientable 3-manifolds.

By a Heegaard diagmm we means a triple $(S_{g};\alpha, \beta)$ where
(1) $S_{g}$ is a closed, connected, orientable surface of genus $g\in N$ ; and
(2) $\alpha=\bigcup_{i=1}^{g}\alpha_{i}$ and $\beta=\bigcup_{i=1}^{g}\beta_{i}$ are compact, mutually transverse l-manifolds with

$g$ components on $S_{g}$ .
(3) $\overline{S_{g}\backslash \eta(\bigcup_{i}^{g}\alpha_{i};S_{g})}\cong\overline{S_{g}\backslash \eta(\bigcup_{i}^{g}\beta_{i};S_{g})}\cong$ ( $2g$-th punctured sphere)

A Heegaard diagram gives rise to a closed 3-manifold $M_{(S_{9};\alpha,\beta)}$ by adding 2-handles
$H_{\alpha_{1}},$

$\ldots,$
$H_{\alpha_{9}}$ and $H_{\beta_{1}},$

$\ldots,$
$H_{\beta_{9}}$ to $S_{g}\cross[-1,1]$ along the curves $\alpha_{1}\cross\{-1\},$

$\ldots,$
$\alpha_{g}\cross\{-1\}$

and $\beta_{1}\cross\{1\},$
$\ldots,$

$\beta_{g}\cross\{1\}$ , respectively, and then adding 3-handles along the resulting
2-sphere boundary components. We will denote the core disk of $H_{\alpha}:$ ( $H_{\beta}.$ , respectively)
(fairly extended so that its boundary is on $S_{g}$ ) by $D_{\alpha}$. ( $D_{\beta_{1}}$ , respectively) for $1\leq i\leq g$ .
When we consider (and draw in $\mathbb{R}^{3}$ ) a Heegaard diagram, we always equip the surface $S_{g}$

with the positive normal $w_{p}(x\in S_{g})$ pointing toward the $\alpha$ side, and with the orientation
$(u_{p}, v_{p}),$ $u_{p},$ $v_{p}\in T_{p}S_{g}$ , such that $(u_{p}, v_{p}, w_{p})$ gives the right-hand orientation on $\mathbb{R}^{3}$ .

A Heegaard diagram is said to be oriented if the l-manifolds $\alpha$ and $\beta$ are oriented.
A Heegaard diagram $(S_{g};\alpha, \beta)$ with a fixed point $b_{i}\in\beta_{i}\backslash \alpha$ for each $\beta_{i}$ is said to be
based. A Heegaard diagram $(S_{g};\alpha, \beta)$ is said to be standard if every connected component
of $S_{g}\backslash (\alpha\cup\beta)$ is an open ball. It is clear that we can make any Heegaard diagram
standard up to isotopy of $\beta$ . We often denote an oriented, based Heegaard diagram by
$(S_{g};\vec{\alpha},\vec{\beta}, \{b_{k}\}_{k=1}^{g})$ . A system of pairwise disjoint, simple, closed, oriented curves $\gamma=$

$\bigcup_{i=1}^{g}\gamma_{i}$ on $S_{g}$ is called a dual system of $\beta$ if each $\gamma_{i}$ intersects $\beta_{i}$ transversely once at the
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point $b_{i}$ in the positive direction shown in Figure 3, where $(u_{x}, v_{x})$ is compatible with the
fixed orientation of $S_{g}$ , and $\gamma_{i}\cap\beta_{j}=\emptyset$ when $i\neq j$ .

FIGURE 3. The positive intersection with a dual loop.

1.5. Punctured Heegaard diagrams. Given a genus $g$ Heegaard diagram $(S_{g};\alpha, \beta)$ ,
let $D$ be a disk component of $S_{g}\backslash (\alpha\cup\beta)$ . Then $D$ is said to be joining if it satisfies
the following: i) $\partial\overline{D}$ is a simple loop, where the closure is taken in the surface $S_{g}$ ; and ii)
$\partial\overline{D}\cap\alpha_{i}$ ( $\partial\overline{D}\cap\beta_{i}$ , respectively) is a single connected arc for all $1\leq j\leq g$ . See Figure 4.
We call a Heegaard diagram $(S_{g};\alpha, \beta)$ with joining disk $D$ a punctured Heegaard diagmm

$\alpha_{1}$ $\alpha_{2}$

FIGURE 4. A punctured Heegaard diagram of genus 3.

and denote it by $(S_{g};\alpha, \beta;D)$ . Given a punctured Heegaard diagram $(S_{g};\alpha, \beta;D)$ , we
may equip the polyhedron

$P_{(S_{g};\alpha,\beta;D)}$ $:=(S_{g} \cup(\bigcup_{i=1}^{g}D_{\alpha i})\cup(\bigcup_{i=1}^{g}D_{\beta_{i}}))\backslash$ Int $D\subset M_{(S_{9};\alpha,\beta)}$

with a structure of an transversely-oriented flow-spine. We denote by $\mathcal{V}_{P_{(S_{9},\alpha,\beta,D)}}$ a vector
field on $M_{(S_{g};\alpha,\beta;D)}$ obtained by extending the concave traversing field on a regular neigh-
borhood of $P_{(S_{g};\alpha,\beta;D)}$ , see Section 1.3. Note that such a vector field $\mathcal{V}_{P_{(S_{g},\alpha,\beta,D)}}$ is uniquely
defined up to homotopy.

