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ABSTRACT. The “two-constants‘’ theory introduced first by Laplam in 1805 still forms the basis of
current theory describing isotropic, linear elasticity, describing the capillarity. By using “two-constants“
theory, the Navier-Stokcs equations are formulated. These equations with the two coefficients in the
ratio 1 : 3 originated from Poisson [16] in 1831. Moreover, these equations contained both a linear and
a nonlinear term developed earlier in Navier’s equations [20] in 1827. Still earlier, the nonlinear term
was introduced by Eulcr [7] in 1752-5.

We show the process of formulation of calculus of vaiiatims using the two functions characterized
from the attraction and repulsion, and his criticism to Laplace imaging the Gaussian function as the
rapidly decreasing function by Gauss in 1830. And we introduce a contribution to the hydromechaluics,
because he was a comtcnporary of the epock of formulation of the Navier-Stakes equations) which are
our main theme in our paper.

Particularly, from the viewpoint of mathematics, several important topics such as integraJ theory in
\S 4.6 and \S 4.11 which are his selling points. We show his unique $RDF$ and reduction of integral from
sextuplex to quadruplex, in the sections \S 4.2, \S 4.5 and \S 4.6. In and after \S 4.7, we show his calculus of
variations in the capillarity against the $RDF$ and calculation of it by Laplace.

Finally, to the question of capillarity, to be solved by variational equation described in \S 4.7, we $sl\infty t(h$

his answers deduced from the previous work of theory in curved surface $[\eta$ , to the height and angle in
question in \S 4. 15 and \S 4.16.

1. INTRODUCTION
1 In 1805, Laplace introduced the “two-constants” theory, so-called because of the prominence of

two constants in his theory, in regard to capillary action with constants denoted by $H$ and K. 2 (cf.
Table 1, 2). Thereafter, contributing investigators in formulating $NS$ equations, i.e. equations describing
equilibrium or capillary situations, have presented various pairs of constants. The original two-constant
theory is commonly accepted as describing isotropic, linear elasticity. [5, p.121]. However, the persistence
of just two constants in later developments is to be particularly noted. We believe that Poisson was one
of few who were aware of this aspect when he introduced Laplace $s$ deductions when, in 1831, he states,
“they incorporate the two special constants of which I mentioned just a while ago, $\cdots.$

” $[27, p.4]$ .
Next, another topic discussed in the final section is the rapidly decreasing functions [RDFs} which

were kerneled in the “two-constants“ and which provided the common, mathematical interpretation of
fluid properties among the then progenitors, in particular by Gauss, a contemporary of the progenitors of
the $NS$ equations, who contributed to the formulation of fluid mechanics in the development of Laplace ’

$s$ capillarity.
Finally, we uncover reasons for the practice in naming these fundamental equations of fluid motion

“ $NS$ equations“. In Table 6, we present a chronology outlining this practice. The last entry from 1934
by Prandtl $[27|$ grouped the equations containing three terms:

1 $)$ the nonlinear term
2$)$ the Laplacian term multiplied by $\nu$

3$)$ the gradient term of divergence multiplied by $\frac{\nu}{3}$ , which takes its rise in the fluid equation by Poisson,
and used the nomenclature “the Navier-Stokes equations” for this set of equations.

Date; 2010/10/30.
lIn \S 4, the free translation from Latin of Gauss to English is of ours. Throughout this paper, in citation of bibliographical

sources, by surrounding our own paragraph or sentences of commentaries between $(\Downarrow)$ and $(\Uparrow)((\Uparrow)$ is used only when not
following to next section, ) and by $=^{r}$ or $\Rightarrow^{*}$ , we detail the statement by Gauss, because we would like to discriminate
and to avoid confusion from the descriptions by original authors. The mark: $\Rightarrow$ mean transformation of the statements in
brevity by ours. And all the frames surrounding the statements are inserted for important remark by ours.

$2Of$ capillary action, Laplace[12, V.4, Supplement p.2] acknowledges Clailaut[4, p.22], and Clailaut cites Maupertuis[15].
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These equations with the two coefficients in the ratio 1 : 3 originated $hom$ Poisson $[16|$ in 1831.
Moreover, these equations contained both a linear and a nonlinear term developed earlier in Navier’s
equations [20] in 1827. Still earlier, the nonlinear tem was introduced by Euler [7] in 1752-5. cf. Table
2.

2. A UNIVEHSAL METHOD FOR THE TWO-CONSTANTS THEORY

In this section, we propose a universal method to describe the kinetic equations that anise in isotropic,
linear elasticity. This method is outlined as follows:. The partial differential equations describing waves in elastic solids or flows in elastic fluids are

expressed by using one constant or a pair of constants $C_{1}$ and $C_{2}$ such that:

for elastic solids: $\frac{\partial^{2}u}{\partial t^{2}}-(C_{1}T_{1}+C_{2}T_{2})=f$ ,

for elastic fluids: $\underline{\partial u}_{-}(C_{1}T_{1}+C_{2^{r}}1_{2}^{\tau})+\cdots=f$ ,
$\partial t$

where $T_{1},$ $T_{2},$ $\cdots$ are the terms depending on tensor quantities constituting our equations.. The two coefficients $C_{1}$ and $C_{2}$ associated with the tensor terms are the two constants of the
theory, definitions of which depend on the contributing author. For example, $\epsilon$ and $E$ were
introduced by Navier, $R$ and $G$ by Cauchy, $k$ and $K$ in elastic and $(K+k)\alpha$ and $\frac{(K+k)\alpha}{3}$ in fluid
by Poisson, $\epsilon$ and - by Saint-Venant, and $\mu$ and $\mu 3$ by Stokes. Since Poisson, the ratio of two
coefficient in fluid was fixed by 3. Moreover, $C_{1}$ and $C_{2}$ can be expraesed in the following form:

$\{\begin{array}{l}C_{1}\equiv \mathcal{L}r_{1}g_{1}S_{1},\{\end{array}$

$S_{1}= \int\int g_{3}arrow C_{3}$ ,
$C_{2}\equiv \mathcal{L}r_{2}g_{2}S_{2}$ , $S_{2}= \int\int g_{4}arrow C_{4}$ ,

$\Rightarrow$ $\{\begin{array}{l}C_{1}=C_{3}\mathcal{L}r_{1}g_{1}=\frac{2\pi}{15}\mathcal{L}r_{1}g_{1},C_{2}=C_{4}\mathcal{L}r_{2}g_{2}=\frac{2\pi}{3}\mathcal{L}r_{2}g_{2}.\end{array}$

Here $\mathcal{L}$ corresponds to either $\sum_{0}^{\infty}$ as argued for by Poisson or $f_{0}^{\infty}$ as argued for by Navier.
A heated debate had developed between the two over $th_{\dot{L}}s$ point. It is a matter of personnel
preference as to how the two constants should be expressed.

3. THE RAPIDLY DECREASING FUNCTIONS KERNELED IN THE $TWO-CONSTANTS$”

In Table 1, we show the form of $g_{1}$ and $g_{2}$ , which are kernel functions and with which the progenitors
of the flUid equation developed their formulae. Here we refer to these fimctions as rapidly decreasing
functions (RDFs). 3 $Wl\dot{u}le$ formulating the equilibrium equations, we obtain the competing theories of
”two-constants” in capillary action between Laplace and Gauss.

In 1830, after Laplace’s death, Gauss [8] started publishing his studies on capillarity following his
famous paper on curved surfaces [7]. In the paper, Gauss criticized Laplace‘s calculations of 1805-7 in
which the ”two-constants” in his calculation of capillary action were introduced. At about this time,
Gauss had studied what became to be called Gaussian function or Gaussian curve and using this as his
$RDF$ Gauss criticised Laplace‘s example function $e^{-ij}$ as the equivalent function of $\varphi(f)$ . Here, $\varphi(f)$

is the $RDF$ , which depends on distance $f$ . In that paper, Gauss [8] pointed out various deficiencies: 1.
Laplace had mentioned only attractive action without considering the repulsive action; 2. Laplace could
not $identi\Psi$ the correct example function as the equivalent function of the $RDF$; and 3. Laplace lacked
any proof $hom$ say a geometrical point of view. The following are Gauae’ criticisms to Laplace in the
preface of $[8|$ .. Judging from the second dissertation: $\prec$ Suppliment \‘a la deorie de l’action capil-

$laire\succ$ , Mr. Laplace investigated alittle, not only the complete attraction, but also the
partial one by $\varphi(f)$ , and tacitly understood incompletely the general attraction; by the
way, if we would refer the latter by him about our sensible modification, it is easy to see
being conspicuous about it. 4

$3_{We}$ show the then family of $RDF$ by using our notation $f\in’\hslash \mathcal{F}D$, and $\int$ is a $f\iota mction$ kernelized $\ddagger n$ the two-constants
belonging to the then rapidly decreasing function.

$4_{N.Bowditch}$ , the editor of the complete works of Laplace, cites only the title of Gauss’ paper : $[8|$ but siding with
Laplace with the following commcnts :
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GAUSS’ VARIATIONAL PROBLEM AND THE NAVIER-STOKES EQUATIONS.. He considers exponential $e^{-if}$ as an example of equivalent function with $\varphi(f)$ , de-
noting the large quantity by $i,$ or $\frac{1}{i}$ becomes infinitesimal.

