<table>
<thead>
<tr>
<th>Title</th>
<th>ON THE JAMES CONSTANT OF EXTREME ABSOLUTE NORMS ON \mathbb{R}^2 (Banach space theory and related topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Komuro, Naoto; Saito, Kichi-Suke; Mitani, Ken-Ichi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2011), 1753: 16-22</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2011-08</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/171185</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

京都大学
ON THE JAMES CONSTANT OF EXTREME ABSOLUTE NORMS ON \mathbb{R}^2

Naoto Komuro
Hokkaido University of Education
Kichi-Suke Saito
Niigata University
Ken-Ichi Mitani
Okayama Prefectural University

Abstract

The set of all absolute normalized norms on \mathbb{R}^2 (denoted by AN_2) and the set of all convex functions ψ on $[0,1]$ satisfying $\max\{1-t, t\} \leq \psi(t) \leq 1$ for $t \in [0,1]$ (denoted by Ψ_2) have convex structures and they are isomorphic by the one to one correspondence $\psi(t) = \Vert(1-t, t)\Vert_\psi$ $(t \in [0,1])$. In [5], the set of all extreme points of AN_2 is determined. In this note, we will report the calculation of the James constants of $(\mathbb{R}^2, \Vert \cdot \Vert_{\psi})$ and its dual space $(\mathbb{R}^2, \Vert \cdot \Vert_{\psi})^*$ where ψ is an arbitrary extreme point of Ψ_2. Moreover, we will consider the relation of the James constants of these spaces.

1. Preliminaries

A norm $\| \cdot \|$ on \mathbb{R}^2 is said to be absolute if $\| (x, y) \| = \| (|x|, |y|) \|$ for all $(x, y) \in \mathbb{R}^2$, and normalized if $\| (1,0) \| = \| (0,1) \| = 1$. The set of all absolute normalized norms on \mathbb{R}^2 is denoted by AN_2. Let Ψ_2 be the set of all convex functions ψ on $[0,1]$ satisfying $\max\{1-t, t\} \leq \psi(t) \leq 1$ for $t \in [0,1]$. Ψ_2 and AN_2 can be identified by a one to one correspondence $\psi \rightarrow \| \cdot \|_\psi$ with the relation

$$
\psi(t) = \Vert(1-t, t)\Vert_\psi
$$

for $t \in [0,1]$. For $1 \leq p \leq \infty$, we denote

$$
\psi_p(t) = \begin{cases}
(1-t)^p + t^p \frac{1}{p} & (1 \leq p < \infty) \\
\max\{1-t, t\} & (p = \infty).
\end{cases}
$$

Then $\psi_p \in \Psi_2$ $(1 \leq p \leq \infty)$, and they correspond to the l_p-norms $\| \cdot \|_p$ on \mathbb{R}^2.

We call a norm $\| \cdot \| \in AN_2$ (resp. $\psi \in \Psi_2$) an extreme point of AN_2 (resp. Ψ_2) if $\| \cdot \| = \frac{1}{2}(\| \cdot \|' + \| \cdot \|''$) and $\| \cdot \|', \| \cdot \|'' \in AN_2$ imply $\| \cdot \|' = \| \cdot \|''$ (resp. $\psi = \frac{1}{2}(\psi' + \psi''$) and $\psi', \psi'' \in \Psi_2$ imply $\psi' = \psi''$).

2000 Mathematics Subject Classification. 46B20, 46B25.
Key words and phrases. Absolute normalized norm, James constant.
Let $0 \leq \alpha \leq \frac{1}{2} \leq \beta \leq 1$. For the case $(\alpha, \beta) \neq (\frac{1}{2}, \frac{1}{2})$, we define

$$\psi_{\alpha, \beta}(t) = \begin{cases}
1 - t & (t \in [0, \alpha]) \\
\alpha + \beta - 1 & (t \in [\alpha, \beta]) \\
\frac{\beta - 2\alpha\beta}{\beta - \alpha} & (t \in [\beta, 1])
\end{cases}$$

$$E = \{\psi_{\alpha, \beta} | 0 \leq \alpha \leq \frac{1}{2} < \beta \leq 1\}.$$

Proposition 1 ([5]). The following conditions are equivalent.

1. $\|\cdot\|_{\psi}$ is an extreme point of AN_{2}.
2. ψ is an extreme point of Ψ_{2}.
3. $\psi \in E$.