Each punctured Heegaard diagram $(S_{g};\alpha, \beta)$ defines an oriented, based Heegaard dia-
gram as in the following way:

$\bullet$ Since each of the slopes $\alpha$ and $\beta$ appears on $\partial\overline{D}$ exactly as a single arc, the
orientation of $\partial\overline{D}$ determines orientations of all of these slopes. Here, we consider
that $D$ inherits the orientation from $S_{g}$ and we use “outernomal first” convention.

$\bullet$ For each $1\leq i\leq g$ , take a base point $b_{i}$ on the interior of the arc $\beta_{i}\cap\partial\overline{D}$ .
Let $(S_{g};\vec{\alpha},\vec{\beta};\{b_{k}\}_{k=1}^{g})$ be an oriented, based Heegaard diagram and set $M$ $:=M_{(S_{g};\alpha,\beta)}$ .

Let $p$ be a point on $\alpha_{i}$ . Then we define the normal vector $n_{p}\in T_{p}S_{g}$ of $\alpha_{i}$ at $p$ in such a
way that $(n_{p}, a_{p})$ is coherent to the fixed orientation of $S_{g}$ , where $a_{p}\in T_{p}\alpha_{i}$ is coherent
to the orientation of $\alpha_{i}$ . Then $\alpha_{i}$ determines an element $x_{i}\in\pi_{1}(M, *)$ and $\beta_{j}$ determines
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$r_{j}=r_{j}(x_{1}, \ldots, x_{g})\in\pi_{1}(M, *)$ starting at the point $b_{j}$ and following the oriented loop $\beta_{j}$ ,
for each $i,j=1,$ $\ldots,$ $g$ . Namely, we use the convention such that at each point $p\in\alpha_{i}\cap\beta_{j}$

we read $x_{i}$ ( $x_{i}^{-1}$ , respectively) when the normal vector $n_{p}\in T_{p}S_{g}$ of $\alpha_{i}$ at $p$ is coherent
(not coherent, respectively) to the orientation of $\beta_{j}$ at $p$ .

Moreover, if we choose a dual system $\gamma=\bigcup_{i=1}^{g}\gamma_{i}$ of $\beta,$
$\gamma_{i}$ determines $y_{j}\in\pi_{1}(M, *)$

in the same manner. Let $p:\mathbb{Z}[\pi_{1}(M, *)]arrow \mathbb{Z}[H_{1}(M)]$ be the canonical projection and
denote $[z]=p(z)$ for $z\in\pi_{1}(M, *)$ . The following is immediate from the above setting
and definition of the Reidemeister-Turaev torsion.

Corollary 1.1. Let $(S_{g}, \alpha, \beta)$ be a punctured Heegaard diagmm and set $M=M((S_{g}, \alpha, \beta))$ .
Let $(S_{g};\vec{\alpha},\vec{\beta};\{b_{j}\})$ be an oriented, based Heegaard diagmm defined by $(S_{g}, \alpha, \beta)$ . Let the
twisted chain complex $C_{*}^{\varphi}(M)$ be acyclic. Then there exist two integers $k,$ $l\in\{1, \ldots, n\}$

such that

$\tau^{\varphi}(M, [\mathcal{V}_{(S_{9};\alpha,\beta;D)}])=\frac{\det B_{k,l}}{(\varphi([x_{k}])-1)(\varphi([y_{l}])-1)}\in F^{x}/\pm 1$,

where $B_{k,l}$ is the $(k, l)$ -minor of the matm $( \varphi([\frac{\partial r}{\partial x}L]))_{1\leq i,j<g^{f}}$ namely the $mat\dot{m}$ obtained

by removing k-th row and l-th column from the matrix $( \varphi-([\frac{\partial}{\partial}x_{i}\lrcorner^{r}]))_{1\leq i,j\leq g}$ Here, $\frac{\partial}{\partial x_{j}}$

denotes the $Fox^{f}s$ free differential calculus, and if $B_{k,l}=\emptyset$ , we set $\det B_{k,l}=1$ .

1.6. BW-decompositions and DS-diagrams. Let $P$ be a flow-spine of a closed 3-
manifold $M$ . Let $N$ be a regular neighborhood of $P$ . Recall that $\partial N\cong S^{2}$ . Then
the collapsing $N\searrow P$ induced a retraction $\pi$ such that $N$ is the mapping cylinder of
$\pi|_{\partial N}:\partial Narrow P$ . This map satisfies the following:

(1) $\pi^{-1}(S(P))\cap\partial N$ is a trivalent graph;
(2) For $x\in P,$ $\phi^{-1}(x)$ consists of 2, 3 or 4 points according as $x\in P\backslash S(P),$ $x\in$

$S(P)\backslash V(P)$ or $x\in V(P)$ ; and
(3) There exists a circle $e$ in $\pi^{-1}(S(P))\cap\partial N$ such that

(a) $\partial N\backslash e$ is the disjoint union of $B$ and $W$ (this is called a Black and White (or
simply B-W) decomposition);

(b) Every component of $e$ has $B$ on one side and $W$ on the other side;
(c) $\pi$ maps $e\backslash \pi^{-1}(V(P))$ bijectively onto $S(P)\backslash V(P)$ ; and
(d) $\pi$ maps $B$ ( $W$ , respectively) bijectively onto $P$ .