But it is not at all necessary to limit the generality by such a large quantity, the
things are more clear than words, we would see easiest, only to investigate if these inte-
grations would be extended, not only infinite but also to an arbitrary sensible distance,
or if anything, occurring wider in the finitely measurable distance in experiment. [8,
p.33]

Here, we can consider the.qe arguments on the RDFs as simple examples of today’s distributions and
hypergeometric functions of Schwarz in 1945, but which were popular in the $1830s$ , during the timne the
$NS$ equations were being discussed in their microscopically-descriptive formulation.

However, Gauss’ criticisms in 1830 naturally drew no rebuttal. We present a sketch of these assertions
on the RDFs in Table 3 in their original, cross-indexed narratives, where, we show the then family of
$RDF$ by using our notation $f\in \mathcal{R}\mathcal{F}D$ , and $f$ is a function kemelized in the two-constants belonging to
the then rapidly decreasing function.

Gauss didn $t$ mention the following fact, and Bowditch 5 also didn’t comment on Gauss’s work in
Laplace $s$ total works[13] except for only one comment of the name “Gauss” [13, p.686]. 6

In his historical descriptions about the study of capillariy action, we would like to recognize that there
is no counterattack to $Gai_{L}ss$ , but the correct valuation. Gauss [9] stated his conclusion about Laplace‘s
paper “his calulations in the pages, p.44 and the followings it, 7 have non effect in vain.”

4. Gauss’ papers of the capillary action

Gauss states common motivations with Laplace about $MD$ (the microoscopically-descriptive we call
it below) equations. He states the difficulties of integral $\int r^{2}\varphi r.dr$ , in which he confesses that he also is
included in the person who feels difficulties to calculate the $MD$ integral.

4.1. Criticism to Laplace in Preface of Gauss’ paper.
12.. Since Mr. Laplace, from here, presented conveniently the unique supposition about the inner, molec-
ular activity, moreover, giving up diminution of law for the increasing distance, we have got the first
result in the surface of the fluid figure based on the accurate calculation, and have established the general
equation for the equilibratory figure, not only the pricise capillary phenomenon as described, but ako try
to explain the relating problems.. This investigation is discussed getting the consented with and confirmed in everywhere, by the exact
experiment, among the first class of increasing natural philosophers, geometricians, and $refi_{T}ed$ and crit-
icized by the some authorities ffom all the directions to the maximum part such as a minor or nonsence.
13. (Two $RDF$ functions and two-constants defined by Laplace.). In the calculation by Mr. Laplace, we have at least a thing, which we can give evidence about it,
and for which we would not absolutely consent with him.. In the previous commentary: $\prec$ Tluiorie de l’action capillaire $\succ$ , denoting with $\varphi f$ intensity of the

This theory of capillary attraction was first published by La Place in 1806, and in 1807 he gave a
supplement. In neither of these works is the repulsive force of the heat of fluid taken into consideration,
because he supposed it to be unnecaesary. But in 1819, he observed that this action could be taken
into account, by supposing the force $\varphi(f)$ to represent the difference between the attractive force of the
particles of the fluid $A(f)$ , and the repulsive force of the heat $R(f)$ so that the combined action would
be expressed by, $\varphi(f)=A(f)-R(f);\cdots[13$ , p.685$|$

Maybe this was stated under the covering fire from Gauss’ criticisms of Laplace. Gauss may not have read Laplace $s$

works after 1819 in which he had changing his thoughts. As yet we have not been able to investigate this fact.
$s_{The}$ present work is a reprint, in four volumes, of Nathaniel Bowditch’s English translation of volumae $I$ , II, III and

rv of the French-lamguage treatise Ilaith de M\’ecanique C\’eleste by P.S.Laplace. The translation was originally published
in Boston in 1829, 1832, 1834, and 1839, under the French title, “M\’ecanique $\alpha leste$ , which has now been changed to its
English-language form, “Celestial Mechanics.”

$6We$ refere to Bowditch’s comment number: $[9173g|$ in [13].
$7There$ are 35 pages of calculation between p.44 and p.78 in his Supplement.
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TABLE 1. The expression of the total momentum of molecular actions by Laplace,
Navier, Cauchy, Poisson, Saint-Venant&Stokes. (Remark. 6-8: capillarity, 9-10:
equilibrium, else: kinetic equation)

$\overline{|no|nme|problem|C_{1}|C_{2}|C_{3}|C_{4}|\mathcal{L}|r_{1}|r_{2}|g_{1}|g_{2}|remark|}$

attraction in the distance $f$ , the integrals 8

$\int_{X}^{\infty}\varphi f.df=\prod_{X}$ , $\int_{x}^{\infty}\prod f.fdf=\Psi x$ ,

$8_{cf}$. Laplace states the $tw\infty\infty nstants\langle 1)$ in his original paper. Poisson cites these equations with the same $H$ and $K$ .
cf. the entry no.8 in Table 1.
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TABLE 2. The kinetic equations of the hydrodynamics until the ”Navier-Stokes equa-
tions” was fixe($1$ . (Rem. $HD$ : hydro-dynamics, $N$ under entry-no: non-linear, gr.dv:
grad.div, $E: \frac{\Delta}{gr.dv}$ of elastic, $F: \frac{\Delta}{gr.dv}$ and the group of entry 6-14 show $F=3$ in fluid.)
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TABLE 3. $Croa+ind\alpha ed$ differences on the RDFs $f\in \mathcal{R}\mathcal{F}\mathcal{D}$ (Remark. 1,5,6: on capillarity)

; The integral of two vaJues : 9

$2 \pi\int_{0}^{\infty}\Psi f.df=K$ , $2 \pi\int_{0}^{\infty}\Psi f.f.ff=H$ , (1)

where denoting by $\pi$ the - of the circumference of the circle with radius $=1$ .. In a word, the $\prec indoles\succ$ of the function $\varphi f$ reserves ineffective, as long as this $f$ were insensible for
all sensible value.
14. (Criticism to Laplace by Gauss.). However, something similar to simple carelessnaes form the basis, such that he discusses about the
form than about the relating action with it.. Judging &om the second dissertation: $\prec Suppkment$ \‘a la $tl_{k’}$ orie de $l$ ‘action $ca\dot{\mu}llaire\succ$ , Mr. Laplace
investigated a little, not only the complete attraction, but ako the partial one by $\varphi f$ , and tacitly un-
derstood incompletely the general attraction; by the way, if we would refer the latter by him about our
sensible modification, it is easy to see being conspicuous about it.. He considers exponential $e^{-ij}$ as an example of equivalent function with $\varphi f$ , denoting the large quantity
by $i$ , namely $v1|$ becomes infinitesimal. But it is not at all necessary to limit the generality by such a
large quantity, the things are more clear than words, we would see easiest, only to investigate if these
integrations would be extended, not only infinite but also to an arbitrary sensible distance, or if anything,
occurring wider in the finitely measurable distance in experiment. 10

$9_{Poisson}$ rewrite these equations to the $equi\tau dent$ with Laplace. cf. the entry no. $6\cdot 2$ in Table 1.
$10_{(\Downarrow)}$ We show his Latin original as follows :
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4.2. Three capitals of force and two RFDs : $\varphi$ and $\Phi$ .
We consider the force reducing to three capitals.. I. Gravity.. II. The attractive force, which itself corresponds to the points $m,$ $m’,$ $m”,$ $\cdots$ . The intensity of

attraction of function is propotional with the distance if this function, the $\prec$ characteristic $\succ$

denoted by $f$ in mass and supposed that the attraction is uniformly concentrated in the point.. III. The forces, $m,$ $m’,$ $m”,$ $\cdots$ are attractive to the infinitesimal fixed points. For these forces,
with the similar way, we will designate the $\prec$ characteristic $F\succ$ such that the $invers\triangleright$-directional
distance is used, and with $M,$ $M’,$ $M”,$ $\cdots$ , which are treated as a fixed point in one case, or a
mass in the other case, which are supposed in these concentrate.

We get $\sum Pdp$ of the previous article as follows :

$-gdz$

$m’f(m, m’)d(m, m’)-m”f(m, m”)d(m, m”)-m^{\prime u}f(m, m’’’)d(m, m’’’)-\cdots$

- $MF(m, M)d(m, M)-M’F(rn, M’)d(m, M’)-M”F(m, M”)d(m, M”)-\cdots$ (2)

where, the difference $d(m, m’),$ $d(m, m”)$ etc. are partial, relative to the only motion of the force of $m$ .
We denote:

$\varphi$ such that : $-fx.dx=d\varphi x$ , $\int fx.dx=-\varphi x$ , (3)

$\Phi$ such that : $-Fx.dx=d\Phi x$ , $\int Fx.dx\equiv-\Phi x$ (4)

where, $\varphi\infty=0$ , and in case of $\varphi t$ $\Rightarrow\int_{t}^{\infty}$ fx.dx $=-\varphi t$ .
$(\Downarrow)$ Gauss didn’t describle explicitly about $\varphi 0$ . By the way, this method without taking of “two-

constants“ by Gauss corresponds to other’s style by such as Laplace, Poisson, Navier and so on. Poisson
[27, p.8] considers this method as one of Gauss’ characteristic, however Poisson chose his own method
like Laplace. cf. the entry no.8 in Table $1.(\Uparrow)$

The function $\Omega$ is expressed by the following sequence :

$\Omega=\sum m\{-g\vee’+\frac{1}{2}m’\varphi(m, m’)+\frac{1}{2}m’’\varphi(m, m’’)+\frac{1}{2}m^{\prime\prime f}\varphi(m, m’’’)+\cdots$

$+M\Phi(m, M)+M’\Phi(m, M’)+M’’\Phi(m, M’’)+\cdots$

where, $\prec$ characteristic $\Sigma\succ$ represents the expression of sum, in which $m’,$ $m$.”, $m”’,$ $\cdots$ follow permuting
after $m$ .