Let $\hat{\Psi}_{2} = \{\psi \in \Psi_{2} | \psi(1-t) = \psi(t) \text{ (} t \in [0, 1])\}$. If $\psi \in \Psi_{2}$, then $\psi \in \hat{\Psi}_{2}$ if and only if $\|(x_{1}, x_{2})\|_{\psi} = \|(x_{2}, x_{1})\|_{\psi}$ for $(x_{1}, x_{2}) \in \mathbb{R}^{2}$. $\hat{\Psi}_{2}$ also has a convex structure, and by an analogy of Proposition 1, we have

Corollary 2. Let $\hat{E} = E \cap \hat{\Psi}_{2} = \{\psi_{\alpha, 1-\alpha} \in E | 0 \leq \alpha \leq \frac{1}{2}\}$. Then ψ is an extreme point of $\hat{\Psi}_{2}$ if and only if $\psi \in \hat{E}$.

2. Known facts on James constant of $(\mathbb{R}^{2}, \|\cdot\|_{\psi})$

For a Banach space $(X, \|\cdot\|)$, the James constant is defined by

$$J((X, \|\cdot\|)) = \sup\{\min\{\|x + y\|, \|x - y\|\} | x, y \in X, \|x\| = \|y\| = 1\}.$$

$\sqrt{2} \leq J((X, \|\cdot\|)) \leq 2$ holds and $J((X, \|\cdot\|)) = \sqrt{2}$ if X is a Hilbert space. (The converse is not true.) For $1 \leq p \leq \infty$, $J(L_{p}) = \max\{2^{\frac{1}{p}}, 2^{\frac{1}{q}}\}$ holds where $\frac{1}{p} + \frac{1}{q} = 1$ and $\dim L_{p} \geq 2$. It is known that $J(X) < 2$ if and only if X is uniformly non-square, that is, there exists $\delta > 0$ such that $\|(x + y)/2\| \leq 1 - \delta$ holds whenever $\|(x - y)/2\| \geq 1 - \delta$, $\|x\| \leq 1$, $\|y\| \leq 1$. Moreover, $J(X^{**}) = J(X)$ holds and

$$2J(X) - 2 \leq J(X^{*}) \leq \frac{J(X)}{2} + 1. \quad (2.1)$$

There are some Banach spaces which do not satisfy $J(X^{*}) = J(X)$.

For the 2-dimensional spaces with absolute normalized norms, we know the following facts on the James constant.

Proposition 3 ([8]).

1. If $\psi_{2} \leq \psi \in \hat{\Psi}_{2}$ and $\max_{t \in [0, 1]} \frac{\psi(t)}{\psi_{2}(t)}$ is taken at $t = \frac{1}{2}$, then

$$J((\mathbb{R}^{2}, \|\cdot\|_{\psi})) = 2\psi(\frac{1}{2}).$$
(2) If $\psi_{2} \geq \psi \in \hat{\Psi}_{2}$ and \(\max_{t \in [0,1]} \frac{\psi_{2}(t)}{\psi(t)} \) is taken at \(t = \frac{1}{2} \), then
\[
J((\mathbb{R}^{2}, \| \cdot \|_{\psi})) = \frac{1}{\psi(\frac{1}{2})}.
\]

(3) For $\beta \in [\frac{1}{2}, 1]$,
\[
J((\mathbb{R}^{2}, \| \cdot \|_{\psi_{1-\beta,\beta}})) = \begin{cases} \frac{1}{\beta} & (\beta \in [\frac{1}{2}, \frac{1}{\sqrt{2}}]) \\ 2\beta & (\beta \in [\frac{1}{\sqrt{2}}, 1]) \end{cases}.
\]

The results in Proposition 3 are obtained by the following proposition. Also in [9] and [10], the James constants of 2 dimensional Lorentz sequence spaces and their dual spaces were calculated by using the following proposition.

Proposition 4([8]). If $\psi \in \hat{\Psi}_{2}$, then
\[
J((\mathbb{R}^{2}, \| \cdot \|_{\psi})) = \max_{0 \leq t \leq \frac{1}{2}} \frac{2 - 2t}{\psi(t)} \psi\left(\frac{1}{2 - 2t}\right).
\]

We have only few results on the James constants of $(\mathbb{R}^{2}, \| \cdot \|_{\psi})$ when $\psi \in \Psi_{2} \setminus \hat{\Psi}_{2}$. In this note we focus our consideration on the James constants of $(\mathbb{R}^{2}, \| \cdot \|_{\psi_{\alpha,\beta}})$ and its dual space $(\mathbb{R}^{2}, \| \cdot \|_{\psi_{\alpha,\beta}})^{*}$ where $\psi_{\alpha,\beta} \in E$. There is a unique $\psi^{*} \in \Psi_{2}$ such that $(\mathbb{R}^{2}, \| \cdot \|_{\psi_{\alpha,\beta}})^{*} = (\mathbb{R}^{2}, \| \cdot \|_{\psi^{*}})$, and it is obvious that $\psi_{\alpha,\beta}, \psi^{*} \notin \hat{\Psi}_{2}$ whenever $\alpha + \beta \neq 1$.