The left-hand side of Figure 5 depicts the B-W decomposition of $\partial N$ . In the figure, the
arrows show the concave traversing field on $N$ defined by the branched spine $P$ . Remark
that the curve $e$ consists of the concave points on the boundary. The right-hand side
shows the trivalent graph $\pi^{-1}(S(P))\cap\partial N$ . In the figure, the arrows shows the retraction
$\pi$ induced by the collapsing, see [2, Section 3.3] for more details on B-W decomposition.

The above description provides a way to present the flow-spine $P$ by a 3-regular graph
$G:=\pi^{-1}(S(P))\cap\partial N\subset\partial N\cong S^{2}$ and the pairing on $S^{2}$ given by $\pi$ . This presentation
is called a DS-diagmm.

2. THE REIDEMEISTER-TUREAV TORSIONS OF THE STANDARD $SPIN^{c}$ STRUCTURES

In this section, we introduce an algorithmic method for constructing punctured Hee-
gaard diagrams of Seifert fibered 3-manifolds in terms of the Seifert invariants.
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Thc concave traversing field

FIGURE 5. The B-W decomposition of $\partial N$ .

2.1. Construction of punctured Heegaard diagrams of the standard Spi$n^{}$ struc-
tures. It is easy to see that each Seifert fibered 3-manifold decomposes into finite copies
of the pieces (trice-punctured sphere) $\cross S^{1}$ , (once-punctured torus) $\cross S^{1}$ and a fibered
torus, where $D_{1},$ $D_{2}$ and $D_{3}$ are mutually disjoint closed disks in $S^{2}$ and $D’$ is a closed
disk in $S^{1}\cross S^{1}$ , by cutting along tori on which the fibers are tangential. Our construc-
tion of a punctured Heegaard diagram of a Standard Spi$n^{}$ structure of a Seifert fibered
3-manifold is based on this decomposition.

Let $H_{R},$ $H_{L},$ $H_{\overline{R}},$ $H_{\overline{L}}$ and $H_{C}$ be the pieces of a punctured Heegaard diagram shown in
Figure 6. In the figure, the curves $\alpha$ are bold and the curves $\beta$ are thin. For $H_{R}$ or $H_{L}$ ,
the disks $D^{-}$ and $D^{+}$ are identified to be a meridian disk $D$ of genus 1 compact orientable
surface with two boundary components.

$\oplus$

$H_{L}$ $H_{Jt}$ $H_{C}$

$H_{\overline{L}}$ $H_{\overline{It}}$

FIGURE 6. The pieces $H_{L},$ $H_{R},$ $H_{\overline{L}},$ $H_{\overline{R}}$ and $H_{C}$ .
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We use the following notation for a continued fraction:

$[a_{1}, a_{2}, \ldots, a_{n}]:=\frac{1}{a_{1}+\frac{1}{a_{2+}\underline{1}}}$ .

$+ \frac{1}{a_{n}}$

For a pair of mutually coprime natural numbers $p,$ $q$ such that $p>q$ , we define a word
$w(p, q)$ of the letters $L$ and $R$ as follows:

$w(p, q):=\{\begin{array}{l}L^{a_{1}}R^{a_{2}}L^{a_{3}}\cdots L^{a_{\mathfrak{n}-2}}R^{a_{n1}}L^{a_{n}} (if n is odd)L^{a_{1}}R^{a_{2}}L^{a_{3}}\cdots R^{a_{n-2}}L^{a_{n-1}}R^{a_{n}} (if n is even),\end{array}$

where $a_{1},$ $a_{2},$ $\ldots,$
$a_{n}$ are natural numbers with $q/p=[a_{1}, a_{2}, \ldots, a_{n}, 1]$ .

Given a word $w(p, q)$ , where $q/p=[a_{1}, a_{2}, \ldots, a_{n}, 1]$ , we construct a piece of punctured
Heegaard diagram $H_{(p,q)}$ , which corresponds to a fibered solid torus of type $(p, q)$ , in the
following way. Take $a_{1}$ copies of the diagram $H_{L}$ . Then attach the boundary $\partial E$ of the
i-th diagram $H_{L}$ and the disk $\partial I$ of the $(i+1)-$th one along their boundaries following
the numbers 1, 2, 3, 4, for each $i=1,2,$ $\ldots,$

$a_{1}-1$ . For the disk $I$ of the first diagram $H_{L}$ ,
attach the disk $E$ of the diagram $H_{C}$ . Next, take $a_{2}$ copies of the diagrams $H_{R}$ . Then
attach the boundary $\partial E$ of the j-th diagram $H_{R}$ and the boundary $\partial I$ of the $j+1-$th one
along their boundaries so that the numbers 1, 2, 3, 4 on the both boundary circles match,
for each $j=1,2,$ $\ldots,$

$a_{2}-1$ . For the disk $I$ of the first diagram $H_{R}$ , attach the boundary
$\partial E$ of the $a_{1^{-}}$th diagram $H_{L}$ . Continuing this process, we finally get a diagram by gluing
$1+ \sum_{i=1}^{n}a_{i}$ pieces of $H_{L},$ $H_{R}$ and $H_{C},$ , see Figure 7. We denote the resulting piece of a

