Some problems about the uncountable Specker phenomenon.

Jun Nakamura

1 Introduction

We are motivated from [3]. We find a mistake in [3] and improve it partially. The uncountable Specker phenomenon in the commutative case was studied around 1955. J. Loś and E.C.Zeeman [8] independently showed that \mathbb{Z}^{κ} exhibits the Specker phenomenon if κ is less than the least measurable cardinal. There is a similar result in the non-commutative case. S.Shelah and K.Eda [6] showed that the unrestricted free product $\varprojlim (*_{i \in X} G_i, p_{XY} : X \subseteq Y \subseteq I)$ exhibits the Specker phenomenon if the cardinality of the index set I is less than the least measurable cardinal. Some problems occur from the non-commutative case and we investigate them.

2 Definitions and Basics

Definition 2.1. Let G_i $(i \in I)$ be groups s.t $G_i \cap G_j = \{e\}$ for any $i \neq j \in I$. we call elements of $\bigcup_{i \in I} G_i \setminus \{e\}$ letters. A word W is a function

 $W:\overline{W} \to \bigcup_{i\in I} G_i \setminus \{e\}$ \overline{W} is a linearly ordered set and $\{\alpha\in\overline{W}\mid W(\alpha)\in$

 G_i is finite for any $i \in I$. The class of all words is denoted by $\mathcal{W}(G_i : i \in I)$ (abbreviated by \mathcal{W}). In case the cardinality of \overline{W} is countable, we say that W is a σ -word.

Definition 2.2. U and V are isomorphic, which is denoted by $U \equiv V$, if there exists an order isomorphism $\varphi : \overline{U} \to \overline{V}$ s.t $\forall \alpha \in \overline{U} \ (U(\alpha) = V(\varphi(\alpha))$. It is easily seen that $\mathcal W$ becomes a set under this identification.

Definition 2.3. For a subset $X \subseteq I$, the restricted word W_X of W is given by the function

 $W_X: \overline{W_X} \to \bigcup_{i \in I} G_i$ where $\overline{W_X} = \{\alpha \in \overline{W} | W(\alpha) \in \bigcup_{i \in X} G_i\}$ and

 $W_X(\alpha) = W(\alpha)$ for all $\alpha \in \overline{W_X}$. Hence $W_X \in \mathcal{W}$. If X is finite, then we can regard W_X as an element of the free product $*_{i \in X}G_i$.

Definition 2.4. U and V are equivalent, which is denoted by $U \sim V$, if $U_F = V_F$ for all $F \subset \subset I$ where we regard U_F and V_F as elements of the free product $*_{i \in F} G_i$.

So, " $U_F = V_F$ " means that they are equal in the sense of the free product $*_{i \in F}G_i$.

Let [W] be the equivalent class of a word W. The composition of two words and the inverse of a word are defined naturally. Thus $W/\sim \{[W]\mid W\in\mathcal{W}\}$ becomes a group.

Definition 2.5. $\mathbf{x}_{i \in I}G_i$ is the group $\mathcal{W}(G_i : i \in I)/\sim$. Clearly, if I is finite, then $\mathbf{x}_{i \in I}G_i$ is isomorphic to the free product $*_{i \in I}G_i$.

Definition 2.6. W is reduced if $W \equiv UXV$ implies $[X] \neq e$ for any nonempty word X where e is the identity, and for any contiguous elements α and β of \overline{W} , it never occurs that $W(\alpha)$ and $W(\beta)$ belong to the same G_i .

Definition 2.7. $l_i(W)$ is the cardinality of $\{\alpha \in X \mid X(\alpha) \in G_i\}$ where X is the reduced word of W.

Theorem 2.1. ([1] Theorem1.4.) For any word W, there exists a reduced word V such that [W] = [V] and V is unique up to isomorphism.

Proposition 2.1. ([1] Proposition1.9.) If $g_{\lambda}(\lambda \in \Lambda)$ are elements of $\mathbf{x}_{i \in I} G_i$ such that $\{\lambda \in \Lambda \mid l_i(g_{\lambda}) \neq 0\}$ are finite for all $i \in I$, then there exists a natural homomorphism $\varphi : \mathbf{x}_{\lambda \in \Lambda} \mathbb{Z}_{\lambda} \to \mathbf{x}_{i \in I} G_i$ via $\delta_{\lambda} \mapsto g_{\lambda}$ ($\lambda \in \Lambda$) where $\mathbb{Z}_{\lambda}(\lambda \in \Lambda)$ are copies of the integer group and δ_{λ} is the 1 of \mathbb{Z}_{λ} .

3 The non-commutative uncoutable Specker phenomenon

Theorem 3.1. (S.Shelah and K.Eda [6]) Let S be a n-slender group. For any homomorphism $h: \varprojlim (*_{i\in X}\mathbb{Z}_i, p_{XY}: X\subseteq Y\Subset I)\to S$, there exist ω_1 -complete ultrafilters U_1, \cdots, U_n on I such that $h=\overline{h}\circ p_{u_1\cup\cdots\cup u_n}$ for any $u_1\in U_1, \cdots, u_n\in U_n$. Moreover, if the cardinality of I is less than the least measurable cardinal, then h factors through some finitely generated free group.

