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ABSTRACT

We are interested in the existence of positive solutions for second order boundary
value problem: (E) y” + h(t)f(y) = 0, 0 < ¢t < 1, subject to multi-point boundary

conditions. We prove an extension of a recent result by Zhang and Sun [3] and illustrate

with examples.

1. Introduction

We are interested in the existence of positive solutions for the second order nonlinear

differential equation

v +h(t)fy) =0, 0<t<, (1.1)

where h(t) € L}(0,1) and f(y) € C(R,R,) are non-negative functions subject to multi-

point boundary condition

y(0) = (o, y(£)) Zazéu = (B,y fz Zﬁz&, (1.2)
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where o = (a1, ,am), 8= (B1, ", Bm), s, B real, and 0 < &; < -+ < &m < 1. Denote
by (a,y(€)) the scalar product between m-vectors a and y(&) = (y(&1), ,y(&m)). We
assume that o;,8; > 0 for ¢ = 1,---,m, and h(¢) may be singular at t =0 ort =1, or
both.

In a recent paper [3], Zhang and Sun proved the following generalization of Kras-

noselski Cone Fixed Point Theorem:

Theorem A ([3], p.583, Corollary 2.1). Let ©; and Q2 be two bounded open sets
in a Banach space X and P C X be an ordered cone such that 6 € Q, C Q. Suppose
that A: PN (ﬁ; \ Ql) — P is completely contz’nuods and p : P — [0,00) is a uniformly
continuous conver functional with p(6) = 0 and p(z) > 0, = # 6. If one of the two
conditions:

(a) (Ezpansion) For x € PNoSY, p(Azx) < p(z) and for x € PNOS2y, xér;{)g p(z) >0,

p(Az) 2 p(z); or

(b) (Compression) For x € PNdQ,, p(Az) < p(z) and for z € PNOSY,, xéralgl p(z) >0,

p(Az) > p(z),
then A has a fized point £ € PN (Q2 \ ), i.e. AZ =2,

Clearly if p(z) = ||z||, where || - || denotes the norm of the Banach space X, then
Theorem A reduces to the classical Krasnoselskii theorem, see Guo and Lakshmikantham
[2]. As an application of Theorem A, Zhang and Sun proved an existence theorem for the
multipoint boundary value problem (1.1), (1.2) where a; = 0 for ¢ = 1,2,--- ,m in (1.2)
subject to the assumptions:

(H)) 0<B= iﬁi <1,
(H2) h:(0,1) 2; [0, 00) is continuous, A € L*(0,1) and h(t) # 0 any subinterval in the

open interval (0, 1).
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Theorem B ([3], p.584, Theorem 3.1). Suppose that there exrist positive constants
r, R and 7 such that 0 <r < R and 7 € (0, %] satisfying one of the two conditions:
(a) (Ezpansion) R > 77 2(1—7)"2r; f(u) <orthylr for0<u <7 Y1 —7)"1r
and f(y) > o2h;'R for R>u > 7(1 - 7)R; or
(b) (Compression) R > oy02hoh 'r; f(u) <oy hg'R for0<u <771 (1—-7)"'R
and f(u) > ooh;! forr > u > 7(1 — 7)r, where
o1 = l-}— i_, oa =7 2(1=7)"1, hy= /1 h(t)dt and h, = /I—T h(t)dt;
4 1-p 0 r
then the boundary value problem (1.1) with multipoint boundary condition @ = 0 in (1.2),
i€

y(0) =0, y(1) =Y _ Biw(&) = (B,y(6)) (1.3)
i=1
has at least one positive solution.

~ The purpose of this note is to generalize Theorem B to cover the more general bound-
ary condition (1.2). We obtain bounds on the nonlinear function f(y) sharper than those

given in Theorem B, and illustrate our results by examples.

2. Main Result

It is easy to verify that a solution to the boundary value problem (1.1), (1.2) is

equivalent to the existence of a fixed point of the operator A : P — P defined by
1
av(®) = [ K(t.s)n(s)f o(0)ds 2.1)

where P is the cone of non-negative functions in C]0, 1] and

K(t,5) = 9(t,8) + 1 {(1 — @(e,£))(8,9(6,5)
+ (-B'ﬁ (6;6)) (aag(éa S))}

(2.2)
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m —_—
with o = Z ai,g(év S) = (g(fla 3)) e 7g(§m) S)) and A = (1 —a)(l - (IBa E)) '}'(1 —5)<aa 6)
i=1
When @ = 0 in (2.2), K(t, s) reduces to that given in [3] for the simpler BVP (1.1), (1.3),
whilst g(¢, s) is the usual Green’s function for the two point boundary value problem, i.e.

(1.1), (1.2) in absence of all interior boundary points &;, i = 1,2,--- ,m, and is given by

t(1—s), 0<t<s<l.

2.3
s(1-t), 0<s<t<l. (2:3)

g(t,s) = {

1
Note that g(t,s) < s(1 — s) for all ¢,s € [0,1] and given 7 € (0, —2-], g(t,s) > 79(s,s) for
t € [r,1—7] and s € [0,1]. Since a;,3; > 0 for i = 1,---,m, it is easy to deduce the

following estimates:

K(t, s) > g(t,s) >27g9(ss) T<t<Ll-7,0<s5<1 (2.4)

K(t,s) < vg(s,s), v= -,1; {1-(8,8) + () + max(B - @,0)} (2.5)

where A = (1 -@)(1 - (B,£)) + {0, £)(1 - B).

