LENS SPACE SURGERIES ALONG TWO COMPONENT LINKS AND REIDEMEISTER-TURAEV TORSION

TERUHISA KADOKAMI AND YUICHI YAMADA

1. INTRODUCTION

This article is a short survey of the core part of the authors' joint work "Lens space surgeries along certain 2-component links, Park's rational blow down, and Reidemeister–Turaev torsion" [KTYY, preprint]. In [KTYY], certain two families of 2-component links, denoted by $A_{m,n}$ and $B_{p,q}$ are focused, and the main result is the decision of the coefficient(s) of the knotted component yielding a lens space by Dehn surgery. The links are related to rational homology 4-ball used in J. Park's (generalized) rational blow down in 4-dimensional topology (see [3, 12]). Concrete calculus on the links $A_{m,n}$ and $B_{p,q}$ was important. The results made the contrast between $A_{m,n}$ (hyperbolic) and $B_{p,q}$ (Seifert) clear, which was one of the purpose of [KTYY] (see also [17]).

In this article, we focus another importance, the method itself to get some necessary conditions on the lens space surgery coefficients of a given link, by using Alexander polynomial and Reidemeister torsion. Our method satisfies that a result on a link L always extends to the links whose Alexander polynomials are same with that of L.

We will compare the Reidemeister torsion of the result M of Dehn surgery along a given link and that of a lens space $L(p, q)$ (in Example 3.4). Some necessary conditions are obtained from the value $\tau^\psi_d(M)$ of the Reidemeister torsion in the d-th cyclotomic field $\mathbb{Q}(\zeta_d)$ by d-norm, where $d\geq 2$ is a divisor of p. From the sequence of the equalities on $\tau^\psi_d(M)s$ in $\mathbb{Q}(\zeta_d)$ for all divisors d of p (with a fixed combinatorial Euler structure of M), we take an identity on symmetric Laurent polynomials, as a lift of the equalities. We regard the identity as an equation of the surgery coefficient for M to be a lens space.

In the next section, we start with some definitions of the Reidemeister torsion. In Section 3, we review surgery formulae. In Section 4, we will study d-norms in the d-th cyclotomic field, and show a certain uniqueness of a symmetric polynomial as a lift of the sequence of the equalities in $\mathbb{Q}(\zeta_d)s$. In Section 5, we will explain the method to get some necessary condition of lens space surgery coefficients of a given link. In Section 6, as a demonstration, we will apply our method to Berge's link, which is one of the most famous targets in lens space surgery ([1]).

2. Reidemeister Torsion

For a precise definition of the Reidemeister torsion, the reader refer to V. Turaev [14, 15]. Let X be a finite CW complex and $\pi : \tilde{X} \to X$ its maximal abelian covering. Then \tilde{X} has a CW structure induced by that of X and π, and the cell chain complex C_\ast of \tilde{X} has a

Received February 5, 2011.
E_L the complement of L.
m_i, l_i a meridian and a longitude of the i-th component K_i.
$[m_i], [l_i]$ their homology classes.
$\Delta_L(t_1, \ldots, t_\mu)$ the Alexander polynomial of L, where t_i is represented by $[m_i]$.
$(L; r_1, \ldots, r_\mu)$ the result of Dehn surgery along L,
where $r_i \in \mathbb{Q} \cup \{\infty, 0\}$ is the surgery coefficient of K_i.
V_i the solid torus attached along K_i in the Dehn surgery.
$m_i', [m_i']$ a meridian of V_i, and its homology class.
l_i', [l_i'] an oriented core curve of V_i, and its homology class.

Table 1. Notations (for manifolds)

\[\mathbb{Z}[H]\text{-module structure}, \text{ where } H = H_1(X; \mathbb{Z}) \text{ is the first homology of } X. \text{ For an integral domain } R \text{ and a ring homomorphism } \psi : \mathbb{Z}[H] \to R, \text{ "the chain complex of }\tilde{X} \text{ related with } \psi", \text{ denoted by } C^\psi_*, \text{ is constructed as } C_* \otimes_{\mathbb{Z}[H]} Q(R), \text{ where } Q(R) \text{ is the quotient field of } R. \text{ The Reidemeister torsion of } X \text{ related with } \psi, \text{ denoted by } \tau^\psi(X), \text{ is calculated from } C^\psi_*, \text{ and is an element of } Q(R) \text{ determined up to multiplication of } \pm \psi(h) \text{ (} h \in H). \]

If $R = \mathbb{Z}[H]$ and ψ is the identity map, then we denote $\tau^\psi(X)$ by $\tau(X)$. We note that $\tau^\psi(X)$ is not zero if and only if C^ψ_* is acyclic.