4.3. The sum of force : $\zeta$ }.

For brevity, we express :

$\Omega=-gc\int\sim\vee ds+\frac{1}{2}c^{2}\iint ds.ds’.\varphi(ds, ds’)+(^{\backslash }C\iint ds.dS.\Phi(ds, dS)$ (5)

where, $s,$ $s’$ are specially denoted spaces (satisfied with the mobile material), however with the duplex
integrationll, integrate twice with the element to resolve it.

Sed ne opus quidem est, generalitatem tantopere limitare, quum is, qui rem potius quam verba
intuetur, facillime videat, sufficere, si intergrationes illae nm in infinitum, sed tantummode usque ad
distantiam sensibilem arbitrariam, aut si mavis ad distantiam finitam dimensionibus in experimentis
occurrentibus maiorem extendantur. [8, p.33]

11In below, Gauss uses “duplex“ not only as both $P$ and $U$ , but also as two triangles.
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$(\Downarrow)$ Here the integral (5) contains sextuplex integral when using both (3) and (4). Moreover, Poisson
comments $\zeta 1$ consisted of three terms. 12

4.4. Ttansformation of the expression and the deflnition of $s,$ $S,$ $\varphi,$
$\Phi$ .

We take the transfomation as foUows :. of the second and third terms to two cases of the paticular problem, where, propotition of the
dual spaces whatever, single element of the first space with second element, we combine and
product from the third factor, put $hom$ the element volume of the first space and the volume
element of the second space, and the function data of the mutual distance, and then we can sum
up to the last,. the second term to the same way, where the both space is the same,. the third to it, where all of a side of space is from the other side of space,

then, the problem is solved. The two different cases are completed, namely. when one side of space is part of the other side of space,. or when each side has the common part with the other part.
Althought, moreover, the first case is sufficient to institute us, or we can easy retum the rest to the other
side, when the work evaluate, the problem in itself complete by accepting the gemeral sign.

In this problem, we denote the spaces by $s$ and $S$ , the function on distance denoted with the $\prec$

characteristic $\varphi\succ$ , as the same as in the application to the second located term $S$ and $s$ of (5), and to
the third located term, we may replace $\Phi$ with $\varphi$ . The integration is given as follows :

$\iint ds.dS.\varphi(ds, dS)$ (6)

We would like to show that the spacial elements, depending on the three variables, which imply that
the sextuplex integrul are to be reduced to the quadruplex integral. $(\Downarrow)$ Here the integral (6) contains triple
integral when using either (3) or (4), then (5) contains sextuplex integral. 16

4.5. Reduced integral $fi\cdot om$ sextuplex to quadruplex.
Our integral (I) neglecting the insensible factors : $=- \int\pi\theta’\rho.d\tau+\int\pi\theta’\rho.d\tau’$ . Clearly this is not

important, either the parts $\tau$ and $\tau’$ or to the surface $T$ to $t$ is rather important. The value of the
saetuplex integral: (6) becomes

$\iint ds.d_{\iota}9.\varphi(ds, dS)=4\pi\sigma\psi 0-\pi \mathcal{T}\theta 0+\pi \mathcal{T}’\theta 0-\pi\int d\tau.\theta’\rho+\pi\int d\tau’.\theta’\rho$ (7)

$(\Downarrow)$ Just this transfomation is boastful reductional method of integral $hom$ the sextuplex to quadruplex.

4.6. Method of reduction of $\iint ds.dS.\varphi(ds.dS)$ from sextuplex to quadruplex.. Therefore, we can assume the primitive function $\theta’$ , i.e.,

$2r^{2} \int\frac{\theta r.dr}{r^{3}}=-\theta’r$ $\Rightarrow$ $\frac{\theta’r}{r^{2}}=\int\frac{2\theta x.dx}{x^{3}}$ (8). We consider the $integralhomxl6=r$ to an arbitrary, sensible and constant value, denoted by $R$ . Namely
we integrate as follows :

$\int_{R}^{f}\frac{2\theta x.dx}{x^{3}}=\frac{\theta r}{r^{2}}-\frac{\theta R}{R^{2}}$ (9)

$12_{Pois\infty n}$ cites Gauss’ mininum denoted by $\zeta 1$ in (5) in his preface of $[27|$ and states :
Dans le cas d’un liquide homog\‘ene et $in\infty mpr\infty ible$ , il r\’eduit $d$ ‘abord cette quantit\’e \‘a une int\’egrale

quadruple ; et en consid\’erant sp\’ecialment le cas oti les forees appliqu\’ees au liquide sont la $p\infty nteur$

et l’attraction mutual de ses mol\’ecules, dont la sph\‘ere d’activit\’e eat insensible, il r\’eduit $d\epsilon$ nouveou la
quantit6 dont il s’agit, qui est ensuit compose’e de trois termes, savoir,

(1) le produit du poids du liquide et de 1 $ordonn6e$ verticale de son centre du gravit6,
(2) $1’ aire$ de sa surfacc libre multipli& par une constantel3 qui ne d\’epend que de la mati\‘ere du liquide,
(3) et l’aire des parois fixes $\infty ntrelesqueU\infty$ il $s$ ‘appuie, multipli\’ee par une s$\infty$nde $constante^{14}$ de la

mati\‘ere du liquidc et de celle de la partie solide du syst\‘eme.
[27, pp.7-8]

$1S_{Poisson}re\infty giizes$ this Gauss’ achievement in [27].
$16(\Downarrow)$ This function is rapidly decreasing function. Here, $\theta r,$ $\theta R$ mean $\theta(r),$ $\theta(R)$ and are assumel as $\theta(r)>\theta(R)$ .
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Clearly this integral is smaller than this $f_{\neg_{x}}^{2\theta x.d\underline{x}}$ with the interval, this is $= \frac{\theta}{r}7_{R^{\urcorner}}^{-\frac{\theta}{}}rR$. Moeover, it is
smaller than 4. Otherwise, by infinite integral, it become as follows:

$\int\frac{2\theta x.dx}{i\gamma^{3},}=-\frac{\theta x}{x^{2}}+\int\frac{d\theta x}{x^{2}}=-\frac{\theta x}{x^{2}}-\int\frac{\psi x.dx}{x^{2}}$ (10)

Moreover, from (8), (9) and (10),

$\frac{\theta’r}{r^{2}}=\int\frac{2\theta x.dx}{x^{3}}=^{*}[-\frac{\theta x}{x^{2}}-\int\frac{\psi x.dx}{x^{2}}]_{x=r}=(\frac{\theta r}{r^{2}}-\frac{\theta R}{R^{2}})-\int\frac{\psi r.dx}{r^{2}}=*(\frac{\theta r}{r^{2}}-\frac{\theta R}{R^{2}})-\frac{\psi r}{r}$ (11). Integrating with the smaller interval than the integral $\int_{x}^{\psi x}\sim^{dx}$ . Moreover, $hom(11)$ , this is smaller
than $\mathbb{A}^{\underline{r}}r$ ; therefore, the value of $E_{r}^{r}$

’

is greater than the right-side expression of (12) 17

$\frac{\theta’r}{r^{2}}=(\frac{\theta r}{r^{2}}-\frac{\theta R}{R^{2}})-\frac{\psi r}{r}$
$\Rightarrow$

$\theta’r=\theta r-\frac{r^{2}.\theta R}{R^{2}}-r\psi r$ (12)

From (12), the interval of $\theta’r:\theta r$ and $\theta r-r_{T}^{2_{\frac{\theta}{R}}R}-r\psi r=^{*}\theta’r$. If we differentiate $th_{\dot{L}S}$ expression, by $r$ decreasing infinitely, then we see clearly that we can evaluate this
quantity to be infinitesimal, for example, when $\psi_{0}$ in (7) is the finite quantity. Thus we have concluded
that it is due to $\theta_{0}’=\theta_{0}$ . It is clearly considarable that, the formula (7) of previous art.16 (\S 4.5) turns
into . $-\pi \mathcal{T}\theta_{0}$ and for instance, under the $inteiva1-\pi\int d\tau.\theta’\rho$. $\pi \mathcal{T}’\theta_{0}$ and for instance, under the interval $\pi\int d\tau’.\theta’\rho$,
if the difference or the distance is insensible or considerable as null, to count respectively the part of
$\mathcal{T},$

$\mathcal{T}’$ or $\tau,$
$\tau’$ .