$H_{C}$ $H_{L}$

$H_{R}$

$H_{L}$

$a_{1}$ copies of $H_{L}$

$H_{R}$

$a_{2}$ copies of $H_{R}$

FIGURE 7. Gluing $H_{C}$ and $a_{1}$ copies of $H_{L}$ makes a larger piece of a punc-
tured Heegaard diagram.

punctured Heegaard diagram by $H_{(p,q)}$ .
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We define $H_{b}(b\in \mathbb{Z})$ to be another piece of a punctured Heegaard diagram constructed
following the same argument using the word $LR^{b}\overline{L}$ when $b$ is non-negative and $L\overline{R}^{-b}\overline{L}$

otherwise.
Let $H_{S}$ and $H_{T}$ be the pieces of a punctured Heegaard diagram shown in Figure 8

and 9, respectively. These pieces correspond to either (trice-punctured sphere) $\cross S^{1}$ and
(once-punctured torus) $\cross S^{1}$ , respectively. Again, we consider that the curves $\alpha$ are bold
and the curves $\beta$ are thin in the figure.

FIGURE 8. The piece $H_{S}$ .

FIGURE 9. The piece $H_{T}$ .

Let $g$ be a non-negative integer and $b$ be an integer. Let $(p_{1}, q_{1}),$ $(p_{2}, q_{2}),$
$\ldots,$

$(p_{r}, q_{r})$ be
pairs of mutually coprime integers such that $1<p_{i}$ and $0<q_{i}<p_{i}(i=1,2, \ldots, r)$ .
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Assume that $g+r\geq 2$ . Prepare $g+r-1$ copies $H_{s}^{1},$ $H_{s}^{2},$

$\ldots,$
$H_{s}^{g+r-2}$ of the piece $H_{S}$

and $g$ copies $H_{T}^{1},$ $H_{T}^{2},$

$\ldots,$
$H_{T}^{g}$ of the piece $H_{T}$ . First, attach the boundary $E$ of the piece

$H_{b}$ of punctured Heegaard diagram to the boundary $\partial E_{1}$ of the piece $H_{S}^{1}$ so that the
numbers 1, 2, 3, 4 on the both boundary circles match. For odd $k$ with $1\leq k\leq r$ , attach
the boundary $I$ of the piece $H_{(p_{k},q_{k})}$ of piece to the boundary $\partial E_{2}$ of the piece $H_{S}^{k}$ in the
same manner as above. For even $k$ with $1\leq k\leq r$ , attach the boundary $E$ of the piece
$H_{(p_{k},p_{k}-q_{k})}$ of a punctured Heegaard diagram to the boundary $\partial E_{2}$ of the piece $H_{S}^{k}$ in the
same manner as above. For $1\leq k\leq g-1$ , attach the boundary $E$ of the piece $H_{T}^{k}$ to the
boundary $\partial E_{2}$ of the piece $H_{s}^{r+k}$ in the same manner as above. Attach the boundary $E$

of the piece $H_{T}^{g}$ to the boundary $\partial E_{3}$ of the piece $H_{s}^{g+r-1}$ in the same manner as above.
Note that now we have $g+r-1$ components of pieces $W_{1},$ $W_{2},$

$\ldots,$
$W_{g+r-1}$ of a punctured

Heegaard diagram such that
$\bullet$ $W_{1}$ contains both $H_{b}$ and $H_{s}^{1}$ ;
$\bullet$ $W_{k}$ contains $H_{S}^{k}$ for $2\leq k\leq r$ ;
$\bullet$ $W_{k}$ contains $H_{T}^{k}$ for $r<k\leq g+r-2$ ; and
$\bullet$ $W_{g+r-1}$ contains both $H_{T}^{g+r-1}$ and $H_{T}^{g+r}$ .

For each even $k$ with $1\leq k\leq g+r-2$ , change the fixed normal direction of the diagram
$W_{k}$ and

Now we get a punctured Heegaard diagram by attaching the boundary $\partial E_{3}$ of the
diagram $W_{k}$ to the boundary $\partial E_{1}$ of the diagram $W_{k+1}$ for $1\leq k\leq g+r-2$ . We denote
it by $H_{(g;b;(p_{1},q_{1}),(p_{2},q_{2}),\ldots,(p,,q,))}$ .

If $g+r\leq 2$ , attach the piece $H_{b}$ of a punctured diagram to the boundary $\partial E_{1}$ of the
piece $H_{S}^{1}$ . Moreover, attach the rest of the pieces $H_{(p_{i},q_{i})}$ and copies of $H_{T}$ , if any, to the
boundaries $E_{2}$ and $E_{3}$ . In particular, if $g+r<2$ , attach the copies of $H_{C}$ to all the
remaining boundary components of $H_{s}^{1}$ .

Theorem 2.1. The punctured Heegaard diagmm $H_{(g;b;(p_{1},q_{1}),(p_{2},q_{2}),\ldots,(p_{r},q_{f}))}$ corresponds to
the Seifert fibered 3-manifold $S(g;b;(p_{1}, q_{1}), (p_{2}, q_{2}), \ldots, (p_{r}, q_{r}))$ with a standard $Spin^{c}$

structure.

