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Oscillation theorems for second-order nonlinear difference equations
of Euler type
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We consider the second-order nonlinear difference equation

1
2 - — 1
A :c(n)+n(n+1)f(x(n)) 0, n €N (1)
where f(z) is a real valued continuous function satisfying
zf(x) >0 if ©#0. )

Here the forward difference operator A is defined as Az(n) = z(n + 1) — z(n) and A%z(n) =
A(Az(n)).

A nontrivial solution z(n) is said to be oscillatory if for every positive integer N there exists
n > N such that z(n)z(n + 1) < 0. Otherwise it is said to be non-oscillatory. In other words,
a solution z(n.) is non-oscillatory if it is either eventually positive or eventually negative.

Since equation (1) is one of the discrete equation of the differential equation

d

== 3
the oscillation problem for equation (3) plays an important role in the oscillation of solutions
of equation (1). Over the past a decade, a great deal of effort has been devoted to the study
of oscillation of solutions of equation (3). For example, those results can be found in [1-7].
In particular, Sugie and Kita [3] gave the following pair of an oscillation theorem and a non-

a:"+%2~f(x)=0, !

oscillation theorem for equation (3).
Theorem A. Assume (2) and suppose that there exists X with A > 1/4 such that

flz) _ 1 A
T 2 4 + (log x2)? @

Jor |z| sufficiently large. Then all non-trivial solutions of equation (3) are oscillatory.

Theorem B. Assume (2) and suppose that

flz) _1 1
< - 5
z ~ 4 + 4(log 2)? )
for x > 0 or x < O, |z| sufficiently large. Then all non-trivial solutions of equation (3) are

non-oscillatory.
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Remark 1. To discuss the oscillation problem for equation (3), Sugie and Kita assumed that
/(z) satisfies a suitable smoothness condition for the uniqueness of solutions of (3) to the initial

value problem.

The purpose of this paper is to give an oscillation theorem for equation (1) corresponding to

Theorem A. Our main result is stated as follows.

Theorem 1. Assume (2) and suppose that there exists A with A > 1/4 such that (4) holds for

\x| sufficiently large. Then all non-trivial solutions of equation (1) are oscillatory.
Judging from Theorem B, it seems reasonable to expect as follows.

Conjecture 1. Assume (2) and suppose that (5) holds for > 0 or x < 0, |z| sufficiently large.

Then all non-trivial solutions of equation (1) are non-oscillatory.
To prove Theorem 1, we prepare some lemmas.

Lemma 1. Assume (2) and suppose that equation (1) has a positive solution. Then the solution

is increasing for n sufficiently large and it tends to 0o as n — .

Proof. Let z(n) be a positive solution of equation (1). Then there exists ny € N such that
z(n) > 0 for n > ny. Hence, by (2) we have

AZs(n) = —mf(w(n)) <0 ©)

forn > ng.
We first show that Az(t) > 0 for n > ny. By way of contradiction, we suppose that there
exists n; > ng such that Az(n;) < 0. Then, using (6), we have

Az(n) < Az(n;) <0
for n > n;, and therefore, we can find ny > n; such that Az(n,) < 0. Using (6) again, we get
Az(n) < Az(ny) <0
for n > n,. Hence we obtain
z(n) < Az(ng)(n — ng) + z(nz) — —oo

as n — oo, which is a contradiction to the assumption that z(n) is positive for n > ng. Thus,

z(n) is increasing for n > ny.
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We next suppose that z(n) is bounded from above. Then there exists L > 0 such that
lim, . z(n) = L. Since f(z) is continuous on R, we have lim,_,, f(z(n)) = f(L), and

therefore, there exists ng > ng such that

0< Z% < f(z(n))

for n > n3. Hence, we have

n—1 1 '
a(m) =0a(r) + 3 577y )

NS f(L)(l 1)

2 j=m](j+1)= 2 \m n

for n > m > ng. Taking the limit of this inequality as n — oo, we get

f(L)

for m > ng, and therefore, we obtain
L) &1
z(m+ 1) Zx(n3)+f( ) Z z o

as m — oo. This contradicts the assumption that z(n) is bounded from above. Thus, we have

lim,_, z(n) = oo. The proof is now complete. O

Lemma 2. Suppose that the difference inequality

Aw(n) + ___17”_) (w(n) - %)2 <0 )

n+w
has a positive solution. Then the solution is nonincreasing and tends to 1/2 as n — oc.

