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We consider the second-order nonlinear difference equation

$\Delta^{2}x(n)+\frac{1}{n(n+1)}f(x(n))=0$ , $n\in N$ (1)

where $f(x)$ is a real valued continuous function satisfying

$x \int(x)>0$ if $x\neq 0$ . (2)

Here the forward difference operator $\triangle$ is defined as $\triangle x(n)=x(n+1)-x(7t)$ and $\triangle^{2}x(n)=$

$\Delta(\triangle x(n))$ .
A nontrivial solution $x(n)$ is said to be oscillatory if for evely positive integer $N$ there exists

$n\geq N$ such that $x(n)x(n+1)\leq 0$. Otherwise it is said to be non-oscillatory. In other words,

a solution $x(n)$ is non-oscillatory if it is either eventually positive or evenmally negative.
Since equation (1) is one ofthe discrete equation of the differential equation

$x”+ \frac{1}{t^{2}}f(x)=0$ , $/= \frac{d}{dt}$ , (3)

the oscillation problem for equation (3) plays an important role in the oscillation of solutions
of equation (1). Over the past a decade, a great deal of effort has been devoted to the study
of oscillation of solutions of equation (3). For example, those results can be found in [1-7].

In particular, Sugie and Kita [3] gave the following pair of an oscillation theorem and a non-
oscillation theorem for equation (3).

Theorem A. Assume (2) and suppose that there exists $\lambda$ with $\lambda>I/4$ such that

$\frac{f(x)}{x}\geq\frac{1}{4}+\frac{\lambda}{(\log x^{2})^{2}}$ (4)

for $|x|sufficiently$ large. Then all non-trivial solutions ofequation (3) are oscillatory.

Theorem B. Assume (2) and suppose that

$\frac{f(x)}{x}\leq\frac{1}{4}+\frac{1}{4(\log x^{2})^{2}}$ (5)

for $x>0$ or $x<0,$ $|x|$ sufficiently large. Then all non-trivial solutions of equation (3) are
non-oscillatory.
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Remark 1. To discuss the oscillation problem for equation (3), Sugie and Kita assumed that
$\int(x)$ satisfies a suitable smoothness condition for the uniqueness ofsolutions of(3) to the initial
value problem.

The purpose ofthis paper is to give an oscillation theorem for equation (1) corresponding to
Theorem A. Our main result is stated as follows.

Theorem 1. Assume (2) and suppose that there exists $\lambda$ with $\lambda>1/4$ such that (4) holds for
$|x|sufficiently$ large. Then all non-trivial solutions ofequation (1) are oscillatory.

Judging from Theorem $B$ , it seems reasonable to expect as follows.

Conjecture 1. Assume (2) and suppose that (5) holdsfor $x>0$ or $x<0_{J}|x|sufficiently$ large.
Then all non-trivial solutions ofequation (1) are non-oscillatory.

To prove Theorem 1, we prepare some lemmas.

Lemma 1. Assume (2) and suppose that equation (1) has a positive solution. Then the solution
is increasingfor $n$ sufficiently large and it tends to $\infty$ as $narrow\infty$ .

Proof. Let $x(n)$ be a positive solution of equation (1). Then there exists $n_{0}\in \mathbb{N}$ such that
$x(n)>0$ for $n\geq n_{0}$ . Hence, by (2) we have

$\triangle^{2}x(n)=-\frac{1}{n(n+1)}f(x(n))<0$ (6)

for $n\geq n_{0}$ .
We first show that $\triangle x(t)>0$ for $n\geq n_{0}$ . By way of contradiction, we suppose that there

exists $n_{1}\geq n_{0}$ such that $\Delta x(n_{1})\leq 0$ . Then, using (6), we have

$\triangle x(n)<\triangle x(n_{1})\leq 0$

for $n>n_{1}$ , and therefore, we can find $n_{2}>n_{1}$ such that $\triangle x(n_{2})<0$ . Using (6) again, we get

$\Delta x(n)\leq\Delta x(n_{2})<0$

for $n\geq n_{2}$ . Hence we obtain

$x(n)\leq\triangle x(n_{2})(n-n_{2})+x(n_{2})arrow-\infty$

as $narrow\infty$ , which is a contradiction to the assumption that $x(n)$ is positive for $n\geq n_{0}$ . Thus,
$x(n)$ is increasing for $n\geq n_{0}$ .