4.7. Variatim problem to be solved.
In the application of previous survey to the evolution the second term of the expression $\Omega$ in the art.

3,$in$ the art. 6 denote by $S$ in the art.16 $\sigma,$
$\mathcal{T},$

$\mathcal{T}’$ will be use as $s,$ $t,$ $0$ , if $t$ is the total surface of the space
$s$ , in which the fluid is filled. Therefore whenever this space extensional sensible part however insensible
concentration is kept, this sort of gap (crevice), the part of the second part of the expression $\Omega$ of (5) in
the art. 4.3 becomes $= \frac{1}{2}\pi c^{2}(s\phi O-t\theta O)$ . In static equilibrium it is due to the maximum value, this turns
into $-gc \int zds+\frac{1}{2}c^{2}s\psi_{0}-\frac{1}{2}\pi c^{2}t\theta_{0}+\pi cCT\Theta_{0}$ . In an arbitrary fluid, of which the figure is yield oneself
to the space $s$ meaning invariant, of which the expression becomes as follows : $fzds+ \frac{\pi c\theta}{2g}A.t-\frac{\pi C\tau e}{g}.T$,
and in an equilibrium state which is due to minimum. Here, we denote

$\frac{\pi c\theta_{0}}{2g}\equiv\alpha^{2}$ , $\frac{\pi CT\Theta_{0}}{2g}\equiv\beta^{2}$ , $t\equiv T+U$, (13)

and by $W$ , then

$W \equiv\int zds+(\alpha^{2}-2\beta^{2})T+\alpha^{2}U$ (14)

4.8. Geometric structure for analysis.
Here, we consider: . the surface, denoted by $s,$ . a part $U$ , on which all the points is determined by the

coordinate $x,$ $y,$ $z$ , these three vaJues are the distances to an arbitrary horizontal plane. It is capable to
recognize $z$ is, for example, as the indeterminated function by $x,$ $y$ , for these secondary partial differential
with our conventional method, by omitting a bracket, we show it by $\frac{dz}{dx}.dx$ , $\frac{dz}{dy}.dy$ . $18$ The structure we
are considering is as follows :

(1) We define the points consisted of an arbitrary and every points on the surface, denoting $s$ with
respect to the rectanglar surface, nomal to the exterior direction of $s$ , and in addition, we set

$17_{(\Downarrow)}$ Multiplying by $r^{2}$ , which $is$ infinitesimal value. Today’s description of (12) is $\theta’(r)=\theta(r)-\frac{r^{2}.\theta(R)}{R^{2}}-r\psi(r)$.
$18(\Downarrow)$ These descriptions by Gauss mean as hllows:

$\frac{dz}{dx}.dx\equiv(\frac{dz}{dx})_{x}=\frac{d^{2}z}{dx^{2}}$ , $\frac{dz}{dy}.dy\equiv(\frac{dz}{dy})_{y}=\frac{d^{2}z}{dy^{2}}$ , $\frac{dz}{d_{\backslash }\tau}.d’x\equiv(\frac{dz}{dx})_{x’}=\frac{d^{2}z}{dxx}$

173



増田 $g_{J}$ (首都大学東京大学院理学研究科博士後期課程数学尊攻)

an angle by cosine between this normal direction to the axis of rectanglar coordinate $x,y$ and $z$

with parallel, which we denote by $\xi,$
$\eta$ and $\zeta$ . Thereby it will be :

$\xi^{2}+\eta^{2}+\zeta^{2}=1$ , $\frac{dz}{dx}=-\frac{\xi}{\zeta}$ , $\frac{dz}{dy}=-\frac{\eta}{\zeta}$ , $\Rightarrow^{*}$ $1+( \frac{dz}{dx})^{2}+(\frac{dz}{dy})^{2}=\frac{1}{\zeta^{2}}$ (15)

(2) The boundary of surface $U$ become linear in itself, as the same as denoted by $P$ , and while the
motion is supposed necessarily, this element $dP$ (as the same way of $dU$ as the surface) is treated
as positive only.

(3) The angle by cosine, that directions of the element $dP$ are expressed with the axis of coordinate of
$x,$ $y,$ $z$ , denoted by $X,$ $Y,$ $Z$ : since we would avoid giving ambiguous sense about the direction,
we define these angles as follows :. at first, we assume that the normal direction in the element $dP$ to the surface $U$ , and draw

a tangent. next, looking this line innerward, we draw the second side.. finally, in the normal direction with respect to the surface, we put the third side in the space
$s$ to the exterior,

and constituting similarly the next system of three rectangles and the coordinate $a_{\mathfrak{l}}\dot{n}sx,$ $y,$ $z$ .
Thus, we see easily the following expressions (cf. Disquisitiones generales circa superficies

curvas), using the angle by cosine with the direction to the axis of the coordinates $x,$ $y,$ $z$ are
respectively

$\eta^{o}Z-\zeta^{0}Y$, $\zeta^{0}X-\xi^{0}Z$, $\xi^{0}Y-\zeta^{0}X$ $\Rightarrow^{*}$
$\{\begin{array}{lll}\alpha \beta \gamma X Y Z\xi^{0} \eta^{o} \zeta^{0}\end{array}\}$ , (16)

here, we suppose that $\xi^{0},$ $\eta^{0},$ $\zeta^{0}$ are the values of $\xi,$ $\eta,$
$\zeta$ for the points of the element $dP$ .

$t\Downarrow)$ where, $\alpha,$ $\beta,$
$\gamma$ are temporarily used values of ours to correspond to (35). By the way, we see

(16) is the same with the deteminant to be mentioned again below (35).

4.9. Variation of a triangle $dU$ of the surface $U$ .
Here we would like to supplement the preliminary. We assume the surface $U$ is the part by an arnitrary

infinitesimal perturbation.. If we consider sufficiently all the perturbation, for this boumdary $P$ always invariant, at any
rate, it maintains, in this vertical surface, we can induce clearly the variation of only the third
coordinate $z$ , this problem is far easy to evaJute it ;. moreover, the maximum problem in general, in the following investigating method, considering
the variable boundary, in which ambiguity and difficulty combine elegantly, bring up perturbation
; how we can show, always ffom the start of all, three coordinates handle the variation.

We the force as we image it, and anywhere on the surface, in which the coordinates, which are $x,$ $y,$ $z$ ,
had substituted in another, these coordinatae are $x+\delta x,$ $y+\delta y,$ $z+\delta z$ , where $\delta x,$ $\delta y,$ $\delta z$ are able to
regard as if these were the indeterminate functions of $x,$ $y$ , if these vaJues stay infinitesimal. Now we
would like to inquire into the variation of singular (indivisual) element, expressed with $W$ and surely the
imitial are made of variation of these elements $dU$ .

Now, we assume a triangle consisted of three points : $P_{1},$ $P_{2},$ $P_{3}.19$ We put the element of $U$ by a
triangle $dU$ consisted of these $points_{1}$ of which the coordinates are;

$\{\begin{array}{ll}P_{1}: xP_{2}: x+dx y+dy z+\frac{dz}{dx}.dx+dTzy.dyyzP_{3} : x+d’x y+d’y z+\frac{dz}{dx}.d’x+\frac{dz}{dy}.d’y\end{array}$

If we assume $dx$ .d’y–dy.$d’x>0$ , then the twice area of this triangle is gained by our principle as
follows :

$(dx$ . $d$
’

$y$ – $dy$ . $d’x)\sqrt{[1+(\frac{dz}{dx})^{2}+(\frac{dz}{dy})^{2}]}$ (17)

$\Downarrow(17)$ becomes $\frac{(dx.d’y-dy.d’x)}{\zeta}$ from (15). $(\Uparrow)$. location value by perturbation of $P_{1}$ : $x+\delta x$ , $y+\delta y$ , $z+\delta z$ .