Proof. Let w(n) be a positive solution of (7). Then there exists no € N such that w(n) > 0 for

n > ng. Hence, we see that w(n) is nonincreasing because w(n) satisfies

1 1\?
S — -2 <
Aw(n) < o (w(n) 2) <0
for n > ng. Thus, we can find o > 0 such that w(n) \, @ as n — oo. If a # 1/2, then there
exists n; > ng such that [w(n) — 1/2| > |a = 1/2|/2 for n > n,. Since w(n) is nonincreasing,

there exists n, > n; such that w(n) < n for n > n,. Hence, we have




for n > ny, and therefore, we get

w(n—i—l)—w(nz)g—%(a_l/z) Z S

_17.2

as n — oo. This is a contradiction to the assumption that w(n) is positive for n > n,. d
Lemma 3. Suppose that w(n) and v(n) satisfy w(ng) = v(ng),

w(n+1) < F(n,w(n)) and v(n+1)= F(n,v(n))
Jor n > ng where F(n, x) is nondecreasing with respect to x € R for each fixed n. Then

w(n) < v(n) (8)
forn > ny.

Proof. We use mathematical induction on n. Let n = ng. Then it is clear that (8) holds.
Assume that (8) holds for n = n,. Since F is nondecreasing with respect to x for each fixed n,
we have

w(ni +1) < F(ny, w(ng)) < F(ny,v(ny)) = v(ng + 1).
Thus, we see that (8) holds for n = n; + 1. This completes the proof. a

We next consider the second-order linear difference equation

9 1 1 A _
Az(n) + n(n+1) {Z * I(n)l(n+1) } z(n) =0, ©)

where [(n) satisfies Al(n) = 2/(2n + 1).

Proposition 1. Equation (9) has the general solution

¢ n-1

Kl,go( L )+K2H< ) TG
x(n)=J Ksjﬁo (1+21j )*K“;‘;]ﬁl( 2311(3))
| "JJﬁ“z‘K”R%N A5

where K1, Ky, K3, K4 are arbitrary constants and z is the root of the characteristic equation

2Z2—z+A=0. (10)
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Proof. Let z(n) be a solution of equation (9) satisfying

Av(n) = (% + ﬁ) 2(n).

Then we have
A’g(n) =A {;Ll- (% + Z(Zfﬁ) }x(n) | (% e 1)) Az(n)
~{o(3) Graig) e () oo
¥ il(l znil)>1(%+@)x(")
={_ n+1( ) n+1§ﬁé§7(n+l)}x(")

1 z 22
n(n 1(21 2Am) T +1) l(n)l(n+1))$(n)

{l 2nA n)
- n(n+1) 2 l() l(n)l(n+1)

1 z 2 22
- (Z+zz<n>+ An + 1) <><n+1>)}x(")
z znAl(n) — z
21( ) T Am+D) | imin 1) }’”(”)
2Al(n) znAl(n) — 22} (n)
(n)ln+1)  In)l(n+1)

(n+ )Aln)z—z}x(n)

-+

+

+

l(n)l(n+1)

- o it )

and therefore, we obtain the characteristic equation (10). Hence, we see that

2

— 3

+
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LB S Y S I O

=
— S
+
=

"’(”)iﬁo( +i+ﬂ) and ¢(n)=]§:<l+%+%ﬁ)

are solutions of equation (9). we also see that ¢(n) and ¢(n) are linearly independent if \ #
1/4.

Next, we consider the case that A = 1/4. Then the characteristic equation (9) has the double
root 1/2. Let

u(n) = Az(n) — % (1 + %5) z(n). (11)

Then u(n) satisfies

1 1
Au(n) = TCES)) (1 + m) u(n),



and therefore, we have

Substituting u(n) into (11), we obtain the first-order linear difference equation

aatr) = 5. (1+ 755 to ’“H{ 2 (14 77) f o= 1

and therefore, we get

ot 1 1
z(n) = H (1 + % + m) z(ng)

Jj=no

ST ( 2ﬂ1<))ﬁ{l”i(”ﬁ%))}“(”"'”‘

r=ngy ]-—7‘+1 :no

Thus, we conclude that

¢(n)=ﬁ <1+2ij+2—jl}(?5)

and o h .
v= ZH( *35) H{l % ()}

are solutions of (9). Moreover we see that ¢(n) and ¢(n) are linearly independent.