 $\underline{\varprojlim}(*_{i\in X}\mathbb{Z}_i, p_{XY}: X\subseteq Y \Subset u_1\cup\cdots\cup u_n)$

Let $\mathcal{F} = \{X | \exists u_1 \in \mathcal{U}_1 \cdots \exists u_n \in \mathcal{U}_n(\bigcup_{i \leq n} u_i \subseteq X)\}$. It becomes an ultrafilter on I. We introduce an equivalence relation $\sim_{\mathcal{F}}$ on $\varprojlim(*_{i \in X} \mathbb{Z}_i, p_{XY} : X \subseteq Y \subseteq I)$. $x \sim_{\mathcal{F}} y$ if and only if there exists $u \in \mathcal{F}$ such that $p_u(x) = p_u(y)$. Then, we get the following diagram.

 $\underline{\lim}(*_{i\in X}\mathbb{Z}_i, p_{XY}: X\subseteq Y\Subset I)/\mathcal{F}$

It is a problem that what kind of group is $\lim_{i \in X} (x_i, p_{XY} : X \subseteq Y \subseteq I)/\mathcal{F}$. We remark that $\lim_{i \in X} (x_i, p_{XY} : X \subseteq Y \subseteq I)/\mathcal{F}$ could not be equal to $\lim_{i \in X} (x_i, p_{XY} : X \subseteq Y \subseteq I)/\mathcal{U}_1 * \cdots * \lim_{i \in X} (x_i, p_{XY} : X \subseteq Y \subseteq I)/\mathcal{U}_n$. For the first step, we consider the case n = 1 and we investigate its cardinality.

Definition 3.1. Let $F, G \in \omega$ with |F| = |G| and e_{FG} be the order isomorphism from F to G. Then, we naturally regard e_{FG} as an isomorphism from $*_{i \in F} \mathbb{Z}_i$ to $*_{i \in G} \mathbb{Z}_i$. An element $x \in \varprojlim (*_{i \in X} \mathbb{Z}_i, p_{XY} : X \subseteq Y \in \omega)$ is homogeneous if and only if for any $F, G \in \omega$ with |F| = |G|, $e_{FG}(p_F(x)) = p_G(x)$.

Let H be the subgroup consisting of all homogeneous elements.

Theorem 3.2. Let κ be a measurable cardinal and \mathcal{U} be a κ -complete normal ultrafilter on κ . Then, $\varprojlim(*_{i\in X}\mathbb{Z}_i, p_{XY}: X\subseteq Y\subseteq \kappa)/\mathcal{U}\simeq H$.

Proof. Let $\mathcal{U}^n = \{X \in [\kappa]^n | \exists u \in \mathcal{U}([u]^n \subseteq X)\}$ for $n \geq 2$ and $x \in \varprojlim(*_{i \in X}\mathbb{Z}_i, p_{XY} : X \subseteq Y \in \kappa)$. By the assumption, \mathcal{U}^n is a κ -complete

ultra filter for any n. Since $[\kappa]^n = \bigcup_{W \in *_{i < n} \mathbb{Z}_i} \{F | e_{Fn}(p_F(x)) = W\}$, there exist $W_{n,x} \in *_{i < n} \mathbb{Z}_i$ such that $\{F | e_{Fn}(p_F(x)) = W_{n,x}\} \in \mathcal{U}$. We define a homomorphism $h : \varprojlim (*_{i \in X} \mathbb{Z}_i, p_{XY} : X \subseteq Y \in \kappa) / \mathcal{U} \to H$ as $h([x])(n) = W_{n,x}$. It is easily seen that h is an isomorphism.

Proposition 3.1. the cardinality of H is 2^{ω} . Moreover, H is not n-slender.

To prove it, we need a lemma.

Definition 3.2. Let $x_n \in \varprojlim (*_{i \in X} \mathbb{Z}_i, p_{XY} : X \subseteq Y \subseteq \omega)$ for any $n < \omega$ and $[x_0, x_1] = x_0 x_1 x_0^{-1} x_1^{-1}$. We define inductively $[x_0, \dots, x_n]$ as the following.

$$[x_0,\cdots,x_{n+1}]:=[x_0,\cdots,x_n]x_{n+1}[x_0,\cdots,x_n]^{-1}x_{n+1}^{-1}$$

Lemma 3.1. There exists $y_n \in H(n < \omega)$ such that $\forall i < n(y_n(i) = e)$ for any $n < \omega$.