$19(\Downarrow)$ The symbols: $P_{1},$ $P_{2},$ $P_{3}$ are of ours insted of “the flrst point”, etc.
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$\{\begin{array}{ll}x+dx z+d\mathfrak{X}zdx+\frac{dz}{dy}y.+dy dy\end{array}\}$ , $[ \delta x+.dx+\frac{db^{-}x}{\frac,dd_{A}ddd_{\oint_{ff_{z}}}y}.\cdot dy\delta y+.dx+dy\delta z+\frac{7^{\frac{\delta x}{x}}d\delta z\underline{d}\delta d_{\Delta}dx}{dx}.dx+\frac.dy]$ , $[(z+ \delta z)+(\frac{dz++}{dx}+\frac{d\delta z}{dx}x+(\frac{d}{d}\frac{d\delta zdydy}{dy}).dy(x+\delta x)(1+\frac{d\delta x}{x+,)dd.x}).dx+\frac{d\delta x}{ydyA,+)}(y+\delta y)d\delta\neq_{x}.d(1+\frac{d\delta}{yzd}.\cdot]$

. Location value by perturbation of $P_{3}$ :

$\{\begin{array}{ll}x+d’x z+\frac{dz}{dx}.d,x+y+d’y_{dz,\partial\tilde{y}} d’y\end{array}\}$ , $[ \delta x+\frac{d\grave{\delta}x}{\tau_{x}\frac d\delta zd\delta_{H}dxdx}.\cdot\cdot d’x+.\cdot d’y\delta+d,x+d’y\delta_{Z}^{\uparrow J}+d’ x+\frac{d\delta z\underline{d}_{4}\tau_{\oint_{dy}^{d5\underline{x}}}\prime}{dy}.d’ y’.]$ , $[(z+ \delta z)+(\frac{dz++}{dx}+\tau_{x}^{\underline{z}}d’ x+(\frac{\cdot d\delta zd’yd’y}{dy}).d’y(x+\delta x)(1+\frac{d\delta.x}{dx,)x}).d’x+\frac{d\delta x}{\lrcorner^{1},ydy+)}(y+\delta y)\neq’x_{d\delta d_{y}}d’+(1+\frac{d}{T^{z}d}.\cdot,’]$

$(\Downarrow)$ We can also show the matrix only with variation as follows :

$[ \{_{1}^{1}+\frac)..dx+\frac{d}{}.dy+\frac{d\delta xd\delta xdx}{dx})d’ x+\frac{dyd\delta x\delta x}{dy}.d’ y\delta x$
$\frac{d\delta}{d}A.dx+(1+^{\underline{d}\dot{b}}dy_{\delta}A).dy\frac{dx}{d}\frac{\delta}{x}u.+_{y}).d’y\delta y$ $E.dx+D.dyE.d’ x+D.d’ y\delta z]$

where, $E \equiv\frac{dz}{dx}+\frac{d\delta z}{dx}$ , $D \equiv\frac{dz}{dy}+\frac{d\delta z}{dy}$ (18)

By the way, these principle comes from Lagrange [11, pp.189-236], 20 in which Lagrange states his
me’thode des variations21 in hydrostatics. $(\Uparrow)$

The duplex triangles 22 including these points, by the same method, for brevity, by denoting the
sum by $N,$ (17) is expressed as follows:

$(d\alpha:$ .d’y–dy. $d’x)\sqrt{N}$

$(\Downarrow)$ These values : dxd’y–dyd’x, dzd’x–dxd’z and dyd’z–dzd’y are calculated in permutation by
Jacobian $|J|$ of the three determinants extracted ffom (18) :

$(x, y):|1+ \underline{d}\delta dx\lrcorner 4\frac{d\delta x}{dx}1_{d_{1/}}^{d\delta}\frac{d\delta.x}{+d\uparrow J}\lrcorner\angle|$

’
$(x, z)$ : $|\begin{array}{lll}1+ \frac{d\delta x}{dx} \frac{d\delta x}{dy}E D\end{array}|$ , $(y, z)$ : $|\begin{array}{lll}1+ \underline{d}\delta dyA \underline{d}\delta dx\lrcorner?D E\end{array}|$

$(\Uparrow)$

We denote temporarily the following sum by $N$ , then

$N$ $=$ $[(1+ \frac{d\delta x}{dx})(1+\frac{d\delta y}{dy})-\frac{d\delta x}{dy}.\frac{d\delta y}{dx}]^{2}+[(1+\frac{d\delta x}{dx})(\frac{dz}{dy}+\frac{d\delta z}{dy})-\frac{d\delta x}{dy}(\frac{dz}{dx}+\frac{d\delta z}{dx})]^{2}$

$+$ $[(1+ \frac{d\delta y}{dy})(\frac{dz}{dx}+\frac{d\delta z}{dx})-\frac{d\delta y}{dx}(\frac{dz}{dy}+\frac{d\delta z}{dy})]^{2}$

$=$ $C^{2}+[D_{1}^{2}+D_{2}^{2}]D^{2}+[E_{1}^{2}+E_{2}^{2}]E^{2}-2[D_{1}E_{2}+E_{1}D_{2}]$ , (19)

where, $C \equiv(1+\frac{d\delta x}{dx})(1+\frac{d\delta y}{dy})-\frac{d\delta x}{dy}.\frac{d\delta y}{dx}=1+\frac{d\delta x}{dx}+\frac{d\delta y}{dy}$ , $D \equiv\frac{dz}{dy}+\frac{d\delta z}{dy}$ , $E \equiv\frac{dz}{dx}+\frac{d\delta z}{dx}$

and $D_{1},$ $D_{2},$ $E_{1},$ $E_{2}$ are the two terms consisting of $D$ and $E$ respectively, and these coefficients are
correspond to the variables of the equation (20) showed in our footnote on the theory of curved surface

$20_{Section}7$ . De l’equilibre des fluids incompressibles, \S 2. $\alpha_{\iota}^{t}$ l’on deduit les dois $\phi rdmles$ de $l$ ‘\’equibre des fiuides
incompressibles de la nature des particules qui les composent. [11, pp.204-236]

$21_{Lagrange[11}$ , p.201 $]$ . Today‘ $s$ mathematical nomenclature is calculus of vanatims or calcul des vanations by The
mathemati$cd$ dictionary (4th edition in 2007) edited by MSJ, 1954, p.432, (Japanese).

$22(\Downarrow)$ The duplex triangles construct a rectangle made of arbitrary two adjoining triangles.
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by Gauss [7]. 23

Extending (19) with neglecting the second order of $\delta$ , for example, $\tau_{y}^{x}d\dot{\delta}.\#_{x}^{d\delta}$ or $(\#_{y}^{d\delta})^{2}$ , etc., and for
brevity, denoting the sum by $L$ , then
$(\Downarrow)$ . $C^{2}=(1+ \frac{d\delta x}{dx}+\frac{d\delta y}{dy})^{2}\cong 1+2(\frac{d\delta x}{dx}+\frac{d\delta y}{dy})$

. $[(1+ \frac{d\delta x}{dx})^{2}+(\frac{d\delta y}{dx})^{2}]D^{2}\cong(\frac{dz}{dy})^{2}+2\frac{d\delta x}{dx}(\frac{dz}{dy})^{2}+2\frac{dz}{dy}\frac{d\delta z}{dy}$

Samely changin$gx$ with $y$ in corresponding expression,. $[( \frac{d\delta x}{dy})^{2}+(1+\frac{d\delta y}{dy})^{2}]E^{2}\cong(\frac{dz}{dx})^{2}+2\frac{d\delta y}{dy}(\frac{dz}{dx})^{2}+2\frac{dz}{dx}\frac{d\delta z}{dx}$

. $-2[(1+ \frac{d\delta x}{dx})\frac{d\delta x}{dy}+(1+\frac{d\delta y}{dy})\frac{d\delta y}{dx}]DE\cong-2\frac{dz}{d\alpha}\frac{dz}{dy}(\frac{d\delta x}{dy}+\frac{d\delta y}{dx})$

$(\Uparrow)$

$\sqrt{N}=([1+(\frac{dz}{dx})^{2}+(\frac{dz}{dy})^{2}].[1+\frac{L}{1+(_{\Gamma x}^{dz})^{2}+(_{Ty}^{dz})^{2}}])^{1}z=^{s}(L+1+(\frac{dz}{dx})^{2}+(\frac{dz}{dy})^{2})^{\#}$

where, $L$ is gained by extracting only one order terms in the expanded tems $hom(19)$ :
$(\Downarrow)$ Here, we see the coefficient 2 included in $L$ in (22) come $hom$ two triangles.
$N$

$=*$ $C^{2}+(\cdot)D^{2}+(\cdot)E^{2}+(\cdot)DE$

$=^{*}$ $1+2( \frac{d\delta x}{dx}+\frac{d\delta y}{dy})+(\frac{dz}{dy})^{2}+2\frac{d\delta x}{dx}(\frac{dz}{dy})^{2}+2\frac{dz}{dy}\frac{d\delta z}{dy}+(\frac{dz}{dx})^{2}+2\frac{d\delta y}{dy}(\frac{dz}{dx})^{2}+2\frac{dz}{dx}\frac{d_{t}fz}{dx}-2\frac{dz}{dx}\frac{dz}{dy}(\frac{d\delta x}{dy}+\frac{d\delta y}{dx})$

$\overline{C^{2}}$ $\overline{D^{2}}$ $\overline{B^{2\overline{\cdot DB}}}$

$=^{*}$ 2 $[ \frac{d\delta x}{dx}\{[1+(\frac{dz}{dy})^{2}\}-\frac{dz}{dx}\frac{dz}{dy}(\frac{d\delta x}{dy}+\frac{d\delta y}{dx})+\frac{d\delta y}{dy}\{[1+(\frac{dz}{dx})^{2}\}+(\frac{dz}{dy}\frac{d\delta z}{dy}+\frac{dz}{dx}\frac{\mathscr{O}z}{dx})]+[1+(\frac{dz}{dx})^{2}+(\frac{dz}{dy})^{2}]$

$=^{*}$ $2L+[1+( \frac{dz}{dx})^{2}+(\frac{dz}{dy})^{2}]$ (22)

$(\Uparrow)$ We continue $hom$ Gauss. From (22)