Notation (for manifolds and homologies) Let $L = K_1 \cup \ldots \cup K_\mu$ be an oriented μ-component link in S^3. We will use the notations in Table 1.

Notation (for algebra) For a pair of elements A, B in $Q(R)$, if there exists an element $h \in H$ such that $A = \pm \psi(h)B$, then we denote the equality by $A \bowtie B$. We will often take a field F and a ring homomorphism $\psi : \mathbb{Z}[H_1(M)] \to F$. We mainly use the d-th cyclotomic fields $\mathbb{Q}(<d>)$ as F, where $<d>$ is a primitive d-th root of unity.

3. Surgery Formulae

Let E be a compact 3-manifold whose boundary ∂E consists of tori (E is possibly not E_L for a link L). We study the 3-manifold $M = E \cup V_1 \cup \ldots \cup V_n$ obtained by attaching solid tori V_is to E by attaching maps $f_i : \partial V_i \to \partial E$ ($\text{Im}(f_i) \cap \text{Im}(f_j) = \emptyset$ for $i \neq j$). By l_i' we denote the core of V_i. We let $\iota : E \to M$ denote the natural inclusion.

Lemma 3.1. (Surgery formula 1) If $\psi([l_i']) \neq 1$ for every $i = 1, \ldots, n$, then

$$\tau^\psi(M) \doteq \tau^\psi(E) \prod_{i=1}^n (\psi([l_i']) - 1)^{-1},$$

where $\psi' = \psi \circ \iota_* \ (\iota_* \text{ is a ring homomorphism induced by } \iota)$.

For the case of the complement E_L of a μ-component link L in S^3 as in Table 1. The Reidemeister torsion is closely related with the Alexander polynomial.

Lemma 3.2. (Milnor [11]) Let $\Delta_L(t_1, \ldots, t_\mu)$ be the Alexander polynomial of a μ-component link $L = K_1 \cup \ldots \cup K_\mu$ in S^3, where a variable t_i is represented by the meridian
of K_i ($i=1, \ldots, \mu$).

$$\tau(E_{I_{\lrcorner}}) = \left\{ \begin{array}{ll} \Delta_L(t_1)(t_1-1)^{-1} & (\mu=1), \\
\Delta_L(t_1, \ldots, t_\mu) & (\mu \geq 2). \end{array} \right.$$

Next, we study the result of Dehn surgery $M = (L; p_1/q_1, \ldots, p_\mu/q_\mu)$ along L. We take integers r_i and s_i satisfying $p_ir_i - q_is_i = -1$.

Lemma 3.3. (Surgery formula II; T. Sakai [13], V. G. Turaev [14])

(1) In the case $M = (K; p/q)$ ($|p| \geq 2$), we have $H = H_1(M) \cong \langle T \mid T^p = 1 \rangle \cong \mathbb{Z}/|p|\mathbb{Z}$, where T is represented by the meridian $[m]$. For a divisor $d \geq 2$ of p, we define a ring homomorphism $\psi_d : \mathbb{Z}[H] \rightarrow \mathbb{Q}($\(\zeta_d\)) by $\psi_d(T) = \zeta_d$. Then we have

$$\tau_{\psi_d}(M) = \Delta_K(\zeta_d)(\zeta_d-1)^{-1}(\zeta_d^{\overline{q}}-1)^{-1}$$

where $q\overline{q} \equiv 1 (\text{mod } p)$.

(2) In the case $M = (L; p_1/q_1, \ldots, p_\mu/q_\mu)$ ($\mu \geq 2$). Let F be a field and $\psi : \mathbb{Z}[H_1(M)] \rightarrow F$ a ring homomorphism. If $\psi([m_i]^{r_i}[l_i]^{s_i}) \neq 1$ for every $i = 1, \ldots, \mu$, then we have

$$\tau^\psi(M) = \Delta_L(\psi([m_1]), \ldots, \psi([m_\mu])) \prod_{i=1}^\mu (\psi([m_i]^{r_i}[l_i]^{s_i}) - 1)^{-1}.$$

Example 3.4. The lens space $L(p, q)$ is obtained as $-p/q$-surgery along the unknot. By Lemma 3.3 (1), for a divisor $d \geq 2$ of p, we have

$$\tau^\psi(L(p, q)) = (\zeta_d - 1)^{-1}(\zeta_d^{\overline{q}} - 1)^{-1},$$

where $q\overline{q} \equiv 1 (\text{mod } p)$.