9



We next suppose that $x(n)$ is bounded ffom above. Then there exists $L>0$ such that
$\lim_{narrow\infty}x(n)=L$. Since $\int(x)$ is continuous on $\mathbb{R}$ , we have $\lim_{narrow\infty}f(x(n))=f\cdot(L)$ , and
therefore, there exists $n_{3}\geq n_{0}$ such that

$0< \frac{f(L)}{2}<f(x(n))$

for $n\geq n_{3}$ . Hence, we have

$\Delta x(m)=\Delta x(n)+\sum_{j=m}^{n-1}\frac{1}{j(j+1)}f(x(j))$

$> \frac{J(L)}{2}\sum_{j=m}^{n-1}\frac{1}{j(j+1)}=\frac{f(L)}{2}(\frac{1}{m}-\frac{1}{n})$

for $n>m\geq n_{3}$ . Taking the limit of this inequality as $narrow\infty$ , we get

$\Delta x(m)\geq\frac{f(L)}{2m}$

for $m\geq n_{3}$ , and therefore, we obtain

$x(m+1) \geq x(n_{3})+\frac{f(L)}{2}\sum_{k=n_{3}}^{m}\frac{1}{k}arrow\infty$

as $marrow\infty$ . This contradicts the assumption that $x(n)$ is bounded from above. Thus, we have
$\lim_{narrow\infty}x(n)=\infty$. The proof is now complete. $\square$

Lemma 2. Suppose that the dference inequality

$\triangle w(n)+\frac{1}{n+w(n)}(w(n)-\frac{1}{2})^{2}\leq 0$ (7)

has a positive solution. Then the solution is nonincreasing and tends to 1/2 as $narrow\infty$ .

Proof. Let $w(n)$ be a positive solution of (7). Then there exists $n_{0}\in N$ such that $w(n)>0$ for
$n\geq n_{0}$ . Hence, we see that $w(n)$ is nonincreasing because $w(n)$ satisfies

$\triangle w(n)\leq-\frac{1}{n+w(n)}(w(n)-\frac{1}{2})^{2}\leq 0$

for $n\geq n_{0}$ . Thus, we can find $\alpha\geq 0$ such that $w(n)\searrow\alpha$ as $narrow\infty$ . If $\alpha\neq 1/2$, then there
exists $ni\geq n_{0}$ such that $|w(n)-1/2|>|\alpha-1/2|/2$ for $n\geq n_{1}$ . Since $w(n)$ is nonincreasing,
there exists $n_{2}\geq n_{1}$ such that $w(n)<n$ for $n\geq n_{2}$ . Hence, we have

$\Delta w(n)\leq-\frac{1}{n+w(n)}(w(n)-\frac{1}{2})^{2}\leq-\frac{1}{2n}(\frac{\alpha-1/2}{2})^{2}$
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for $n\geq n_{2}$ , and therefore, we get

$w(n+1)-w(n_{2}) \leq-\frac{1}{2}(\frac{\alpha-1/2}{2})^{2}\sum_{j=n_{2}}^{n}\frac{1}{j}arrow-\infty$

as $narrow$ oo. This is a contradiction to the assumption that $w(n)$ is positive for $n\geq n_{0}$ . $\square$

Lemma 3. Suppose that $w(n)$ and $v(n)$ satisfy $w(n_{0})=v(n_{0})$ ,

$w(n+1)\leq F(n, w(n))$ and $v(n+1)=F(n, v(n))$

for $n\geq n_{0}$ where $F(n, x)$ is nondecreasing with respect to $x\in \mathbb{R}for$ eachfxed $n$. Then

$w(n)\leq v(n)$ (8)

for $n\geq n_{0}$ .

Proof. We use mathematical induction on $n$ . Let $n=n_{0}$ . Then it is clear that (8) holds.
Assume that (8) holds for $n=n_{1}$ . Since $F$ is nondecreasing with respect to $x$ for each fixed $n$,

we have
$w(n_{1}+1)\leq F(n_{1}, w(n_{1}))\leq F(n_{1}, v(n_{1}))=v(n_{1}+1)$ .

ThuS, We see that (8) holds for $n=n_{1}+1$ This completes the proof 口

We next consider the second-order linear difference equation

$\triangle^{2}x(n)+\frac{1}{n(n+1)}\{\frac{1}{4}+\frac{\lambda}{l(n)l(n+1)}\}x(n)=0$, (9)

where $l(n)$ satisfies $\triangle l(n)=2/(2n+1)$ .