Pmof. The idea of the proof is to construct the pieces of the punctured Heegaard diagram
corresponding to the pieces of the DS-diagram constructed in [11] following the proof of
Theorem 5.5.

Let $\pi,$ $B,$ $W$ and $e$ be as described in Section 1.6. Set $A:=\eta(e;\partial\eta(P))$ . Recall that $e$

has the $B$ part on one side and the $W$ one on the other side. The key idea is to draw a
simple closed curve $C$ in $A$ such that

(1) $C$ is isotopic to $e$ in $A$ ;
(2) $C\cap e\neq\emptyset$ and $C$ intersects $e$ transversely; and
(3) $C\cap\pi^{-1}(S(P))\subset e\backslash \pi^{-1}(V(P))$ .

Let $\mathcal{H}_{L}$ be a piece of DS-diagram (on the annulus) shown in Figure 10 (i). This diagram
was constructed in [11]. The curve $e$ lies horizontally in the middle part of the diagram
and it separates the diagram into B-part, on the upper side, and W-part, on the lower
side. Then the intersection $C\cap \mathcal{H}_{R}$ is depicted by the bold lines in Figure 10 (ii). The two
curves $C\cap \mathcal{H}_{R}$ cut the annulus into two disks, the under piece of which corresponds to the
joining disk. Note that the disk $D^{-}$ shown in the figure is identified via the projection $\pi$

with $D^{+}$ . Now we get a piece $H_{L}$ of a punctured Heegaard diagram. See Figure 11.
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く i

$(\mathfrak{i})$ $\{\dot{t}i)$ $(\mathfrak{i}ii)$

FIGURE 10. From $\mathcal{H}\iota$ to $H_{L}$ .

$\oplus$

FIGURE 11. The pieく ce $H_{L}$ of a punctured Heegaard diagram.

For the other pieces shown in [11], we can apply the same argument. Cnsequently,
$weD$

get the assertion.

Remark 2.2. Forgetting the joining disk of the diagram $II_{(g;b;(p_{1},q\iota)_{)}\infty,\varphi),\ldots,(p_{r},q,))}$ , one has
a Heegaard diagram of the Seifert fibered manifold $S(g;b, (p_{1}, q_{1}), (p_{2}, q_{2}), \ldots, (p_{r}, q_{r}))$ . For
es& piece of the Heegaard diagram corresponding to a singular fiber obtained in the above
construction, the diagram can be destabilized so that it is a diagram on a once-punctured
torus.

2.2. Algorithm. Let $M$ be a Seifert fibered 3-manifold $S(g;b;(p_{1}, q_{1}),$ $(p_{2}, q_{2}),$
$\ldots$ , $(p_{r}, q_{r})$ .

Let $fI_{\text{く}S(g;b;\phi,q_{1}),\infty,\alpha),.,.,\phi_{Y},q_{r}))}=(S_{g};\alpha, \beta, D)$ be the punctured Heegaard diagram con-
structed as above. Recall that once given a punctured Heegaard diagram, the Heegaard
surface $S_{9}$ assumed to be naturally oriented as explained in Section 1. Let $F$ be a field and
$\varphi:\mathbb{Z}[H_{1}$ く $M_{(S_{1}\alpha,\beta;D)})]arrow F$ be a ring homomorphism. We can calculate the Reidemeister-
Turaev torsion of the standard Spin’ structure of $M$ , i.e. the principal Reidemeister
torsion $7^{\tau\varphi}(M)$ , in the following algorithmic way (cf. [7]):

Step 1: Orient a and $\beta$ , and take base points of $\beta$ following the rule prescribed in
Section 1.

Step 2: Get a presentation $\langle x_{\lambda},$

$\ldots$ , $x_{g}|r_{1},$
$\ldots,$

$r_{g}\rangle$ of $\pi_{1}(M, *)$ using the punctured
Heegaard diagram $(S;\alpha,\beta_{2}\cdot D)$ as in the rule of Section 1.5.

Step 3: Find an arbitrary dual system $\gamma$ of $\beta$ in the diagram $(S;\alpha, \beta;D)$ and relate
a word $\Re$ of $x_{1},$ $\ldots$ , $x_{g}$ to each loop $\gamma_{i}$ in $\gamma$ in the ssme rule as in Section 1.5.

103



Step 4: If there exist two integers $k,$ $l\in\{1, \ldots, g\}$ such that all of $\det B_{k,l},$ $\varphi([y_{l}])-1$

and $\varphi([y_{l}])-1$ are nonzero, then we have

$\tau^{\varphi}(M, \mathcal{V}_{st})=\pm\frac{\det B_{k,l}}{(\varphi([x_{k}])-1)(\varphi([y_{l}])-1)}\in F^{\cross}/\pm 1$ ,

where $B_{k,l}$ is the $(k, l)$-minor of the matrix $( \varphi([\frac{\partial r_{j}}{\partial x_{i}}]))_{1<i,j\leq g}$ . If there are not

such integers $k$ and $l$ , then it turns out that the twisted chain complex $C^{\varphi}(M)$ is
not acyclic, hence we have $\tau^{\varphi}(M, V_{st})=0$ by definition.

Remark that due to [8] and [14], the above also gives an purely combinatorial algorithm
to compute the Seiberg-Witten invariant of standard $Spin^{c}$ structure when the given
Seifert fibered 3-manifold has the first homology group of infinite order.

