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1 Introduction
In this paper, we discuss the connection between Gale-Stewart games and
Blackwell games, especially the relationship between the strong versions of
determinacy axioms of Gale-Stewart games and Blackwell games, i.e., the
Axiom of Real Determinacy $AD_{R}$ and the Axiom of Real Blackwell Determi-
nacy $B1-AD_{\mathbb{R}}$ . We put a stress on motivation & ideas of the proofs and the
details of the arguments for the proofs are often omitted while one can find
them in the references we will mention.

In 1953, Gale and Stewart [7] developed the general theory of infinite
games, so-called Gale-Stewart games, which are two-player zero-sum infinite
games with perfect information. The theory of Gale-Stewart games has been
investigated by many logicians and now it is one of the main topics in set
theory and it has connections with other topics in set theory as well as model
theory and computer science.

In 1928, John von Neumann proved his famous minimax theorem which
is about finite games with imperfect information. Infinite versions of von
Neumann‘s games were introduced by David Blackwell [3] where he proved
the analogue of von Neumann $s$ theorem for $G_{\delta}$ sets of reals (i.e., $\Pi_{2}^{0}$ sets of
reals). The games he introduced are called Blackwell games and they were
called by him “games with slightly imperfect information” in his paper [4].
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In 1998, Martin [16] proved that in most cases, Blackwell determinacy ax-
ioms follow from the corresponding determinacy axiom. Martin conjectured
that they are equivalent, and many instances of equivalence have been shown
(e.g., [17] and Martin’s proof of $\Pi_{1}^{1}$ determinacy presented in [15, Corollary
3.9] $)$ . However, the general question, and in particular the most intriguing
instance, viz. whether the Axiom of Determinacy (AD) and the Axiom of
Blackwell determinacy (BI-AD) are equivalent, remains open.

In this paper, we summarize the development of the research on the re-
lationship between AD and BI-AD and look at the other mentioned deter-
minacy axioms, the stronger $AD_{\mathbb{R}}$ and its Blackwell analogue $B1-AD_{\mathbb{R}}$ . We
mainly discuss the relationship between $AD_{\mathbb{R}}$ and $B1-AD_{\mathbb{R}}$ and relate it to
the one between AD and BI-AD.

In \S 2, we introduce Gale-Stewart games & Blackwell games and discuss
their background. In \S 3, we discuss the relationship between AD and BI-AD
especially their equiconsistency, In \S 4, we turn our attention to the conse-
quences of $B1-AD_{\mathbb{R}}$ especially the two among them, that $\mathbb{R}\#$ exists and that
every set of reals is $\infty$-Borel. From them one can derive that $B1-AD_{\mathbb{R}}$ implies
the consistency of AD (so the consistency of $B1-AD_{\mathbb{R}}$ is strictly stronger than
that of AD by G\"odel $s$ Second Incompleteness Theorem), and that $B1-AD_{\mathbb{R}}$

implies that every set of reals has almost all the known regularity proper-
ties. In \S 5, we discuss the possibility of the equivalence between $AD_{\mathbb{R}}$ and
$B1-AD_{\mathbb{R}}$ . In \S 6, we discuss the possibility of the equiconsistency between
$AD_{\mathbb{R}}$ and $B1-AD_{\mathbb{R}}$ .

Throughout this paper, we work in $ZF+DC_{\mathbb{R}}$ . Here by $DC_{\mathbb{R}}$ , we mean the
axiom of dependent choice for relations on the reals.1 This small fragment
of the axiom of choice is necessary for the definition of axioms of Blackwell
determinacy. Using $DC_{\mathbb{R}}$ , we can develop the basics of measure theory. If we
need more than ZF $+DC_{\mathbb{R}}$ for some definitions and statements, we explicitly
mention the additional axioms. We use standard notations from set theory
and assume familiarity with descriptive set theory. Apart from the standard
notations, by reals, we mean elements of the Cantor space and we use $\mathbb{R}$ to
denote the Cantor space.

lIn other words, for any relation $R$ on the reals such that $(\forall x\in \mathbb{R})($ョ$y\in \mathbb{R})(x, y)\in R$ ,
there is a function $f:\omegaarrow \mathbb{R}$ such that $(f(n), f(n+1))\in R$ for every $n\in\omega$ .
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2 Definitions & Background
In this section, we introduce Gale-Stewart games & Blackwell games and
discuss their background. We start with Gale-Stewart games.

In 1913, Ernst Zermelo [24] investigated finite games with perfect infor-
mation as a formalization of the game of chess and proved the determinacy
of these games, i.e., in chess, exactly one of the following holds: 1) The
first player has a winning strategy, 2) the second player has a winning strat-
egy, or 3) both players have strategies forcing to be a draw. In 1953, Gale
and Stewart [7] extended Zermelo‘s work to a large class of infinite games
so-called Gale-Stewart games, which are two-player zero-sum infinite games
with perfect information.