Proposition 1. Equation (9) has the general solution

$x(n)=\{\begin{array}{l}K_{1}\prod_{j=no}^{n-1}(1+\frac{1}{2j}+\frac{z}{jl(j)})+K_{2}\prod_{j=n_{0}}^{n-1}(1+\frac{1}{2j}+\frac{1-z}{jl(j)}) if \lambda\neq\frac{1}{4},K_{3}\prod_{j=n_{0}}^{n-1}(1+\frac{1}{2j}+\frac{1}{2jl(j)})+K_{4}\sum_{r=no}^{n-1}\prod_{j=r+1}^{n-1}(1+\frac{1}{2j}+\frac{1}{2jl(j)})\cross\prod_{k=n_{0}}^{r}\{1-\frac{1}{2k}(1+\frac{1}{l(k)})\} if \lambda=\frac{1}{4},\end{array}$

where $K_{1},$ $K_{2},$ $K_{3},$ $K_{4}$ are arbitrary constants and $z$ is the root ofthe characteristic equation

$z^{2}-z+\lambda=0$ . (10)
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Proof. Let $x(n)$ be a solution of equation (9) satisfying

$\triangle:\iota;(n)=\frac{1}{n}(\frac{1}{2}+\frac{z}{1(n)})x(r|,)$ .

Then we have

$\triangle^{2}x(n)=\triangle\{\frac{1}{n}(\frac{1}{2}+\frac{z}{l(n)})\}x(n)+\frac{1}{n+1}(\frac{1}{2}+\frac{z}{l(n+1)})\triangle x(n)$

$= \{\Delta(\frac{1}{n})(\frac{1}{2}+\frac{z}{l(n)})+\frac{1}{n+1}\Delta(\frac{z}{l(n)})\}x(n)$

$+ \frac{1}{n+1}(\frac{1}{2}+\frac{z}{l(n+1)})\frac{1}{n}(\frac{1}{2}+\frac{z}{l(n)})x(n)$

$= \{-\frac{1}{n(n+1)}(\frac{1}{2}+\frac{z}{l(n)})-\frac{z\triangle l(n)}{(n+1)l(n)l(n+1)}\}x(n)$

$+ \frac{1}{n(n+1)}(\frac{1}{4}+\frac{z}{2l(n)}+\frac{z}{2l(n+1)}+\frac{z^{2}}{l(n)l(n+1)})x(n)$

$=- \frac{1}{n(n+1)}\{\frac{1}{2}+\frac{z}{l(n)}+\frac{zn\Delta l(n)}{l(n)l(n+1)}$

$-( \frac{1}{4}+\frac{z}{2l(n)}+\frac{z}{2l(n+1)}+\frac{z^{2}}{l(n)l(n+1)})\}x(n)$

$=- \frac{1}{n(n+1)}\{\frac{1}{4}+\frac{z}{2l(n)}-\frac{z}{2l(n+1)}+\frac{zn\triangle l(n)-z^{2}}{l(n)l(n+1)}\}x(n)$

$=- \frac{1}{n(n+1)}\{\frac{1}{4}+\frac{\frac{z}{2}\Delta l(n)}{l(n)l(n+1)}+\frac{zn\triangle l(n)-z^{2}}{l(n)l(n+1)}\}x(n)$

$=- \frac{1}{n(n+1)}\{\frac{1}{4}+\frac{(n+\frac{1}{2})\Delta l(n)z-z^{2}}{l(n)l(n+1)}\}x(n)$

$=- \frac{1}{n(n+1)}\{\frac{1}{4}+\frac{z-z^{2}}{l(n)l(n+1)}\}x(n)$ ,

and therefore, we obtain the characteristic equation (10). Hence, we see that

$\phi(n)=\prod_{j=n_{0}}^{n-1}(1+\frac{1}{2j}+\frac{z}{jl(j)})$ and $\psi(n)=\prod_{j=n_{0}}^{n-1}(1+\frac{1}{2j}+\frac{1-z}{jl(j)})$

are solutions of equation (9). we also see that $\phi(n)$ and $\psi(n)$ are linearly independent if $\lambda\neq$