3. EXAMPLES AND OBSERVATIONS

3.1. Lens spaces. Using the algorithm in Section 2.2 for a lens space $L(p, q)$ , we get a
Spi$n^{}$ structure on $L(p, q)$ and a presentation of $\pi_{1}(L(p, q))$ corresponding to the $Spin^{c}$

structure can be written as $\pi_{1}(L(p, q))=\langle x|x^{p}\rangle$ after simplifying the generators and
relators. Then for a representation $\varphi$ : $H_{1}(L(p, q))arrow F^{\cross}$ , we have a well-known result
$\tau^{\varphi}(L(p, q), [V_{st}])=\pm 1/(\zeta-1)(\zeta^{r}-1)$ , where $\zeta=\varphi([x])$ .

Let us focus on the lens space $L(11,1)$ . The set of the values of the Reidemeister-Turaev
torsions of the Spi$n^{}$ structures of $L(11,1)$ is:

$\{\tau^{\varphi}(L(11,1), [\mathcal{V}])|[\mathcal{V}]\in Spin^{c}(L(11,1))\}=\{\pm\frac{(^{i}}{(\zeta-1)^{2}}\in F^{\cross}/\pm 1$ $0\leq i<11\}$ .

In this set, only the two values $\pm 1/(\zeta-1)^{2}$ and $\pm\zeta^{2}/(\zeta-1)^{2}$ can be modified so that the
numerator is $\pm 1$ and the denominator are the form of $(\zeta^{a}-1)(\zeta^{b}-1)$ for some $a,$ $b\in \mathbb{Z}$ .
In fact, we have $\pm\zeta^{2}/(\zeta-1)^{2}=\pm 1/(\zeta^{10}-1)^{2}$ . Note that the value $\pm 1/((-1)^{2}$ is the
torsion of the Spi$n^{}$ structure derived from the standard Seifert fibration of $(L(11,1))$ and
$\pm\zeta^{2}/(\zeta-1)^{2}$ is that of the Spi$n^{}$ structure derived from the standard Seifert fibration of
$(L(11,10))$ .

$(^{6}/(\zeta-1)^{2}$ $\zeta^{5}/(\zeta-1)^{2}$

$\zeta^{7}/((-1)^{2}\cdot$

$\zeta^{8}/(\zeta-1)^{2}$ .
$\zeta^{9}/(\zeta-1)^{2}$ .

$\zeta^{10}/(\zeta-1)^{2}$ .
$1/(\zeta-1)^{2}0$

$\zeta^{4}/(\zeta-1)^{l}$

$\zeta^{3}/(\zeta-1)^{2}$

$o(^{2}/(\zeta-1)^{2}=1/(\zeta^{10}-1)^{2}$

$\zeta/(\zeta-1)^{2}$

FIGURE 12. The set of Spi$n^{}$ structures on $L(11,1)$ and their Reidemeister-
Turaev torsions (the signs $\pm$ are omitted). The white dots are the standard
Spi$n^{}$ structures.

Next, consider the lens space $L(11,2)$ . For this manifold, the set of the values of the
Reidemeister-Turaev torsions of the Spi$n^{}$ structures is:
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$\{\tau^{\varphi}(L(11,2), [\mathcal{V}])|[V]\in Spin^{c}(L(11,2))\}=\{\pm\frac{\zeta^{i}}{(\zeta-1)(\zeta^{6}-1)}\in F^{\cross}/\pm 1$ $0\leq i<11\}$

In this set, exactly the four values $\pm 1/(\zeta-1)(\zeta^{6}-1),$ $\pm\zeta/(\zeta-1)(\zeta^{6}-1),$ $\pm(^{6}/(\zeta-$

$1)(\zeta^{6}-1)$ and $\pm\zeta^{7}/(\zeta-1)(\zeta^{6}-1)$ can be modified so that the numerator is $\pm 1$ and
the denominator are the form of $(\zeta^{a}-1)(\zeta^{b}-1)$ for some $a,$ $b\in \mathbb{Z}$ . In fact, we have
$\pm\zeta/(\zeta-1)(\zeta^{6}-1)=\pm 1/(\zeta^{6}-1)(\zeta^{10}-1),$ $\pm\zeta^{6}/(\zeta-1)(\zeta^{6}-1)=\pm 1/(\zeta-1)(\zeta^{5}-1)$ and
$\pm\zeta^{7}/(\zeta-I)(\zeta^{6}-1)=\pm 1/(\zeta^{5}-1)(\zeta^{10}-1)$ .

$\zeta^{0}/(\zeta-1)(\zeta^{6}-1)=1/(\zeta-1)(\zeta’\sigma-1)0$
$\zeta^{6}/(\zeta-1)(_{\backslash }^{\Gamma 6}-1)$

$\zeta^{-}/(\zeta-1)(\zeta^{6}-1)=1/(\zeta^{10}-l)(\zeta^{5}-1)0$ $\zeta^{4}/(\zeta-1)(\zeta^{6}-1)$

$\zeta^{8}/(\zeta-1)(\zeta^{6}-1)$ . $\zeta^{3}/(\zeta-1)(\zeta^{6}-1)$

$\zeta^{9}/(\zeta-1)(\sigma^{6}-1)$. $\zeta^{2}/(\zeta-1)(\zeta^{6}-1)$

$\zeta^{10}/(\zeta-1)(\zeta^{6}-1)$ . $\circ(/(\zeta-1)(C^{6}-1)=1/(\zeta^{10}-1)(\overline{t}^{6}-1)$

$1/(\zeta-1)(\zeta^{6}-1)0$

FIGURE 13. The set of Spi $n^{}$ structures on $L(11,2)$ and their Reidemeister-
Turaev torsions (the signs $\pm$ are omitted). The white dots are the standard
Spi$n^{}$ structures.