We are now ready to state and prove our main result:

Theorem 1 Suppose that there exist positive constantsr, R and T such that0 <r < R
and 7 € (0, %] satisfying one of the two conditions:
(a) (Ezpansion) R > 71 2(1—-7)72r; f(u) v ihllr for0<u <771 =7)"1r
and f(u) > mR for R>u > 7(1—7)R, where hy = /1 s(1 — s)h(s)ds; or
(b) (Compression) R > mvhyr; f(u) < v *hi'R for OOS vu<7!(1-7)"'R and
fw)>mr forr >u>7(1—1)r;

where
-1

m = (T/TH s(1 - s)h(s)ds) ,

then the boundary value problem (1.1) (1.2) has at least one positive solution.

Proof of Theorem 1 Let P, = {y € P : y(t) concave, y(t) > t(1—-t)||y||, 0 <t < 1}.

We first prove that A : P, — P;. Let y € P;. Note that g(¢,s) > t(1 — t)s(1 — s) for all



t,s € [0,1]. Now use (2.4), (2.5) in (2.1), we observe

1
ay®) = [ Kt 9h(e)f (o(s))ds
1
> (1 —1) [ Klto, )h(s)f u(s))ds
0

= t(1 — t)v ™t Ay(to) for any to € [0,1].

This shows Ay(t) > t(1 — t)||Ay|| proving A : P, — P;.
We only prove part (b) as part (a) is similar. Let y € P, N Bg where B = {y €

P:: p(y) < R} and &Bg = {y € P, N By : p(y) = R}. Observe by (2.5)
1
pa) < v [ (1= Ih)f (u(s))ds: (2.6)
0
Since p(y) = R and y € P; imply
Rzy() = max y(t)zv 1=yl

which in turn implies for all s € [0, 1]
0<y@) <yl <m[{1-9] R<nr'1-n7'R. (2.7)

Now (2.7) implies by assumption (a) that f(y(s)) < M, s € [0,1], which upon using this

in (2.6), we find
1
p(Ay) <v (/0 s(1 - s)h(s)ds) =vhiMR = R = p(y).

since M = v~ 1h L.
Next let y € P1 N 09, and p(y) = Jnax. y(t) = y(t) for some t € [1,1 — 7]. Since

y € P so

r=p(y) 2y(E) 21 -Olyl 2 (1 - )llyll = (1 = 7)p(y) = 7(1 = 7)r.



6

For r > y(s) > 7(1 — 7)r we have by assumption (a) f(y(s)) > mr for s € [r,1— 7]. Now

y (2.4) and g(s, s) = s(1 — s), we obtain

pla) > [ K o)ds 27 ( [ 7 Me)ds ) T =r = ply)

1-71 -1
since m = (7’ / h(s)ds) . This completes the proof.

— 1
Remark 1. When @ =0, v =14 B(1 - (3,£))~! by (2.5). Note that hy < Zho’ SO

- -1
v ATt > (1 + -lﬁ—_> 4hg' > o1hgt.

Also
-1

m = (T/l_T s(1 - s)h(s)ds) <7721 =7)"tht = ookt

This shows that when Theorem 1 is applied to the boundary value problem (1.1), (1.3)
studied in Zhang and Sun [3|, we in fact can obtain sharper bounds on the nonlinear

function f(y).
3. Discussion

We discuss two examples given in [3; p.585, Example 3.1] for a special case of boundary
value problem (1.1), (1.3):

{y”+h ) f(y(@))
(0) =0, y(1) =

where h(t) = [t(1 — t)]l/ 2 € L1(0,1). Two nonlinear functions are exhibited to illustrate

0, O0<t<l1
( (3.1)

%y”?), 0<n<l,

Theorem B as follows:

(3/20m)u  u < 16/3

(Expansion) fi(u) = { (4/357) (57576u — 307065) u > ;3@

with r =1, R = 30;

(“)

(Compression) fo(u) = { (o u < 3/16

u
—) (16u + 61413) u > 3/16




with r =1, R = 90.
Using improved upper and lower bounds on f(u) as given in Theorem 1, we give the

following alternative examples for the boundary value problem (3.1):

(3/5mu  u<16/3

Expansi fi(u) =
(Expansion) f1(u) { (52-) (47376u — 252644) u > 16/3

with r =1, R = 30;
(Compression) fo(u) = —u + —, u >0
T
with r =1, R = 15.

Remark 2. We note that the example fi(u) differs only by small margin with f;(u)

but for the Compression part of Theorem 1, fo(u) is considerably simpler than fo(u).

Remark 3. Both Theorem B and Theorem 1 impose a significant distance between
constants 7 and R. In another recent paper by Avery, Henderson and O’Regan [1], there is
an example of a two point boundary value problem where it is only required that 0 < r < R.
In other words, R can be as close to r as one pleases. No example is known for multipoint

boundary value problem when only 0 < r < R is assumed even for the three point problem.
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