4. CYCLOTONIC FIELD AND POLYNOMIAL

4.1. d-norm.

About algebraic fields, the reader refer to L. C. Washington [16] for example.

For an element x in the d-th cyclotomic field $\mathbb{Q}(\zeta_d)$, the d-norm of x is defined as

$$N_d(x) = \prod_{\sigma \in \text{Gal}(\mathbb{Q}(\zeta_d)/\mathbb{Q})} \sigma(x),$$

where $\text{Gal}(\mathbb{Q}(\zeta_d)/\mathbb{Q})$ is the Galois group ($\cong (\mathbb{Z}/d\mathbb{Z})^\times$) related with a Galois extension $\mathbb{Q}(\zeta_d)$ over \mathbb{Q}. The following is well-known.

Proposition 4.1.

(1) If $x \in \mathbb{Q}(\zeta_d)$, then $N_d(x) \in \mathbb{Q}$. The map $N_d : \mathbb{Q}(\zeta_d) \setminus \{0\} \rightarrow \mathbb{Q} \setminus \{0\}$ is a group homomorphism.

(2) If $x \in \mathbb{Z}[\zeta_d]$, then $N_d(x) \in \mathbb{Z}$.

By easy calculations, we have the following.

Lemma 4.2.

(1) $N_d(\pm \zeta_d) = \left\{ \begin{array}{ll} \pm 1 & (d = 2), \\
1 & (d \geq 3). \end{array} \right.$

(2) $N_d(1 - \zeta_d) = \left\{ \begin{array}{ll} \ell & (d \text{ is a power of a prime } \ell \geq 2), \\
1 & \text{(otherwise)}. \end{array} \right.$

About applications of d-norms, for example, see [5, 6, 7, 8, 9, 10].
4.2. Reidemeister–Turaev torsion.

Let M be a homology lens space with $H = H_1(M) \cong \mathbb{Z}/p\mathbb{Z}$ $(p \geq 2)$. Then the Reidemeister torsion $\tau^{\psi_d}(M)$ of M related with ψ_d is determined up to multiplication of $\pm \zeta_d^m$ $(m \in \mathbb{Z})$, where $d \geq 2$ is a divisor of p and ψ_d is the same ring homomorphism as in Lemma 3.3 (1). Once we fix a basis of a cell chain complex for the maximal abelian covering of M as a $\mathbb{Z}[H] = \mathbb{Z}[t, t^{-1}] / (t^p - 1)$-module, the value $\tau^{\psi_d}(M)$ is uniquely determined as an element of $\mathbb{Q}(\zeta_d)$ for every d. The choice of the basis up to “base change equivalence” is called a combinatorial Euler structure of M (cf. Turaev [15]). The Reidemeister torsion of a manifold with a fixed combinatorial Euler structure is said the Reidemeister–Turaev torsion.

We consider the sequence of the values $\tau^{\psi_d}(M)$ in $\mathbb{Q}(\zeta_d)$ of the Reidemeister–Turaev torsion for every divisor $d \geq 2$ of p, and regard them as a value sequence $\{\tau^{\psi_d}(M)\}_{d|p, d \geq 2}$ defined as below.

Definition 4.3. We define that a sequence of values $x = \{x_d\}_{d|p, d \geq 2}$ is a value sequence (of degree p) if $x_d \in \mathbb{Q}(\zeta_d)$ for every d. Two value sequences $x = \{x_d\}_{d|p, d \geq 2}$ and $y = \{y_d\}_{d|p, d \geq 2}$ are equal ($x = y$) if $x_d = y_d$ for every d. We are mainly concerned with the value sequence of type $x = \{F(\zeta_d)\}_{d|p, d \geq 2}$ for a rational function $F(t) \in \mathbb{Q}(t)$. In such a case, we say that x is induced by $F(t)$ and that $F(t)$ is a lift of x. A control of $x = \{x_d\}_{d|p, d \geq 2}$ by a trivial unit $u = \eta t^m \in \mathbb{Z}[t, t^{-1}] / (t^p - 1)$ is defined by