Observation 3.1. The Reidemeister- Tumev torsion of a Spi$n^{}$ structure of a lens space
is of the $fom\pm 1/(\zeta^{a}-1)(\zeta^{b}-1)$ for some $a,$ $b\in \mathbb{Z}$ if and only if the Spi$n^{}$ structure is
standard.

3.2. $S_{g}\cross S^{1}$ . Let $S_{g}$ be a closed orientable surface of genus $g>1$ and consider the Seifert
fibered 3-manifold $S_{g}\cross S^{1}$ . Using the algorithm in Section 2.2 for $S_{g}\cross S^{1}$ , we get a $Spin^{c}$

structure $V_{st}$ on $S_{g}\cross S^{1}$ and a presentation of $\pi_{1}(S_{g}\cross S^{1})$ corresponding to the $Spin^{c}$

structure can be written as

$\pi_{1}(S_{g}\cross S^{1})=\langle x_{1},$ $x_{2},$
$\ldots,$ $x_{2g},$ $y|x_{i}yx_{i}^{-1}y^{-1},$ $i=1,2,$ $\ldots,$

$2g,$ $\prod_{i=1}^{g}(x_{2i-1}x_{2i}x_{2i-1^{-1}}x_{2i^{-1}})\rangle$ ,

and its abelianization is:

$H_{1}(S_{g} \cross S^{1}):=(\bigoplus_{i=1}^{2g}\mathbb{Z}\langle[x_{i}]\rangle)\oplus \mathbb{Z}\langle[y]\rangle$.

Let $\varphi:\mathbb{Z}[H_{1}(S_{g}\cross S^{1};\mathbb{Z})]arrow F$ be a ring homomorphism to a field $F$ such that each of
$\zeta_{i}=\varphi([x_{i}])$ and $\zeta=\varphi([y])$ has an infinite order. Then we have

$\tau^{\varphi}(S_{g}\cross S^{1}, [\mathcal{V}_{st}])=\pm(\zeta-1)^{2g-2}$ .

105



The set of the values of the Reidemeister-Turaev torsions of the Spi$n^{}$ structures of
$S_{g}\cross S^{1}$ is:

$\{\tau^{\varphi}(S_{g}\cross S^{1}, [V])|[V]\in Spin^{c}(S_{g}\cross S^{1})\}$

$=$ $\{\pm\zeta_{1}^{i_{1}}\cdots\zeta_{2g}^{i_{2g}}\zeta^{i}(\zeta-1)^{2g-2}\in F^{\cross}/\pm 1|i_{1},$
$\ldots,$

$i_{2g},$ $i\in \mathbb{Z}\}$

...
$\bullet$ $\bullet$

$\bullet\zeta^{-1}(\zeta-1)^{\underline{?}_{g-2}}$

: : $:$ : : :
... $\bullet\bullet\bullet$ $\zeta(\zeta-1)^{2g-2}$ $\bullet\bullet$ ...
...

$\bullet$ $\bullet$
$o(\zeta-1)^{2g-2}$ $\bullet$ $\bullet$ .. .

$\bullet$ $\bullet$ ...
$:$ : : : : :

...
$\bullet$ $\bullet$ $\bullet(\zeta-1)^{g-1}(\zeta^{-1}-1)^{g-1}$ $\bullet$ $\bullet$

$arrow a$ Spi$n^{}$ structure derived from a Spin structure
: : : :: :..

...
$\bullet$ $\bullet$

$\bullet$ $\bullet$ $\bullet$ ...
$\bullet$ $\bullet$ $o\zeta^{-(2g-2)}(\zeta-1)^{2g-2}=(\zeta^{-1}-1)^{2g-2}$

...
$\bullet$ $\bullet$

$\bullet$ $\bullet$ $\bullet$ ...
: : : :. : :

FIGURE 14. The set of Spi$n^{}$ structures on $S_{g}\cross S^{1}$ and their Reidemeister-
Turaev torsions (the signs $\pm$ are omitted). The white dots are the standard
Spi$n^{}$ structures.

Observation 3.2. The Reidemeister- Tumev torsion of a Spi$n^{}$ structure of $S_{g}\cross S^{1}$ is of
the $fom\pm(\zeta^{a}-1)^{2g-2}$ for some $a\in \mathbb{Z}$ if and only if the Spi$n^{}$ structure is standard.