Proof. Let δ_i be the 1 of \mathbb{Z}_i . We define y_n as the following.

$$y_n(n) = [\delta_0, \cdots, \delta_{n-1}]$$

$$y_n(n+1) = [\delta_0, \cdots, \delta_n][\delta_0, \cdots, \delta_{n-1}][\delta_0, \cdots, \delta_{n-2}, \delta_n] \cdots [\delta_1, \cdots, \delta_n]$$

$$\vdots = \vdots$$

We give a more precise definition. Let $A_{n+k,l} = \{f \in l \ (n+k) | f \text{ is order preserving } \}$ with $n \leq l \leq n+k$. $A_{n+k,l} = \{f_i | i < l\} (i < j \rightarrow f_i < f_j)$ is linear ordered by the lexicographical order.

$$\prod_{f \in A_{n+k,l}} [\delta_{f(0)}, \cdots \delta_{f(l-1)}] := [\delta_{f_0(0)}, \cdots \delta_{f_0(l-1)}] \cdots [\delta_{f_{l-1}(0)}, \cdots \delta_{f_{l-1}(l-1)}]$$

$$y_n(n+k) = \prod_{f \in A_{n+k,n+k}} [\delta_{f(0)}, \cdots \delta_{f(l-1)}] \cdots \prod_{f \in A_{n+k,n}} [\delta_{f(0)}, \cdots \delta_{f(l-1)}]$$

Clearly, these are desired elements.

Proof of Propostion 3.1. Let $y_n(n < \omega)$ be as Lemma 3.1. There exists an homomorphism $h: \varprojlim (*_{i \in X} \mathbb{Z}_i, p_{XY} : X \subseteq Y \subseteq \omega) \to \varprojlim (*_{i \in X} \mathbb{Z}_i, p_{XY} : X \subseteq Y \subseteq \omega)$ which maps δ_n to y_n for any $n < \omega$. Clearly, the image of h is contained by H. Therefore, H is not n-slender. By Lemma 2.6 in [4], we can conclude $|H| = 2^{\omega}$.

Proposition 3.2. $H^* = \{W \in \mathbf{x}_{n < \omega} \mathbb{Z}_n | W \text{ is homogeneous} \}$ is n-slender.

Proof. Firstly, we claim that $W \in H^* \setminus \{e\}$ implies $l_i(W) \neq 0$ for any $i < \omega$. Suppose the negation. Let n be the least natural number such that $W_{\{0,\cdots,n-1\}} \neq e$ and take $i < \omega$ with $l_i(W) = 0$. If i < n, then $W_{\{0,\cdots,n-1\}} = W_{n\setminus\{i\}}$. Since W is homogeneous, $e_{n\setminus\{i\}n-1}(W_{n\setminus\{i\}}) = W_{\{0,\cdots,n-2\}} \neq e$. It is a contradiction to the minimality of n. If $n \leq i$, we can deduce a contaradiction as well. Now, we show the n-slenderness of H^* . Assume not, then there exists a homomorphism $h: \mathbb{1}_{n<\omega}\mathbb{Z}_n \to H^*$ such that $h(\delta_n) \neq e$ for all $n < \omega$. By theorem 2.3 in [2], there exists a standard homomorphism h and h0 and h1. Because h2 is finite, we can take h3 with h3 with h4 is a contradiction.

4 Problems

Question 4.1. What is the cardinality of $\lim_{\kappa \to \infty} (*_{i \in X} \mathbb{Z}_i, p_{XY} : X \subseteq Y \in \kappa)/\mathcal{U}$ when there are only finitely n such that \mathcal{U}^n is an ultrafilter.

In the proof of theorem 3.2, the fact \mathcal{U}^n is a σ -complete ultrafilter for all n is essential. It is clear that \mathcal{U}^{n+1} is an ultrafilter implies \mathcal{U}^n is so. Therefore, the case there are only finitely n such that \mathcal{U}^n is an ultrafilter is left. We conjecture $|\underline{\lim}(*_{i\in X}\mathbb{Z}_i, p_{XY}: X\subseteq Y \in \kappa)/\mathcal{U}| \geq \kappa$ in the case.

Question 4.2. Is the cardinality of H^* countable or uncountable?

Unfortunately, we find that the proof of [3] about this problem is wrong and we can not improve it yet.

References

- [1] K.Eda, Free σ -products and noncommutatively slender groups J.Algebra 148(1992) 243-263
- [2] K.Eda, Free σ -product and fundamental groups of subspaces of the plane Topology and its Applications 84(1998) 283-306
- [3] K.Eda, 非可換超積に関する問題について RIMS Kokyuroku 1530(2007) 1-4
- [4] G.Conner and K.Eda, Fundamental groups having the whole information of spaces Topology and its Applications 146-147(2005)317-328
- [5] G.Higman, Unrestricted free pruducts and varieties of topological groups J.London Math.Soc.27(1952) 73-81
- [6] S.Shelah and K.Eda, The non-commutative Specker phenomenon in the uncountable case J.Algebra 252(2002) no.1 22-26

- [7] E.Specker, Additive Grupen von Folgen ganzer Zahlen Portugal.Math.9(1950) 131-140
- [8] E.C.Zeeman, On the direct sum of free cycles J.London Math.Soc.30(1955) 195-212