$$ux = \{\eta \zeta_d^m x_d\}_{d|p, d \geq 2},$$

where $\eta = 1$ or -1 (constant) and $m \in \mathbb{Z}$. Two value sequences $x = \{x_d\}_{d|p, d \geq 2}$ and $y = \{y_d\}_{d|p, d \geq 2}$ are control equivalent if there is a trivial unit $u \in \mathbb{Z}[t, t^{-1}] / (t^p - 1)$ such that $y = ux$. A value sequence $x = \{x_d\}_{d|p, d \geq 2}$ is a real value sequence if x_d is a real number for every d.

Example 4.4. A value sequence x of degree 12 is in the form $x = \{x_2, x_3, x_4, x_6, x_{12}\}$. The following two value sequences x, y of degree 12 are not equal, but control equivalent for $u = t^6$.

$$x = \{2, -1, -2, -1, 1\}, \quad y = \{2, -1, 2, 1, -1\}.$$

In fact, x and y is induced by $t^2 + t^{-2}$ and $t^4 + t^{-4}$, respectively.

Let M be a homology lens space with $H_1(M) \cong \mathbb{Z}/p\mathbb{Z}$ $(p \geq 2)$. Then a sequence $\{\tau^{\psi_d}(M)\}_{d|p, d \geq 2}$ of the Reidemeister torsions of M with a combinatorial Euler structure is a value sequence of degree p. We say the value sequence a torsion sequence of M.

Lemma 4.5.

(1) Let M and M' be homeomorphic homology lens spaces with $H_1(M) \cong H_1(M') \cong \mathbb{Z}/p\mathbb{Z}$ $(p \geq 2)$. Then torsion sequences $\{\tau^{\psi_d}(M)\}_{d|p, d \geq 2}$ and $\{\tau^{\psi_d'}(M')\}_{d|p, d \geq 2}$ related with the corresponding ring homomorphisms ψ_d and ψ'_d (i.e., $\psi_d = \psi'_d \circ h_*$, where h_* is the induced homomorphism of the homeomorphism) are control equivalent.

(2) Let M be a homology lens space with $H_1(M) \cong \mathbb{Z}/p\mathbb{Z}$ $(p \geq 2)$. Then we can control a torsion sequence of M into a real value sequence.

Proof. (1) It is easy to see.

(2) Here we let ζ denote any d-th primitive root (ζ_d) of unity. Since M is obtained by p/q-surgery along a knot K in a homology 3-sphere for some q (cf. [2]), and we can also
apply Lemma 2.5 (1) for the case, we have
\[\tau_{\psi}(M) = \Delta_K(\zeta)(\zeta - 1)^{-1}(\zeta^q - 1)^{-1} \]
where \(q \equiv 1 \pmod{p} \). By the duality of the Alexander polynomial (cf. [11, 14, 15]), we may assume
\[\Delta_K(t) = \Delta_K(t^{-1}). \]
This is also a control of the combinatorial Euler structure of the exterior of \(K \), which induces a control of a torsion sequence of \(M \). We take an odd integer lift of \(q \). Then
\[\zeta^{\frac{1+q}{2}} \Delta_K(\zeta)(\zeta - 1)^{-1}(\zeta^q - 1)^{-1} \]
is a real number for every \(d \).

Lemma 4.6. If two real value sequences \(x = \{x_d\}_{d|p,d \geq 2} \) and \(y = \{y_d\}_{d|p,d \geq 2} \) of degree \(p \) are control equivalent satisfying \(y = ux \) for a trivial unit \(u = \eta t^m \in \mathbb{Z}[t^{-1}]/(t^p - 1) \), where \(\eta = \pm 1 \) and \(m \in \mathbb{Z} \), then the possibility of \(u \) is restricted as follows:
(i) If \(p \) is odd, then \(u = 1 \) or \(-1\).
(ii) If \(p \) is even, then \(u = 1, -1, t^{p/2} \) or \(-t^{p/2}\).

Proof. Since the ratio \(\zeta^m_p = \pm y_p/x_p \) is a real number, we have (i) \(m \equiv 0 \pmod{p} \) if \(p \) is odd, and (ii) \(m \equiv 0 \) or \(p/2 \pmod{p} \) if \(p \) is even.