3.3. Brieskorn 3-manifolds. The Brieskom manifold $\Sigma(p, q, r)$ of type $(p,q, r)$ is a
closed 3-manifold defined by:

$\Sigma(p, q, r):=\{(x, y, z)\in \mathbb{C}^{3}||x|^{2}+|y|^{2}+|z|^{2}=1, x^{p}+y^{q}+z^{r}=0\}$ ,

where $p,$ $q$ and $r$ are integers greater than 1.
$\Sigma(p, q, r)$ is the r-fold branched covering of the 3-sphere $S^{3}$ branched along a torus knot

or link of type $(p, q)$ . The first integral homology groups of the Brieskom manifolds is

$H_{1}(\Sigma(p, q, r);\mathbb{Z})=\{\begin{array}{ll}1 n=\pm 1(mod 6)\mathbb{Z}/3\mathbb{Z} n=\pm 2(mod 6)\mathbb{Z}2\mathbb{Z}\oplus \mathbb{Z}/2\mathbb{Z} n=3(mod 6)\mathbb{Z}\oplus \mathbb{Z} n=0(mod 6)\end{array}$

Using the algorithm in Section 2.2 for $\Sigma(2,3,6n)$ , we get a Spi$n^{}$ structure $V_{st}$ on $\Sigma(2,3,6n)$

and a presentation of $\pi_{1}(\Sigma(2,3,6n))$ corresponding to the Spi$n^{}$ structure can be written

106



as
$\pi_{1}(\Sigma(2,3,6n))=\langle x_{1},$ $x_{2},$

$\ldots,$
$x_{6n}|x_{i}x_{i+6n-1^{-1}}x_{i+1^{-1}},1\leq i\leq 6n\rangle$

and its abelianization is:
$H_{1}(\Sigma(2,3,6n);\mathbb{Z})$ $:=\mathbb{Z}\langle[x_{1}]\rangle\oplus \mathbb{Z}\langle[x_{2}]\rangle$ .

Let $\varphi$ : $\mathbb{Z}[H_{1}(\Sigma(2,3,6n);\mathbb{Z})]arrow F$ be a ring homomorphism to a field $F$ such that each of
$\zeta_{1}=\varphi([x_{1}])$ and $\zeta_{2}=\varphi([x_{2}])$ has an infinite order. Then we have

$\tau^{\varphi}(\Sigma(2,3,6n), [V_{st}])=\pm\frac{\det(\varphi([\frac{\partial x_{i}x_{i+6n-1^{-1-1}}x_{i+1}}{\partial x_{j}}]))_{1,1}}{(\zeta_{1}^{-1}-1)(\zeta_{1}-1)}=\pm n$ .

The set of the values of the Reidemeister-Turaev torsions of the Spi$n^{}$ structures of $S_{g}\cross S^{1}$

is:

$\{\tau^{\varphi}(\Sigma(2,3,6n), [\mathcal{V}])|[\mathcal{V}]\in Spin^{c}(\Sigma(2,3,6n))\}=\{\pm n(_{1}^{i_{1}}\zeta_{2}^{i_{2}}\in F^{\cross}/\pm 1|i_{1},$ $i_{2}\in \mathbb{Z}\}$

. . . . .
..

...
$n\zeta_{1}^{-2}\zeta_{2}^{2}$ $n\zeta_{1}^{-1}\zeta_{2}^{2}$ $n\zeta_{2}^{2}$ $n\zeta_{1}\zeta_{2}^{2}$

’

$n\zeta_{1}^{2}\zeta_{2}^{2}$

.. .

... $n\zeta_{1}^{-2}\zeta_{2}$ $n\zeta_{1}^{-1}\zeta_{2}$ $n\zeta_{2}$ $n\zeta_{1}\zeta_{2}$’ $n\zeta_{1}^{2}\zeta_{2}$

...

. . .
$n\zeta_{1}^{-2}$ $n\zeta_{1}^{-1}$ $n$ $n\zeta_{1}$ $n\zeta_{1}^{2}$

$0arrow_{aSpiri^{c}}$
struct

$\iota irederii\cdot edf_{I}om$

a Spin structurc

. . .
$n\zeta_{1}^{-2}\zeta_{2}^{-1}$ $il$ $\zeta_{1}^{-1}(_{2}^{-1}$ $n\zeta_{2}^{-1}$ $n(\iota\zeta_{2}^{-1}$ $n\zeta_{1}^{2}\zeta_{2}^{-1}$

. . .

. . .
$n\zeta_{1}^{-2}\zeta_{2}^{-2}$ $n\zeta_{1}^{-1}\zeta_{2}^{-2}$ $n\zeta_{2}^{-2}$ $n\zeta_{1}\zeta_{2}^{-2}$ $n\zeta_{1}^{2}\zeta_{2}^{-2}$

. . .
: : : :...

FIGURE 15. The set of $Spin^{c}$ structures on $\Sigma(2,3,6n)$ and their
Reidemeister-Turaev torsions (the signs $\pm$ are omitted). The white dot
is the standard Spi$n^{}$ structure.

Observation 3.3. The Reidemeister- Tumev torsion of a Spi$n^{}$ structure of the Brieskom
3-manifolds $\Sigma(2,3,6n)(n\in \mathbb{N})$ is of the $form\pm a$ for some $a\in \mathbb{Z}$ if and only if the $Spin^{c}$

structure is standard.

From the above observations, we may roughly say that the Reidemeister-Turaev torsions
of the standard Spi$n^{}$ structures of a Seifert fibered 3-manifold have standard values among
the set of the Reidemeister-Turaev torsions of all Spi$n^{}$ structures on the manifold.
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