3. James Constants for Extreme Norms in AN_{2}.

In this section we consider $J((\mathbb{R}^{2}, \| \cdot \|_{\psi_{\alpha,\beta}}))$ where $\| \cdot \|_{\psi_{\alpha,\beta}}$ is the extreme norm of AN_{2}. Since $J((\mathbb{R}^{2}, \| \cdot \|_{\tilde{\psi}})) = J((\mathbb{R}^{2}, \| \cdot \|_{\psi}))$ where $\tilde{\psi}(t) = \psi(1-t)$, it is sufficient to calculate James constant in the case that $\alpha + \beta \leq 1$.

Theorem 5([4]). Suppose that $\alpha + \beta \leq 1$, then
\[
J((\mathbb{R}^{2}, \| \cdot \|_{\psi_{\alpha,\beta}})) = \begin{cases} \frac{1}{\psi(1/2)} & (\text{if } \psi\left(\frac{1}{2}\right) \leq \frac{1}{2(1-\alpha)}) \\ 1 + \frac{1}{2\psi(1/2) + \gamma} & \left(\text{if } \frac{1}{2(1-\alpha)} \leq \psi\left(\frac{1}{2}\right) \leq \frac{1}{4(1-\alpha)}(1 + \frac{1}{\gamma})\right) \\ 2\psi(1/2) & \left(\text{if } \frac{1}{4(1-\alpha)}(1 + \frac{1}{\gamma}) \leq \psi\left(\frac{1}{2}\right)\right) \end{cases}
\]
where $\gamma = \frac{2\beta - 1}{\beta - \alpha}$.

Corollary 6. If $1 - \alpha \leq \frac{1}{\sqrt{2}}$, then
\[
J((\mathbb{R}^{2}, \| \cdot \|_{\psi_{\alpha,\beta}})) = \frac{1}{\psi(1/2)}.
\]

We have some other formulations of Theorem 5. Put
\[\gamma = \gamma(\alpha, \beta) = \begin{cases} \frac{2\beta - 1}{\beta - \alpha} & (\alpha + \beta \leq 1) \\ \frac{2\beta - 1}{\beta - \alpha} & (\alpha + \beta \geq 1) \end{cases}, \]

\[f = f(\gamma) = \frac{1}{4}(1 - \gamma + \sqrt{(1 + \gamma)^2 + 4\gamma}), \]

\[g = g(\gamma) = \frac{1}{4}(1 - \gamma + \sqrt{(1 + \gamma)^2 + 4}), \]

\[M = 1 + \frac{1}{2\psi(1/2) + \gamma}. \]

It can be shown by a simple calculation that \(f \) is increasing with respect to \(\gamma \) while \(g \) is decreasing and that \(\frac{1}{2} \leq f(\gamma) \leq \frac{1}{\sqrt{2}} \leq g(\gamma) \leq \frac{1 + \sqrt{5}}{4} \) \((\gamma \in [0, 1])\).

Theorem 7(4).

1. If \(\psi(1/2) \leq f(\gamma) \), then
 \[2\psi(1/2) \leq M \leq \frac{1}{\psi(1/2)}, \quad \text{and} \quad J(\mathbb{R}^2, \| \cdot \|_{\psi_{\alpha,\beta}}) = \frac{1}{\psi(1/2)}. \]

2. If \(f(\gamma) \leq \psi(1/2) \leq g(\gamma) \), then
 \[2\psi(1/2), \frac{1}{\psi(1/2)} \leq M, \quad \text{and} \quad J(\mathbb{R}^2, \| \cdot \|_{\psi_{\alpha,\beta}}) = M. \]

3. If \(g(\gamma) \leq \psi(1/2) \), then
 \[\frac{1}{\psi(1/2)} \leq M \leq 2\psi(1/2), \quad \text{and} \quad J(\mathbb{R}^2, \| \cdot \|_{\psi_{\alpha,\beta}}) = 2\psi(1/2). \]