Definition 4.7. (Symmetric Laurent polynomial) A Laurent polynomial \(F(t) \in \mathbb{Z}[t, t^{-1}] \) is symmetric if it is of the form
\[F(t) = a_0 + \sum_{i=1}^{\infty} a_i(t^i + t^{-i}), \]
where \(a_i \) is an integer for all \(i = 1, 2, \ldots \) and \(a_i = 0 \) for every sufficiently large \(i \). Note that, if \(F(t) \) is a symmetric Laurent polynomial, the induced value sequence \(\{F(\zeta_d)\}_{d|p,d \geq 2} \) is a real value sequence. We are concerned with symmetric Laurent polynomials that are lifts (in \(\mathbb{Z}[t, t^{-1}] \)) of a polynomial in the quotient ring \(\mathbb{Z}[t^{-1}]/(t^p - 1) \). We say that \(F(t) \) (as above) is reduced if \(a_i = 0 \) for all \(i > [p/2] \). We often reduce the symmetric polynomials by using \(t^i + t^{-i} = t^{p+i} + t^{-(p+i)} \) modulo \((t^p - 1) \). We let \(\text{red}(F(t)) \) denote the reduction of \(F(t) \) (i.e., \(\text{red}(F(t)) \) is reduced and \(\text{red}(F(t)) = F(t) \) in \(\mathbb{Z}[t^{-1}]/(t^p - 1) \)). We will use a notation \(\langle t^i \rangle = t^i + t^{-i} \), for short.

For a Laurent polynomial \(F(t) \in \mathbb{Z}[t, t^{-1}] \), the span of \(F(t) \) is the difference of the maximal degree of \(F(t) \) and the minimal degree of \(F(t) \), and we denote it by \(\text{span}(F(t)) \).

Lemma 4.8. Let \(N \geq 2 \) be an integer. Let \(F(t), G(t) \) be symmetric Laurent polynomials and \(x = \{F(\zeta_d)\}_{d|N,d \geq 2}, y = \{G(\zeta_d)\}_{d|N,d \geq 2} \) the induced real value sequences, respectively. If \(x \) and \(y \) are control equivalent, i.e., \(ux = y \) for a trivial unit \(u \) (here, \(u = 1 \) or \(-1 \) if \(N \) is odd, \(u = 1, -1, t^{N/2} \) or \(-t^{N/2} \) if \(N \) is even, by Lemma 4.6), and \(F(1) = G(1) = 0 \), then we have a congruence
\[uF(t) \equiv G(t) \pmod{t^N - 1} \]
Furthermore, assuming \(\text{span}(G(t)) \leq 2[N/2] \),
(i) In the case that \(u = 1 \) or \(-1 \) and \(\text{span}(F(t)) \leq N - 1 \), we have an identity
\[uF(t) = G(t) \] in \(\mathbb{Z}[t, t^{-1}] \).
(ii) Otherwise (in the case that N is even and $u = \eta t^{N/2}$ with $\eta = 1$ or -1), we have $\text{red}(t^{N/2}F(t)) = \eta G(t)$ in $\mathbb{Z}[t, t^{-1}]$.

Proof. By Chinese Remainder Theorem, we have a ring isomorphism:

$$\mathbb{Q}[t, t^{-1}]/(t^{N} - 1) \cong \bigoplus_{d|N, d \geq 1} \mathbb{Q}(\zeta_d),$$

where $f(t)$ in the left-hand side maps to the value sequences $\{f(\zeta_d)\}_{d|N, d \geq 2}$ in the right-hand side. The isomorphism implies the required congruence. \hfill \Box

Note that $F(t)$ and $t^{N/2}F(t)$ induce the control equivalent real value sequences by $u = t^{N/2}$, but $\text{red}(t^{N/2}F(t)) \neq F(t)$ in general, see Example 4.4. Thus we have to care the case (ii) in the lemma. Here, we study relation between the coefficients of $F(t)$ and those of $\text{red}(t^{N/2}F(t))$.

Lemma 4.9. Let N be an even integer.