$L$ $=$ $[ \frac{d\delta x}{dx}\{[1+(\frac{d_{\vee}}{dy})^{2}\}-\frac{dz}{dx}\frac{dz}{dy}(\frac{d\delta x}{dy}+\frac{d\delta y}{dx})+\frac{d\delta y}{dy}\{[1+(\frac{dz}{dx})^{2}\}+(\frac{dz}{dy}\frac{d\delta z}{dy}+\frac{dz}{dx}\frac{d\delta z}{dx})]$

$=^{*}$ $\frac{1}{2}[N-\{1+(\frac{dz}{dx})^{2}+(\frac{dz}{dy})^{2}\}]$ (23)

$(\Downarrow)$ Gauss’ expression is without 2 of the top in the last right-hand side of (23), for $L$ is a tniangle. $(\Uparrow)$

Here we may recall (15), then the followings hold: the ratio of the first triangle to the second and plus
1 becomes,

$1+ \frac{L}{1+(\frac{dz}{dx})^{2}+(\frac{dz}{dy})^{2}}=^{*}1+\frac{1sttriang1e}{2ndtriang1e}=^{*}1+\zeta^{2}L$

Moreover, this is independent of the figure of a triangle $dU$ , then, it turns out,

$\delta dU=\frac{LdU}{1+(\frac{dz}{dx})^{2}+(_{Ty}^{dz})^{2}}=^{*}\zeta^{2}LdU$ (24)

$23_{In}D|s$quuitiones generalea $c|r\omega$ superficies curvas, Gauss deduces the following concluding equation ( cf. [7]) :

$EG$ – $F$2 $=E( \frac{dr}{dq})^{2}-2F.\frac{dr}{dp}.\frac{dr}{d\eta}+G(\frac{dr}{dp})^{2}$ (20)

We see (19) resembles one in [7].

$N=C^{2}+G’D^{2}+E’E^{2}-2F’DE$ (21)

If we assume that $\frac{dr}{dp}\equiv D,$ $\frac{dr}{dq}\equiv E,$ $E’=E_{2}^{2}+E_{1}^{2},$ $F’=D_{1}E_{2}+E_{1}D_{2}$ and $G’=D_{1}^{2}+D_{2}^{2}$ , then $E’,$ $F’$ and $G’$ correspond
to $E,$ $F$ and $G$ in [7].
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Expanding $L$ in (24) using (15) and (23), then

$\delta dU=dU[\frac{d5x}{dx}(\eta^{2}+\zeta^{2})-(\frac{d\delta x}{dy}+\frac{d\delta y}{dx})\xi\eta+\frac{d\delta y}{dy}(\xi^{2}+\zeta^{2})-\frac{d\delta z}{dx}\xi\zeta-\frac{d\delta z}{dy}\eta\zeta]$, (25)

$(\Downarrow)$ where, we used the followings : $\zeta^{2}(1+\frac{dz}{dx})=\zeta^{2}+\zeta^{2}\xi_{\zeta}^{2}=\xi^{2}+\zeta^{2}$, $\zeta^{2}(1+\frac{dz}{dy})=\zeta^{2}+\zeta_{\zeta}^{2}*^{2}=\zeta^{2}+\eta^{2}$ .
Here, the coefficient of 2 in (23) is unnecesary, since $dU$ is a triangle according to Gauss’ description.

4.10. Integral expression by decomposing $dU$ into $dQ$ and $dU$ .
From (25), all variation of the surface $U$ is obtained by the following two integrals

$\int dU[(\eta^{2}+(^{2})\frac{d\delta x}{rlx}-\xi r’(\frac{d\delta y}{dx})-\xi\zeta\frac{d\delta z}{dx}]\equiv A,$ ( $x$ -differential part) (26)

$\int dU[-\xi\eta\frac{d\delta^{9}x}{dy}+(\xi^{2}+\zeta^{2})\frac{d\delta y}{dy}-\eta\zeta\frac{d\delta z}{dy}]\equiv B$, ( $y$ -differential part) (27)

and these are separately treated. We consider as follows :
$\circ$ at first, we take a plane, normal to the coordinate axis $y$ , and such as, for the value of this $y$ to

be determinated suitably taking the exterior value to the peripheral, and for the last value of $y$

to be in the surface $U$ ;. next, for this plane, on the peripheral $P$ , we split into two part, or four, or six, etc., for the points
of which by the first coordinate, to be followed by $x^{0},$ $x’,$ $x”,$ $\cdots$ ; namely, as if the indeces are
different each other, we should number suitably by the indicies to these points ;. then, by the same way, we split the surface with other plane, for this infinite neighbourhood to
be parallel, and to encoumter with the point of the second coordinate $y+dy$ ;. finally, between these planes. we could get the elements of peripheral $dP^{0},$ $dP’,$ $dP”,$ $\cdots$ ,

then we could see easily the expressed as follows :
$dy=-Y^{0}dP^{0}=+Y’dP’=-Y’’dP’’=+Y’’’dP’’’$ etc. (28)

$(\Downarrow)$ where $dP^{*}$ means the various $P$ , not the derivative, and the sign changes superior or inferior, according
to that the line $\mu P^{*}$ from the center $\mu$ takes interior or exterior of the space S. $(\Uparrow)$ If, in addition to, we
consider the infinitely many planes, rectangles to the coordinate axis $x$ , of which the element $dx$ between
$x^{0}$ and $x’$ , or between $x”$ and $x”’$ , or etc., it corresponds to the element: 24

$dU= \frac{dx.dy}{\zeta}$ , (29)

$(\Downarrow)$ Namely, this correspondence comes $hom(25)$

$\int\delta dU=$ $\int[dU(\eta^{2}+\zeta^{2})\frac{d\delta x}{dx}-\frac{d\delta y}{dx}\xi\eta-\frac{d\delta z}{dx}\xi\zeta]+\int dU[(\xi^{2}+(^{2})\frac{d\delta y}{dy}-\frac{d\delta x}{dy}\xi\eta-\frac{d\delta z}{dy}\eta\zeta]$

$=$ $dy \int dx\frac{1}{\zeta}[(\eta^{2}+\zeta^{2}).\frac{d\delta x}{dx}-\frac{d\delta y}{dx}\xi\eta-\frac{d\delta z}{dx}\xi\zeta]+dx\int dy\frac{1}{\zeta}[(\xi^{2}+\zeta^{2}).\frac{d\delta y}{dy}-\frac{d\delta x}{dy}\xi\eta-\frac{d\delta z}{dy}\eta(]$

$(\Uparrow)$

Therefore, from here, it is clear for a part of integral by part : $A$ , that corresponds to the part of the
surface depending on between the interval: $y,$ $y+dy$ , to have by the following integral, i.e., substituting
the right hand-side of (29) into $A$ of (26), then $A=dyfdx( \frac{\eta^{2}+\zeta^{2}}{\zeta}.\frac{d\delta x}{dx}-\zeta\Phi.dxA-\xi d\delta z)$ , extending from
$x=x^{0}$ to $x=x’$, next, from $x=x$“ to $x=x”’$ etc. In fact, the limit of this integral by part is expressed
as follows :

$A=( \frac{\eta^{2}+\zeta^{2}}{\zeta}\delta x-\frac{\xi\zeta}{\zeta}\delta y-\xi\delta z)$ $dy$ – $dy$
$\int(\delta x\frac{\frac{\eta^{2}+\zeta^{2}}{\zeta}}{dx}-\delta y\frac{d_{\zeta}^{g}}{dx}-\delta z\frac{d\xi}{dx})dx$ (30)

Here, we construct $A$ using (28) and (29), then

$( \frac{\eta^{02}+\zeta^{02}}{\zeta^{0}}\delta x^{0}-\frac{\xi^{0}\eta^{0}}{\zeta^{0}}\delta y^{0}-\xi^{0}\delta z^{0})Y^{0}dP^{0}+(\frac{\eta^{;2}+\zeta^{\prime 2}}{\zeta}\delta x’-\frac{\xi’\eta’}{\zeta}\delta y’-\xi’\delta z’)Y’dP’$

$+$ $( \frac{\eta^{\prime\prime 2}+\zeta^{\prime\prime 2}}{\zeta}\delta x’’-\frac{\xi’’\eta’’}{\zeta}\delta y’’-\xi’’\delta z’’)Y’’dP’’+$ etc. $- \int\zeta dU(\delta x\frac{\frac{\eta^{2}+\zeta^{2}}{\zeta}}{dx}-\delta y\frac{d_{\zeta}^{g}}{dx}-5z\frac{d\xi}{dx})$

$\overline{24(\Downarrow)}$In fact, comparerig the two expraesions : (26) with (30) and (27) with (30), then this correspondence deduced.
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or in sum,

$\sum(\frac{\eta^{2}+\zeta^{2}}{\zeta}\delta a\cdot-\frac{\xi\eta}{\zeta}\delta y-\xi\delta z)YdP-\int\zeta dU(\delta x\frac{\frac{\eta^{2}+\zeta^{2}}{\zeta}}{dx}-\delta y\frac{d_{\zeta}^{g}}{dx}-\delta z\frac{d\xi}{dx})$

This total quantity $A$ is expressed by

$A= \int(\frac{\eta^{2}+\zeta^{2}}{\zeta}\dot{\delta}x-\frac{\xi\eta}{\zeta}\delta y-\xi\delta z)YdP-\int\zeta dU(\delta x\frac{\frac{\eta^{2}+\zeta^{2}}{\text{く}}}{dx}-\delta y\frac{d_{\zeta}^{g}}{dx}-\delta z\frac{d\xi}{dx})$

where, the first integral is extended to all the circumference of $P$ , and the second is extended to all the
surface of $U$ .
4.11. Analytic reduction of $\delta U$ to $Q$ and $V$ via $A$ and $B$ .