Theorem 7'. For \(\psi_{\alpha,\beta} \), put \(\gamma = \gamma(\alpha, \beta) = \frac{2\beta - 1}{\beta - \alpha} \) \((\alpha + \beta \leq 1)\), then

\[J(\mathbb{R}^2, \| \cdot \|_{\psi_{\alpha,\beta}}) = \max \{ \frac{1}{\psi(1/2)}, 1 + \frac{1}{2\psi(1/2) + \gamma}, 2\psi(1/2) \}. \]

It is known that \(J(\mathbb{R}^2, \| \cdot \|_{\psi}) = \sqrt{2} \) holds for \(\psi \in [\psi_2, \psi_{1 - \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}}]) = \{(1 - \lambda)\psi_2 + \lambda\psi_{1 - \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}} | \lambda \in [0, 1]\}. \) By Theorem 7 or Theorem 7' we can prove that

Corollary 8. \(\| \cdot \|_{\psi_{1 - \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}}} \) is the only extreme point of \(AN_2 \) whose James constant is \(\sqrt{2} \), that is,

\[\{ \psi_{\alpha,\beta} \in E | J(\mathbb{R}^2, \| \cdot \|_{\psi_{\alpha,\beta}}) = \sqrt{2} \} = \{ \psi_{1 - \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}} \}. \]

4. **JAMES CONSTANTS FOR THE DUAL NORMS.**

Let \(C_{r,s} \) be the convex hull of the set consisting of eight points \((\pm 1, 0), (0, \pm 1), \) and \((\pm r, \pm s)\) with \(r, s \in [0, 1], r + s \geq 1 \). \(C_{r,s} \) is an octagon whenever \(1 < r + s, r < 1, \) and \(s < 1 \). In the exceptional cases, it is a hexagon or a square. Let \(\psi_{r,s} \in \Psi_2 \) be
such that the unit sphere of the norm $\| \cdot \|_{\psi_{r,s}}$ is $C_{r,s}$. Then $\psi_{r,s}^{*}$ and $\| \cdot \|_{\psi_{r,s}}$ are given by:

$$
\psi_{r,s}^{*}(t) = \begin{cases}
1 - \frac{r + s - 1}{r} t & (t \in [0, \frac{s}{r + s}]) \\
1 - \frac{s - 1}{r} + \frac{r + s - 1}{r} t & (t \in [\frac{s}{r + s}, 1]),
\end{cases}
$$

$$
\| (x_1, x_2) \|_{\psi_{r,s}^{*}} = \begin{cases}
x_1 - \frac{r - 1}{r} x_2 & (0 \leq r x_2 \leq s x_1) \\
1 - \frac{s}{r} x_1 + x_2 & (0 \leq s x_1 \leq r x_2).
\end{cases}
$$

It is easy to find that $\| \cdot \|_{\psi_{r,s}^{*}}$ is the dual norm of $\| \cdot \|_{\psi_{r,s}}$ if and only if

$$
\begin{align*}
\alpha &= 1 - \frac{1}{r} \\
\beta &= \frac{1 - r}{1 + r - s}.
\end{align*}
$$

(4.1)

It is easy to see that for each $\psi \in \Psi_2$

$$
J((\mathbb{R}^2, \| \cdot \|_\psi)) = J((\mathbb{R}^2, \| \cdot \|_{\tilde{\psi}}))
$$

where $\tilde{\psi}$ is defined by $\tilde{\psi}(t) = \psi(1 - t)$ $(t \in [0, 1])$. Since $\tilde{\psi}_{r,s}^{*} = \psi_{s,r}^{*}$ holds, it follows that $J((\mathbb{R}^2, \| \cdot \|_{\psi_{r,s}^{*}})) = J((\mathbb{R}^2, \| \cdot \|_{\psi_{s,r}^{*}}))$ for all $r, s \in [0, 1]$ with $r + s \geq 1$. Hence it is sufficient to consider the case that $r \leq s$.

Theorem 9. Suppose that $r \leq s$, then

$$
(4.2) \quad J((\mathbb{R}^2, \| \cdot \|_{\psi_{r,s}^{*}})) = \begin{cases}
1 + \frac{1 - r}{2r(2rs - 3s - r + 1)} & (f(r, s) \leq 0) \\
\frac{2r(r - 2 + \omega)}{(1 - 2\omega)r - 1 + \omega} & (r(r - 2) + \omega + (2r - 1)\omega^2 \geq 0),
\end{cases}
$$

where $f(r, s) = -4r^2s^2 - 2r^3 + 4r^2s + 6rs^2 + 5r^2 - 4rs - s^2 - 4r + 1$.