If $F(t) = a_0 + \sum_{i=1}^{N/2} a_i(t^i + t^{-i})$, then $\text{red}(t^{N/2}F(t)) = b_0 + \sum_{i=1}^{N/2} b_i(t^i + t^{-i})$

with

$$b_0 = 2a_{N/2}, \quad b_{N/2} = a_0/2 \quad \text{and} \quad b_j = a_{N/2-j} \quad (j = 1, 2, \ldots, N/2 - 1).$$

Proof. It is because

$$t^{N/2}(t^j + t^{-j}) = t^{N/2+j} + t^{N/2-j} \equiv t^{(N/2-j)} + t^{-(N/2-j)} \quad \text{mod} \ t^N - 1.$$

\hfill \Box

5. Method

Let $L = K_1 \cup K_2 \cup \cdots \cup K_\mu$ be a link. We let M simply denote the result $(L; r_1, \ldots, r_\mu)$ of the Dehn surgery. We use the notations in Table 1.

Step 1 Study the first homologies (the generators and relations), from the exterior E_L of L (Of course, $H_1(E_L; \mathbb{Z}) \cong \bigoplus_{i=1}^\mu \mathbb{Z}[m_i]$) to the result M, by attaching solid tori V_i one by one.

The first (obvious) necessary condition for the result M of Dehn surgery to be a lens space $L(p, q)$ is

$$H_1(M; \mathbb{Z}) \cong \mathbb{Z}/p\mathbb{Z}.$$

Step 2 Calculate the Alexander polynomial $\Delta_L(t_1, \ldots, t_\mu)$ of L. Using Lemma 3.2 and Lemma 3.3, calculate the Reidemeister torsion $\tau^\psi(M)$ related with a ring homomorphism $\psi : \mathbb{Z}[H_1(M)] \rightarrow \mathbb{Q}(\zeta_d)$, where $d (\geq 2)$ is a divisor of p.

If M is homeomorphic to a lens space $L(p, q)$ (with undecided q), then their Reidemeister torsions are to each other. By Example 3.4, there exists integers i, j coprime to p with $0 < i, j < p$ (they are lifts of $(\mathbb{Z}/p\mathbb{Z})^\times/\{\pm 1\}$) such that

$$\tau^\psi(M) = \frac{1}{(\zeta_d^i - 1)(\zeta_d^j - 1)} \quad \text{in} \ \mathbb{Q}(\zeta_d),$$

for each divisor $d (\geq 2)$ of p. We can assume $i + j$ is even by retaking $p - j$ instead of j. 72
Step 3 Using d-norm in $\mathbb{Q}(\zeta_d)$, studied in Subsection 4.1, to the equality (1), we have a necessary condition on the coefficient of lens space surgery.

We fix a combinatorial Euler structure (multiple of trivial unit $\pm \zeta_d^k$), deform both hand-sides of the equality (1) into real values by Lemma 4.5(2). If M is homeomorphic to $L(p, q)$, we have a control equivalence between the real value sequence:

$$\{\tau^\psi(M)\}_{d|p, d\geq 2} = u\{\zeta_d^{i+1}(\zeta_d^i-1)^{-1}(\zeta_d^j-1)^{-1}\}_{d|p, d\geq 2},$$

where u is a trivial unit ± 1, or $\pm t^{p/2}$ (only in the case p is even). By Lemma 4.8, we have, via a congruence $\mod (t^p-1)$, an identity between symmetric Laurent polynomials. We regard the identity as an equation (on (i, j)) of the coefficients of lens space surgery.

Step 4 By the equation, we have a necessary condition on the coefficient(s) of lens space surgery.

6. DEMONSTRATION

We call the link in Figure 1 Berge’s link BL. The compliment is a hyperbolic 3-manifold, known as Berge’s manifold in [1]. The component K_1 is the famous pretzel knot $P(-2, 3, 7)$. The link, regarded as a knot in a solid torus (the exterior of the component K_2), admits two surgery coefficients yielding solid torus itself, and it is proved that such a hyperbolic link is unique [1]. We demonstrate our method in Section 5 to Berge’s link,

![Figure 1. Berge link BL](image)

...to study lens space surgeries $M := (BL; r, 0)$, where $r = \alpha/\beta$ ($\alpha, \beta \in \mathbb{Z}, \gcd(\alpha, \beta) = 1$). We assume that $\beta \geq 1$.