$1/4$ .
Next, we consider the case that $\lambda=1/4$ . Then the characteristic equation (9) has the double

root 1/2. Let
$u(n)= \triangle x(n)-\frac{1}{2n}(1+\frac{1}{l(n)})x(n)$ . (11)

Then $u(n)$ satisfies

$\Delta u(n)=-\frac{1}{2(n+1)}(1+\frac{1}{l(n+1)})u(n)$ ,
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and therefore, we have

$u(n+1)= \{1-\frac{1}{2(n+1)}(1+\frac{1}{l(n+1)})\}u(n)$

$= \prod_{k=n0-1}^{n}\{1-\frac{1}{2(k+1)}(1+\frac{1}{l(k+1)}I\}u(n_{0}-1)$

$= \prod_{k=n_{0}}^{n+1}\{1-\frac{1}{2k}(1+\frac{1}{l(k)})\}u(n_{0}-1)$ .

Substituting $u(n)$ into (11), we obtain the first-order linear difference equation

$\triangle x(n)=\frac{1}{2n}(1+\frac{1}{l(n)})x(n)+\prod_{k=n_{0}}^{n}\{1-\frac{1}{2k}(1+\frac{1}{l(k)})\}u(n_{0}-1)$ ,

and therefore, we get

鉛 (n) $= \prod_{j=n_{0}}^{n-1}(1+\frac{1}{2j}+\frac{1}{2jl(j)})x(n_{0})$

$+ \sum_{r=n_{0}}^{n-1}\prod_{j=r+1}^{n-1}(1+\frac{1}{2j}+\frac{1}{2jl(j)})\prod_{k=n_{0}}^{r}\{1-\frac{1}{2k}(1+\frac{1}{l(k)})\}u(n_{0}-1)$ .

Thus, we conclude that

$\phi(n)=\prod_{j=n_{0}}^{n-1}(1+\frac{1}{2j}+\frac{1}{2jl(j)})$

and

$\psi(n)=\sum_{r=n0}^{n-1}\prod_{j=r+1}^{n-1}(1+\frac{1}{2j}+\frac{1}{2jl(j)})\prod_{k=n_{0}}^{r}\{1-\frac{1}{2k}(1+\frac{1}{l(k)})\}$

are solutions of (9). Moreover we see that $\phi(n)$ and $\psi(n)$ are linearly independent. $\square$

In case $\lambda>1/4$ , the characteristic equation (10) has conjugate roots

$z= \frac{1\pm i\sqrt{4\lambda-1}}{2}$ .

Hence, by Euler’s formula, the real solution of equation (9) can be written as

$x(n)=K_{5}( \prod_{=n_{0}}^{n-1}r(j))\cos(\sum_{j=n_{0}}^{n-1}\theta(j))+K_{6}(\prod_{=n_{0}}^{n-1}r(j))\sin(.\sum_{=n_{0}}^{n-1}\theta(j))$

where $r(j)$ and $\theta(j)$ satisfy $0<\theta(j)<\pi/2$ ,

$r(n) \cos\theta(n)=1+\frac{1}{2n}+\frac{1}{2nl(n)}$ and $r(n) \sin\theta(n)=\frac{\sqrt{4\lambda-1}}{2nl(n)}$

for $n_{0}\leq j\leq n-1$ . Hence, together with Proposition 1, we have the following lemma.
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Lemma 4. Equation (9) can be classified into two types asfollows.
(i) If $\lambda>1/4$, then all non-trivial solutions ofequation (9) are oscillatory.

(ii) If $\lambda\leq 1/4$, then all non-trivial solutions ofequation (9) are non-oscillatory.

We are now ready to prove our main theorem.

Proof of theorem 1. By way of contradiction, we suppose that equation (1) has a non-oscil-
latoly solution $x(n)$ . Then we may assume without loss of generality that $x(n)$ is eventually
positive. Let $R$ be a large number satisfying the assumption (4) for $|x|\geq R$ . From Lemma 1,
$\prime c(n)$ is increasing and $\lim_{narrow\infty}x(n)=\infty$ , and therefore, there exists $n_{0}\in N$ such that $x(n)\geq$

$R$ and $\Delta x(n)>0$ for $n\geq n_{0}$ .
We define

$w(n)= \frac{n\triangle x(n)}{x(n)}$ .