By a simple calculation we find that there is an implicit function $s = h(r)$ of f, such that h is decreasing on $[\frac{1}{2}, \frac{1}{\sqrt{2}}]$ and $h(\frac{1}{2}) = 1$, $h(\frac{1}{\sqrt{2}}) = \frac{1}{\sqrt{2}}$, and $f(r, h(r)) = 0$ for $r \in [\frac{1}{2}, \frac{1}{\sqrt{2}}]$. Moreover we can see that

$$
\begin{align*}
f(r, s) \begin{cases}
\leq 0 & (0 \leq r \leq \frac{1}{2}, \text{ or } \frac{1}{2} \leq r \leq \frac{1}{\sqrt{2}}, s \leq h(r)) \\
\geq 0 & (\frac{1}{2} \leq r \leq \frac{1}{\sqrt{2}}, s \geq h(r), \text{ or } \frac{1}{\sqrt{2}} \leq r \leq 1).
\end{cases}
\end{align*}
$$

We have another formulation of (4.2) which is written by the function $\psi_{r,s}^{*}$.

Theorem 9'. Suppose that $r \leq s$, then

$$
J((\mathbb{R}^2, \| \cdot \|_{\psi_{r,s}^{*}})) = \begin{cases}
2\omega & (r(r - 2) + \omega + (2r - 1)\omega^2 \leq 0) \\
\frac{2r(r - 2 + \omega)}{(1 - 2\omega)r - 1 + \omega} & (r(r - 2) + \omega + (2r - 1)\omega^2 \geq 0),
\end{cases}
$$

20
where \(\omega = \psi_{r,s}^{*}(\frac{1}{2}) \). In particular, if \(r = s \), then \(\omega = \frac{1}{2r} \), and

\[
J((\mathbb{R}^{2}, \| \cdot \|_{\psi_{r,s}^{*}})) = \begin{cases} \\
2\psi_{r,s}^{*}(1/2) & (\frac{1}{2} \leq r \leq \frac{1}{\sqrt{2}}) \\
\frac{1}{\psi_{r,s}^{*}(1/2)} & (\frac{1}{\sqrt{2}} \leq r)
\end{cases}
\]

As stated in Section 2, \(J(X^{*}) = J(X) \) does not always hold. We will give a partial result on the relation between \(J((\mathbb{R}^{2}, \| \cdot \|_{\psi_{r,s}^{*}})) \) and \(J((\mathbb{R}^{2}, \| \cdot \|_{\psi_{r,s}^{l}})) \). \(\mathbb{R}^{2}, \| \cdot \|_{\psi_{r,s}^{*}}^{*} \) is given by \((\mathbb{R}^{2}, \| \cdot \|_{\psi_{\alpha,\beta}}) \) where \((\alpha, \beta)\) satisfies (4.1).

Theorem 10. Suppose that (4.1) holds, then

1. If \(r = s \left(\frac{1}{2} \leq r \leq 1\right) \), or \((r,s) = (\frac{1}{2},1) \),
then \(J((\mathbb{R}^{2}, \| \cdot \|_{\psi_{r,s}^{*}})) = J((\mathbb{R}^{2}, \| \cdot \|_{\psi_{r,s}^{l}})). \)

2. If \(r \in (0,1) \backslash \{\frac{1}{2}\}, s = 1 \), or \(r = \frac{1}{2}, \frac{1}{2} \leq r < 1 \),
then \(J((\mathbb{R}^{2}, \| \cdot \|_{\psi_{r,s}^{*}})) \neq J((\mathbb{R}^{2}, \| \cdot \|_{\psi_{r,s}^{l}})). \)

Combining Corollary 2 and Theorem 10, we have

Corollary 11. Suppose that \(\psi \in E \cap \widehat{\Psi}_{2} \), then \(J((\mathbb{R}^{2}, \| \cdot \|_{\psi})) = J((\mathbb{R}^{2}, \| \cdot \|_{\psi})^{*}). \)

REFERENCES

Naoto Komuro
Department of Mathematics, Hokkaido University of Education, Asahikawa Campus,
Asahikawa 070-8621, Japan
E-mail address: komuro@asa.hokkyodai.ac.jp

Kichi-Suke Saito
Department of Mathematics, Faculty of Science, Niigata University,
Niigata 950-2181, Japan
E-mail address: saito@math.sc.niigata-u.ac.jp

Ken-Ichi Mitani
Department of System Engineering, Okayama Prefectural University,
Soja 719-1197, Japan
E-mail address: mitani@cse.oka-pu.ac.jp