(Step 1)

$$H_1(M) \cong \langle [m_1], [m_2] | [l_1] = [m_2]^7, [l_2] = [m_1]^7, [m_1]^\alpha[l_1]^\beta = 1, [m_1]^7 = 1 \rangle.$$

It is finite cyclic $\mathbb{Z}/p\mathbb{Z}$ if and only if $\gcd(\alpha, 7) = 1$, and then we have $p = 7^2\beta = 49\beta$. An element $T = [m_1]^\gamma [m_2]^\delta$ with $\alpha\delta' - 7\beta\gamma' = -1$ is a generator: $T^{49\beta} = 1$. We also have $[l_1'] = [m_1]^\gamma[l_1]^\delta$ with $\alpha\delta - \beta\gamma = -1$, and

$$[m_1] = T^{\gamma\beta}, \quad [m_2] = [l_2'] = T^{-\alpha}, \quad [l_1'] = T^7.$$
The Alexander polynomial of Berge’s link is
\[\Delta_{BL}(t, x) = 1 + t^3x + t^5x^2 + t^8x^3 + t^{11}x^4 + t^{13}x^5 + t^{16}x^6 = \sum_{i=0}^{6} t^{s_i}x^i, \]
where we define a sequence \((s_0, s_1, \ldots, s_6) = (0, 3, 5, 8, 11, 13, 16)\). This is not periodic, but we regard it as “Periodicity is broken a little”. We let \(M_1 = E_{BL} \cup V_1 = (BL; \alpha/\beta, -)\).
We have, up to the ambiguity (multiplication \(\pm T^k\)),
\[\tau(M_1) \doteq \Delta_{BL}(T^{7\beta}, T^{-\alpha})(T^7 - 1)^{-1} = \left(\sum_{i=0}^{6} T^{7\beta s_i - \alpha i}\right)(T^7 - 1)^{-1}. \]
We take a divisor \(d = 7\) of \(p = 49\beta\) and let \(\zeta\) denote a primitive 7-th root of unity. We use deformations
\[T^{7\beta s_i - \alpha i} = T^{-\alpha i}(T^{7\beta s_i} - 1) + T^{-\alpha i}, \quad \frac{T^{7\beta s_i} - 1}{T^7 - 1} = 1 + T^7 + T^{14} + \cdots + T^{7(\beta s_i - 1)}. \]
For a ring homomorphism \(\psi\) satisfying \(\psi(T) = \zeta\) with \(\xi = \zeta^{-\alpha}\) (then \(\xi\) is still a primitive unity, since \(\gcd(\alpha, 7) = 1\)),
\[\tau^\psi(M) \doteq \left\{ \beta(\xi^{2} + \xi^{-2}) - (\alpha - 19\beta) \right\}(\xi - 1)^{-2}. \]
In the 7-th cyclotomic field \(\mathbb{Q}(\zeta_7)\), using the equalities \(\xi^7 = 1\) and \(1 + \xi + \xi^2 + \xi^3 + \xi^4 + \xi^5 + \xi^6 = 0\),
\[(\xi - 1) \sum_{i=0}^{6} s_i \xi^i = -3\xi - 2\xi^2 - 3\xi^3 - 3\xi^4 - 2\xi^5 - 3\xi^6 + 16 \]
\[= -3\xi - 2\xi^2 - 3\xi^3 - 3\xi^4 - 2\xi^5 - 3\xi^6 + 16 \]
\[+ 3(1 + \xi + \xi^2 + \xi^3 + \xi^4 + \xi^5 + \xi^6) \]
\[= 19 + \xi^2 + \xi^5 \]
\[= 19 + \xi^2 + \xi^{-2}. \]
The Reidemeister–Turaev torsion of Dehn surgery \(M = (BL; \alpha/\beta, 0)\) is
\[(2) \quad \tau^\psi(M) \doteq \left\{ \beta(\xi^2 + \xi^{-2}) - (\alpha - 19\beta) \right\}(\xi - 1)^{-2}. \]
Now, suppose that \(M\) is a lens space \(L(p, q)\) with \(p = 49\beta\) (by Step 1) and undecided \(q\). Then there exist integers \(i, j\) coprime to \(p\) with \(0 < i, j < p\) such that
\[(3) \quad \tau^\psi(M) \doteq (\xi^i - 1)^{-1}(\xi^j - 1)^{-1}. \]
We can assume \(i + j\) is even. We treat with \(i, j\) mod 7 \((i, j \in \{1, 2, 3, 4, 5, 6\})\), since \(d = 7\).
(Step 3) Using Lemma 4.2 on \(d\)-norm with \(d = 7\) on (2) and (3), we have a necessary condition for the Dehn surgery \(M = (BL; \alpha/\beta, 0)\) to be a lens space:
\[N_d \left(\beta(\xi^2 + \xi^{-2}) - (\alpha - 19\beta) \right) = 1. \]
Roughly, it means \(r = \alpha / \beta\) is near 19.
We set $\alpha' = \alpha - 19\beta$. By (2) and (3), we have
\[
\xi \{ \beta(t^2 + t^{-2}) - \alpha' \} (\xi - 1)^{-2} = \pm \xi^{(i+j)/2}(\xi^i-1)^{-1}(\xi^j-1)^{-1}.
\]
We regard it as an equality between real value sequence. Without loss of generality, we assume $0 < i < d/2$ (i.e., $i = 1, 2$ or 3), $i \leq j$, and define $f = (i+j)/2, e = (j-i)/2$. The equality lifts as an identity of symmetric Laurent polynomial
\[
(\beta(t^2) - \alpha')(t^f) - (\xi^{i+j}/2)(\xi^{i}-1)^{-1}(\xi^{j}-1)^{-1}.
\]
in $\mathbb{Z}[t, t^{-1}]/(t^7-1)$, where $\langle t^i \rangle = t^i + t^{-i}$, $\langle t^0 \rangle = 2$, $\langle t^4 \rangle = \langle t^3 \rangle$, $\langle t^5 \rangle = \langle t^2 \rangle$ mod (t^7-1).