In case A > 1/4, the characteristic equation (10) has conjugate roots
_lEivar -1
=
Hence, by Euler’s formula, the real solution of equation (9) can be written as
n—1 n—1 n—1 n-1
II r(j).) cos (Z 9(j>> +Ks | I] r(j)) sin | ) 6(3‘))
j=no j=ng j=ng j=ng
where r(j) and 6(5) satisfy 0 < 6(3) < 7/2,

1 1 . Vi -1

r(n)cosf(n) = 1+ + 35 ni(n) and r(n) Smg‘(n) ~ 2ni(n)

forng < j < n — 1. Hence, together with Proposition 1, we have the following lemma.

13
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Lemma 4. Equation (9) can be classified into two types as follows.
(i) If A > 1/4, then all non-trivial solutions of equation (9) are oscillatory.

(ii) If A < 1/4, then all non-trivial solutions of equation (9) are non-oscillatory.

We are now ready to prove our main theorem.

Proof of theorem 1. By way of contradiction, we suppose that equation (1) has a non-oscil-
latory solution z(n). Then we may assume without loss of generality that z(n) is eventually
positive. Let R be a large number satisfying the assumption (4) for |z| > R. From Lemma 1,
z(n) is increasing and lim, ., z(n) = oo, and therefore, there exists ny € N such that x(n) >
Rand Az(n) > 0 for n > ny.

We define
nAz(n)

z(n)

w(n) =
Then, using (4), we have

A(nAz(n))z(n) — n(Az(n))?
Auln) == e+ )
Az(n) + (n+1)A%(n) _  (Az(n)?
r(n+1) r(n)z(n + 1)
_Az(n) - f(z(n)/n__z(n) 1( Ax(n))2 z(n)
(

B z(n) zn+1) n z(n) /) z(n+1)

_1 {nAw(n) _ fz() _ (nAx(n)>2} z(n)
n

z(n) z(n) z(n) z(n+1)

1 A z(n)
(ot~ (3 Togatorm) —} i
__1 BEA R, z(n)
I {(“’(") 2) + (logx(n)2)2} z(n+ 1)

1 1\? A
=‘n+w<n>{(‘”(”’ ) (log z(n >2>2}

for n > ny. From Lemma 2, we see that w(n) \, 1/2 as n — oo, because w(n) is positive and

<

St

satisfies (7) for n > n,.
Since A > 1/4, we can find &g > 0 such that

1 1 \
7 < 7(1+4e0)” < (12)

Then we see that there exists n; > ng such that

1
'w(n) S § + €9
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for n > ny, and therefore, we have

2(n+1) < {1 + (% +50> %}x(n}

n—1
1 1
z(n) < H {1 + (5 +eo) E}x(nl)
j=n1
for n > n;, and therefore, there exists n, > n; such that

n—1
1 1
logz(n) < JZn log {1 + (5 -l—eo) 3} + log z(n;)

for n > ny. Thus, we get

1l
S

n—-1
1 1
< = +¢eo ) = +logz(ny)
j=ni1 2 J
4
< 1 > Eol(n)

for n > n,. Hence, we obtain

1 1\? A
Aw(n) < =) { (w(“) - 5) T A ¥ 42 (min+ 1) }

for n. > ny, because I(n) < l(n + 1) for n > na.
Let v(n) be a solution of the difference equation

1 1\* X
A =——— - =
vln) = { (”(") 2) T T 2 2im)iin+ 1) }
satisfying the initial condition w(n2) = v(ng). Then from Lemma 3, we obtain 0 < w(n) <
v(n) for n > ny. Letting

_y(n)=ﬁ1 (H%]))

J=no

we can easily see that y(n) is a positive solution of the difference equation

1

2 1 /\ __
Aym) + T {4 T AT el im)i(n + ) } y(n) =0.

Hence, from Lemma 4, we have

A

—_— <
(1 + 480)2 -

1
4’

which is a contradiction to (12).
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