By calculation from (26) as the same as (27), we get $B$ similarly and immediately

$A= \int(\frac{\eta^{2}+\zeta^{2}}{\zeta}\dot{\delta}x-\frac{\xi\eta}{\zeta}\delta y-\xi\delta z)YdP-\int\zeta dU(\delta x\frac{\frac{\eta^{2}+\zeta^{2}}{\zeta}}{dx}-\delta y\frac{d_{\zeta}^{g}}{dx}-\delta z\frac{d\xi}{dx})$ (31)

$B= \int(\frac{\xi\eta}{(}\delta x-\frac{\xi^{2}+\zeta^{2}}{\zeta}\delta y-\eta\delta z)XdP+\int\zeta dU(\delta x\frac{\infty\zeta}{dy}-\delta y\frac{d_{\zeta}^{22}\simeq+}{dy}+\delta z\frac{d\eta}{dy})$ (32)

Here we determine for all the circumference $P$ , we get $\zeta Q$ from the first tems of both (31) and (32),

$( \frac{\xi\eta}{\zeta}\delta x-\frac{\xi^{2}+\zeta^{2}}{\zeta}\delta y-\eta\delta z)X+(\frac{\eta^{2}+\zeta^{2}}{\zeta}\delta x-\frac{\xi\eta}{\zeta}\delta y-\xi\delta z)Y\equiv Q$,

$[X\xi\eta+Y(\eta^{2}+\zeta^{2})]\delta x-[X(\xi^{2}+\zeta^{2})+Y\xi\eta]\delta y+(X\eta\zeta-Y\xi\zeta)\delta z=\zeta Q$

Moreover, for every point of the surface $U$ , we get $V$ from the second tems of both (31) and (32),

$( \frac{d_{\zeta}^{g}}{dy}-\frac{d^{i_{\zeta}^{J..2}}\lrcorner+_{-}}{lx})\zeta\delta x+(\frac{d_{\zeta}^{\xi_{\Delta}}}{dx}-\frac{d_{\zeta}^{22}\simeq+}{dy})\zeta\delta y+(\frac{d\xi}{dx}+\frac{d\eta}{dy})\zeta\delta z\equiv V$ (33)

That is, we can put

$\delta U=\int QdP+\int VdU$ (34)

The first integral is to be extended along all the circumference $P$ , and the second is on all surface $U$ .
$(\Downarrow)$ This is the what is called Gaussian integral fomula in two dimensions.

4.12. Geometric reduction of $Q$ and $V$ .
Formula for $Q$ and $V$ notably contradict $X\xi+Y\eta+Z\zeta=0,$ $Q$ has always the symmetric form as

follows:

$Q=(Y\zeta-Z\eta)\delta x+(Z\xi-X\zeta)\delta y+(X\eta-Y\xi)\delta z$ $\Rightarrow^{*}$ $Q=$ $|\begin{array}{lll}\delta x \delta y \delta zX Y Z\xi \eta \zeta\end{array}|$ (35)

When we see the fom of $V$ , we can reduce from the formulae (15)

$\frac{dz}{dx}=-\frac{\xi}{\zeta}$ , $\frac{dz}{dy}=-\frac{\eta}{\zeta}$ , $\Rightarrow$
$\frac{d_{\zeta}^{\xi}}{dy}=\preceq^{g}ddx$ (36)

therefore, $\underline{d}^{\epsilon}\tau_{y}\not\simeq_{-}=\xi\zeta.\#^{d_{V}}+\eta\frac{d_{t};}{dy}=\epsilon\zeta.\neq^{d_{y}}+\eta^{d}\#_{x}^{1}$ . Moreover, for $\xi^{2}+\eta^{2}+\zeta^{2}=1$ , we can deduce

$\xi\frac{d\xi}{dx}+\eta\frac{d\eta}{dx}+\zeta\frac{d\zeta}{dx}=0$ (37)

by dividing the both side of hand of (37) with $\zeta$ ,

$\frac{\xi}{\zeta}\frac{d\xi}{dx}=-(\frac{\eta}{\zeta}\frac{d\eta}{dx}+\frac{d\zeta}{dx})$ , $\frac{d\frac{\eta^{2}+\zeta^{2}}{\zeta}}{dx}=\eta\frac{d_{\zeta}^{4}}{dx}+(\frac{\eta}{\zeta}.\frac{d\eta}{dx}+\frac{d\zeta}{dx})=\eta\frac{d_{\zeta}^{1}}{dx}-\frac{\xi}{\zeta}.\frac{d\xi}{dx}$ (38)
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We may replace the coefficient of $\zeta\delta x$ in $V$ of (33), using (36) and (38),

$\frac{d_{\zeta^{-}}^{L\eta}}{dy}-\frac{d\frac{\eta^{2}+\zeta^{2}}{\zeta}}{dx}=$
$\frac{(l^{\xi_{\frac{\eta}{\zeta}}}}{dy}-\eta\frac{d_{\zeta}^{2}}{dx}+\frac{\xi}{\zeta}.\frac{d\xi}{dx}=(\frac{\xi}{\zeta}\frac{d\eta}{dy}+\eta^{d}f\frac{\zeta}{y})-\eta^{d_{\zeta}}\#_{y}+\frac{\xi}{\zeta}.\frac{d\xi}{dx}=\frac{\xi}{\zeta}(\frac{d\xi}{dx}+\frac{d\eta}{dy})$

Samely for $\zeta\delta y,\dot{\tau}_{x}^{--\frac{d\frac{\xi^{2}+\zeta^{2}}{\iota}}{dy}}d^{\xi\lrcorner’}=2\zeta(\partial xd\xi+\neq^{d_{y}})$ . Then $V$ of (33) is reduced as follows :

$V=( \xi\delta x+\eta\delta y+\zeta\delta z)(\frac{d\xi}{dx}+\frac{d\eta}{dy})$ .

4.13. Geometric meaning of $1ddx+\frac{d}{d}qy$ in $V$ .
Before going forward, we must illustrate conveniently the important geometrical expression. Here we

restrict the various direction, we would like to present the following its intuitionally facile method, which
we introduced in Disquisitiones genemles circa superficies curvas. We consider the following layout of
structure.. At first, we put the sphere, of which the radius $=1$ at the center of an arbitrary surface, we

denote the axis of the coordinates $x,$ $y$ and $z$ by the points (1), (2) and (3),. next, taking exterior domain denoted by $s$ , we number a point denoting by the point (4) toward
the normal direction on surface;. then, at an arbitrary point on surface, drawing various rectangle direction toward point of itself,
which we denote by the point (5),. finally, the variation of itself, we suppose that the quantity $\sqrt{\delta x^{2}+\delta y^{2}+\delta z^{2}}$ is always positive,
and we denote the quantity by $\delta c$ for brevity, then $\delta x=\delta e.\cos(1,5)$ , $\delta y=\delta e.\cos(2,5)$ , $\delta z=$

$\delta e.\cos(3,5)$ ,
$(\Downarrow)$ By the way, for understanding Gauss’ method of description of angle, we can show the same method
by Lagrange in $I788.(\Uparrow)$

Here, we consider the every point on the surface. In this boundary, if we call the periphery $P$ , we
can consider the two directions. $(\Downarrow)$ (Remark. $(\cdot)$ is a unique point naming, and $(\cdot,$ $.)$ means the angle
between two points taking an intermidiate of the origin. ) $(\Uparrow)$. At first, we denote the corresponding point to $dP$ by the point (6),. next, we draw the rectangle direction to the surface, which is the inner normally-directed tan-

gential to the surface, then we denote the point by (7),. then, by the hypothesis, these points (6), (7) and (4) look toward the same direction, 25 using
$above-mentio\grave{n}hed(1),$ (2) and (3) then (4, 6), (4, 7) and (6, 7) make a cube, 26 when we consider
each angle as the rectangle.

Thus, the equations (16) in the above-mentioned (\S 4.8) transform into
$\eta Z-\zeta Y=cos(1,7)$ , $\zeta X-\xi Z=\cos(2,7)$ , $\xi Y-\eta X=\cos(3,7)$

The fomulae in the previous article take forms as follows :

$Q=-\delta e.\cos(5,7)$ , $V= \delta e.\cos(4,5).(\frac{d\xi}{dx}+\frac{d\eta}{dy})$ (39)

Here . $Q$ expresses the translation of this point along the periphery $P$ , to which a plane of tangential
surface $U$ , taking as normal in the domain, positive to the opposite direction ;. the factor $V$ is, like $\cos(4,5)$ clearly indicates, the translation of this point on the surface $U$ ,
taking as positive in the domain of the exterior space $s$ .