We regard the identity (4) as an equation on (f, e): It is a necessary condition on (α', β) for the equation to have a solution (f, e). Since $f \neq e$ is obvious and $\langle t^4 \rangle = \langle t^3 \rangle = \langle t^2 \rangle$ mod (t^7-1), we only have to consider six cases
\[(f, e) = (1,0), (2,0), (3,0), (2,1), (3,1), (3,2).
\]

Note that $\langle t^{-x} \rangle = \langle t^x \rangle$ and $\langle t^0 \rangle = 2$.

<table>
<thead>
<tr>
<th>(f, e)</th>
<th>(α', β)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,0)</td>
<td>$\beta(t^2) - 2\beta(t^2) - (\alpha' - \beta)(t^1) + 2\alpha'$</td>
</tr>
<tr>
<td>(2,0)</td>
<td>$-\alpha'(t^3) - (\alpha' + 2\beta)(t^2) + 2(\alpha' + \beta)$</td>
</tr>
<tr>
<td>(3,0)</td>
<td>$-\alpha'(t^3) - (\alpha' + 2\beta)(t^2) + \beta(t^1) + 2\alpha'$</td>
</tr>
<tr>
<td>(2,1)</td>
<td>$-\alpha'(t^3) + (\alpha' - \beta)(t^1) + 2\beta$</td>
</tr>
<tr>
<td>(3,1)</td>
<td>$-(\alpha' + \beta)(t^3) + \beta(t^2) + \alpha'(t^1)$</td>
</tr>
<tr>
<td>(3,2)</td>
<td>$-(\alpha' + \beta)(t^3) + (\alpha' + \beta)(t^2) + \beta(t^1) - 2\beta$</td>
</tr>
</tbody>
</table>

Since $\alpha' = \alpha - 19\beta$, $(\alpha', \beta) = (0, 1)$ (and $(-1, 1)$, respectively) corresponds to $\alpha/\beta = 19$ (and 18). We have the required conclusion (pointed out in [1]):

Berge’s link BL yields a lens space as $(BL; r, 0)$ only if $r = 19$ or $r = 18$.

Acknowledgement The authors would like to express their sincere gratitude to the organizers of the fruitful seminar “Twisted topological invariants and topology of low-dimensional manifolds”. The first author was supported by a grant (No.10801021/a010402) of NSFC. The second author was supported by KAKENHI (Grant-in-Aid for Scientific Research) No.21540072.

REFERENCES

DEPARTMENT OF MATHEMATICS, EAST CHINA NORMAL UNIVERSITY (T. KADOKAMI)
E-mail address: kadokami2007@yahoo.co.jp

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF ELECTRO-COMMUNICATIONS (Y. YAMADA)
E-mail address: yyyamada@e-one.uec.ac.jp