Then, using (4), we have

$\Delta w(n)=\frac{\Delta(n\Delta x(n))x(n)-n(\Delta x(n))^{2}}{x(n)x(n+1)}$

$= \frac{\Delta x(n)+(n+1)\triangle^{2}x(n)}{x(n+1)}-n\frac{(\Delta x(n))^{2}}{\tau(n)x(n+1)}$

$= \frac{\triangle x(n)-f(x(n))/n}{x(n)}\frac{x(n)}{x(n+1)}-\frac{1}{n}(n\frac{\Delta x(n)}{x(n)})^{2}\frac{x(n)}{x(n+1)}$

$= \frac{1}{n}\{n\frac{\triangle x(n)}{x(n)}-\frac{f(x(n))}{x(n)}-(n\frac{\Delta x(n)}{x(n)})^{2}\}\frac{x(n)}{x(n+1)}$

$\leq\frac{1}{n}\{w(n)-(\frac{1}{4}+\frac{\lambda}{(\log x(n)^{2})^{2}})-w(n)^{2}\}\frac{x(n)}{x(n+1)}$

$=- \frac{1}{n}\{(w(n)-\frac{1}{2})^{2}+\frac{\lambda}{(\log x(n)^{2})^{2}}\}\frac{x(n)}{x(n+1)}$

$=- \frac{1}{n+w(n)}\{(w(n)-\frac{1}{2})^{2}+\frac{\lambda}{(\log x(n)^{2})^{2}}\}$

for $n\geq n_{0}$ . From Lemma 2, we see that $w(n)\searrow 1/2$ as $narrow\infty$ , because $w(n)$ is positive and
satisfies (7) for $n\geq n_{0}$ .

Since $\lambda>1/4$, we can find $\epsilon_{0}>0$ such that

$\frac{1}{4}<\frac{1}{4}(1+4\epsilon_{0})^{2}<\lambda$ . (12)

Then we see that there exists $n_{1}>n_{0}$ such that

$w(n) \leq\frac{1}{2}+\epsilon_{0}$
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for $n\geq n_{1}$ , and therefore, we have

$x(n+1) \leq\{1+(\frac{1}{2}+\epsilon_{0})\frac{1}{n}\}x(n)$

for $n\geq n_{1}$ . Thus, we get

$x(n) \leq\prod_{j=n_{1}}^{n-1}\{1+(\frac{1}{2}+\epsilon_{0})\frac{1}{j}\}x(n_{1})$

for $n>n_{1}$ , and therefore, there exists $n_{2}\geq n_{1}$ such that

$\log x(n)\leq\sum_{j=n_{1}}^{n-1}\log\{1+(\frac{1}{2}+\epsilon_{0})\frac{1}{j}\}+\log x(n_{1})$

$\leq\sum_{j=n_{1}}^{n-1}(\frac{1}{2}+\epsilon_{0})\frac{1}{j}+1ogx(n_{1})$

$\leq\frac{1+4\epsilon_{0}}{2}l(n)$

for $n\geq n_{2}$ . Hence, we obtain

$\triangle w(n)\leq-\frac{1}{n+w(n)}\{(w(n)-\frac{1}{2})^{2}+\frac{\lambda}{(1+4\epsilon_{0})^{2}l(n)l(n+1)}\}$

for $r’\geq/|,2$ , because $l(r\}.)<l(n+1)$ for $n\geq n_{2}$ .
Let $v(n)$ be a solution of the difference equation

$\triangle v(n)=-\frac{1}{n+v(n)}\{(v(n)-\frac{1}{2})^{2}+\frac{\lambda}{(1+4\epsilon_{0})^{2}l(n)l(n+1)}\}$

satisfying the initiaI condition $w(n_{2})=v(n_{2})$ . Then from Lemma 3, we obtain $0<w(n)<$
$v(n)$ for $n\geq n_{2}$ . Letting

$y(n)= \prod_{j=n0}^{n-1}(1+\frac{v(j)}{j})$ ,

we can easily see that $y(n)$ is a positive solution of the difference equation

$\triangle^{2}y(n)+\frac{1}{n(n+1)}\{\frac{1}{4}+\frac{\lambda}{(1+4_{\mathcal{E}_{0}})^{2}l(n)l(n+1)}\}y(n)=0$ .

Hence, from Lemma 4, we have
$\frac{\lambda}{(1+4\epsilon_{0})^{2}}$ 己，

which iS a contradiction tO (12) 口
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