Here we may summarize $Q$ and $V$ in $\delta U=\int QdP+fVdU$ by the two methods between analytic and
geometric in Table 4. We may explain by replacing $\frac{}{d}d4x+\Delta dyd$ in $V$ of (39), from the point of view in
geometric meaning. In such case, it turns namely as follows: $hom(15)$ , taking derivative in both side of
hand of (15)

$-2 \zeta^{-3}=2\frac{d_{\hat{\sim}}}{dx}.\frac{d\frac{dz}{dx}}{d\zeta}+2\frac{dz}{dy}.\frac{d\frac{dz}{dy}}{d\zeta}$
$\Rightarrow$

$1=- \zeta\frac{dz}{dx}.\zeta^{2}\frac{d\frac{dz}{dx}}{d\zeta}-\zeta\frac{dz}{dy}.\zeta^{2}\frac{d\frac{dz}{dy}}{d\zeta}$ (40)

$25_{This}$ image is considered that there are three directions emitting from a common point and making a certain angle
with two directions (i.e. points.)

$26_{(4,6)},$ $(4,7)$ and (6, 7) malce a plane consisting of a cube respectively.
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TABLE 4. Comparison of $Q$ and $V$ in $\delta U=\int QdP+\int VdU$ between analytic and
geometric method

and finaUy we get the following expression after replacing (40) with $\xi$ and $\eta$

$d \zeta=\xi\zeta^{2}d\frac{dz}{dx}+\eta\zeta^{2}d\frac{dz}{dy}$ (41)

Using (41), $\frac{d\xi}{dx}=-\zeta(\eta^{2}+\zeta^{2})\frac{d^{2}z}{dx^{2}}+\xi\eta\zeta\frac{d^{2}z}{dx.dy}=\frac{1}{R}$ , ’ $\frac{d\eta}{dy}=-\zeta(\xi^{2}+\zeta^{2})\frac{d^{2_{Z}}}{dy^{2}}+\xi\eta\zeta\frac{d^{2_{Z}}}{dx.dy}=\frac{1}{R}$

$\frac{d\xi}{dx}+\frac{d\eta}{dy}$ $=$ $\frac{1}{R}+\frac{1}{R}$ $=$ 一
$\zeta^{3}[\frac{d^{2_{Z}}}{dx^{2}}\{1+(\frac{dz}{dy})^{2}\}-\frac{2d^{2_{Z}}}{dx.dy}.\frac{dz}{dx}.\frac{dz}{dy}+\frac{d^{2_{Z}}}{dy^{2}}\{1+(\frac{dz}{dx})^{2}\}]$ ,

where, $\zeta^{3}$ $=$ $[1+( \frac{dz}{dx})^{2}+(\frac{dz}{dy})^{2}]$

一’
and $R$ and $R’$ are the radit of curvature respectively. (42)

27

. 4.14. Geometrical method. Deducing the parts of $Q$ .
From (34), (39) and (42)

( $I$ ) $\delta U=\int QdP+\int VdU=-\int\delta e.\cos(5,7).dP+\int\delta e.\cos(4,5).(\frac{1}{R}+\frac{1}{R})dU$. (43)

Evolving further the variation, for the expression $W$ is explained by the variation of figure of the space
$s$ , we would like to start to argue at first, from the variation of the space $s$ . Recalling that we consider in
\S 4.9, the prism with the equal sides and oriented to the solid body, then, on this point, we can see that this
prism has the followings: (1) the size of basement: $dU,$ $.(2)$ the height: $\xi\delta x+\eta\delta y+\zeta\delta z=\delta e.coe(4,5)$ ,
where $\delta e=\sqrt{\delta x^{2}+\delta y^{2}+\delta_{\sim^{2}}\gamma},$ $.(3)$ the sign $(\pm)$ of height depends on $transpe\dot{r}ting$ triangle, according
to the location of whole solid lyin$g$ whether in terior or exterior of the space $s$ . Hence, we can get
(II) $\delta s=\int dU.\delta e.\cos(4,5)$ . Next, from (II), the variation of $fzds$ (In) follows : (III) $\delta\int zds=$

$fzdU.\delta e.\cos(4,5)$ .
As long as the variational quantity $T$ , we can see that $P$ is the limit point havin$g$ commonly the

surface $T$ and $U$ , the $tran_{1}spositiona1$ point of the circumference $P$ satisfies owing to these condition,
and newly keeps in the surface space $S$ . By the transpositional element $dP$, as the partial displacement
of the surface $T$ , we get easily $\pm dP.\delta e.\sin(5,6)$ . In general, the choice of positive or negative sign
depends on the sign of $\cos(4,5)$ . We would like to explain it by introducing the new directions such
that : (1) the space $S$ tangential in the surface plane, (2) the normal-directional line $P$ , and (3)
the exterior space $s$ , respectively. If denoting the responding direction with the point (8), then by the
transpositioning element $dP$ , we get the surface variation of $T,$ $hom$ the definition, as $dP.\delta e.\cos(5,8)$ ,
namely (IV) $\delta T=\int dP.\delta e.\cos(5,8)$ , where, the sign of factor $\cos(5,8)$ depends on the conditions of
whether increment or decrement. When we assume that :. at first, the point (6) were the pole of the maximum circle passing through the two points : (7)

and (8), then the point (5) is the highest point in the circle made by the two points (6) and (8) ;. ned, the points (5). (7) and (8) make a rectanglar triangle, having the rectangle at the point (8)
;. then, we can get the expression: $\cos(5,7)=\cos(5,8).\cos(7,8)$ , where, the arc (7, 8) is the
measure of angle between planes of the two surface spaces : $s$ and $S$ , which are tangential
intersecting with the point $P$ and the plane domain, including null space ;. finally, we denote the angle making with (7, 8) by $i$ , i.e. $i=(7,8)$ and by $2\pi-i$ , the angle between
plane domain, in which the space $s$ is continue.

$27(\Downarrow)$ cf. Laplace [13, 14] had deduced his same expraesion with Gauss’ (42). cf. Poisson [26], p.105.
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Then we can formulate (V) as follows: (V) $\cos(5,7)=\cos(5,8).\cos i$ .
4.15. Result.1 : deduction of height &om the first fundamental theorem.

By the combination of above formulae I, $\cdot\cdot\cdot$ , IV, we get the variational expression of $W$ , where, $W$ is
the value of (14).

$\delta W=\int dU.\delta e$ . cos(4.5). $[z+ \alpha^{2}(\frac{1}{R}+\frac{1}{R})]-\int dP.\delta e.\cos(5,8).(\alpha^{2}\cos i-\alpha^{2}+2\beta^{2})$

where, $z+ \alpha^{2}(\frac{1}{R}+\frac{1}{R})=Const$ . If we set Const $=0$ , then $z=- \alpha^{2}(\frac{1}{R}+\frac{1}{R})$ .
and, $z$ is the height of capillary action, $\alpha$ and $\beta$ are the values defined in (13).

4.16. Result.2 : deduction of angle from the second fundamental theorem.

$\delta W=-\int dP.\delta e.\cos(5,8).(\alpha^{2}\cos i-\alpha^{2}+2\beta^{2})=\alpha^{2}\int dP.\delta e.\cos(5,8).(1-2(\frac{\beta}{\alpha})^{2}-\cos i)$

Here, we assume $A$ such that $e,osA=1-2\sin^{2}(\frac{A}{2})=1-2_{\overline{\alpha}}^{\beta_{V}^{2}}$ . If $\sin\frac{A}{2}=\frac{\beta}{\alpha}$ , then

$\delta W=\alpha^{2}\int dP.\delta e.\cos(5,8).(\cos A-\cos i)$ ,

where, the integral is to be extended along the total line $P$ . Remember that the factor $\cos(5,8)$ is
equivalent with $\sin(5,6),$

$28$ and the sign becomes plus or minus, according to fluid in motion in the
neighbourhood of element $dP$ or moreover, it reachs to the end point of $P$ , or it comes to disappear.

5. Conclusions
(1) The “two-constants” were defined in terms of kernel functions of RDFs, describing the charac-

teristics of dissipation or diffusion within isotropic and homogeneous fluids that were necessary
for the interpretation of the nature of fluid or the formulation of the equations of the fluid me-
chanics including kinetics, equilibrium and capillarity. With their origin perhaps arising in the
work of Laplace in 1805, these sorts of functions are simple examples of today’s distributions and
hypergeometric function of Schwarz proposed in 1945.

(2) Gauss [8] also contributed to develop fundamental conception of $RDF$ or MDNS equations for
fluid mechanics including capillary action, because he formulated the equations with two-functions
instead of two.constants and these were the superior method &om other contemporaries with the
progenitors of $NS$ equations.

(3) According to Bolza [2], Gauss [8] had broken one of the neck of fundamental problems, such as
multiple integral and calculus of vanations, however, we must recognaize that even he owed the
latter to its progenitor Lagrange, and calculation of capillarity to its progenitor Laplace.
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