Let us describe what Gale-Stewart games are: Let $X$ be a nonempty
set and $A$ be a subset of $\omega X$ . The Gale-Stewart game $G_{X}(A)$ is played by
two players, player I and player II. They play elements of $X\omega$-many times
in turn, i.e., player I starts with choosing an element $x_{0}$ of $X$ , then player
II responds with $x_{1}\in X$ , then player I moves with $x_{2}\in X$ and player II
chooses $x_{3}$ and so on. After $\omega$ moves, they have produced an $\omega$-sequence
$x=\langle x_{n}|n\in\omega\rangle\in\omega X$ . Player I wins if $x$ is in $A$ and player II wins if $x$ is
not in $A$ .

This type of games are zero-sum in the sense that one of the players
always wins the games and when one wins, the other loses. They are games
with perfect information in the sense that both players know what they
have previously played and they can decide the next move considering their
previous moves as in chess.

We are interested in whether one of the players has a winning strategy in
the game $G_{X}(A)$ , i.e., whether one of the players has a way to play this game
such that no matter her opponent moves, she will always win this game. Let
us formulate the notion of winning strategies.

Definition 2.1. Let $X$ be a nonempty set and $A$ be a subset of $\omega X$ . A
strategy for player $I$ is a function $\sigma:X$Even $arrow X$ , where $X$ Even is the set
of finite sequences of elements in $X$ with even length. A stmtegy for player
$\Pi$ is a function $\tau:X^{Odd}arrow X$ , where $X^{Odd}$ is the set of finite sequences of
elements in $X$ with odd length. Given a strategy $\sigma$ for player I and a strategy
$\tau$ for player II, one can produce the run $\sigma*\tau$ of the game $G_{X}(A)$ according
to $\sigma$ and $\tau$ by letting player I follow $\sigma$ and player II follow $\tau$ , more precisely,
the run $\sigma*\tau$ of the game $G_{X}(A)$ is a unique $\omega$-sequence of elements in $X$
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with the following property: For any natural number $n$ ,

$(\sigma*\tau)(n)=\nu_{\sigma,\tau}((\sigma*\tau)rn)$ ,

where for a finite sequence $s$ of elements in $X,$ $\nu_{\sigma,\tau}(s)=\sigma(s)$ if the length of
$s$ is even and $\nu_{\sigma,\tau}(s)=\tau(s)$ if the length of $s$ is odd. A strategy $\sigma$ for player
I is winning in the game $G_{X}(A)$ if for any strategy $\tau$ for player II, $\sigma*\tau$ is
in $A$ . A strategy $\tau$ for player II is winning in the game $G_{X}(A)$ if for any
strategy $\sigma$ for player I, $\sigma*\tau$ is not in $A$ . A subset $A$ of $\omega X$ is determined if
one of the players has a winning strategy in the game $G_{X}(A)$ .

We are interested in what kind of sets $A$ are determined. Let us list some
results concerning this question. From now on, we see $\omega X$ as a topological
space by the product topology where each coordinate $(i.e., X)$ is seen as the
discrete space. By AC, we mean the Axiom of Choice.

Theorem 2.2 (Gale and Stewart). (AC) Let $X$ be a nonempty set.

1. Every closed subset of $\omega X$ and every open subset of $\omega X$ are determined.
If $X$ is well-ordered, one does not need AC.

2. There is a subset of $\omega\omega$ which is not determined.

Proof. See, e.g., [12, Lemma 33.1, Lemma 33.17]. $\square$

Theorem 2.3 (Martin). (AC) Let $X$ be a nonempty set. Then every Borel
subset of $\omega X$ is determined.

Proof. See, e.g., [13, Theorem 20.5]. $\square$

Theorem 2.4 (Davis; G\"odel and Addison). ZFC cannot prove that every
$\Sigma_{1}^{1}$ subset of the Baire space is determined.

Proof. The statement follows from the combination of the following two re-
sults: The first is that every $\Sigma_{1}^{1}$ subset of the Baire space is determined,
then every $\Pi_{1}^{1}$ subset of the Baire space has the perfect set property and
the second one is that ZFC cannot prove that every $\Pi_{1}^{1}$ subset of the Baire
space has the perfect set property. The first result is due to Davis [5] and
the second result was announced by G\"odel [8] and the details of the proof
were given by Addison [1]. For the proofs, see, e.g., [18, p. 224 & 225] and
[12, Corollary 25.37]. $\square$
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Gale-Stewart games are general enough that they can be used to simulate
several kinds of infinite games in mathematics, e.g., Banach-Mazur games.
In particular, the determinacy of Gale-Stewart games implies that of several
other kinds of games. From this, one can prove several properties of sets
of reals assuming the determinacy of Gale-Stewart games such as Lebesgue
measurability, the Baire property, and the perfect set property.

Despite the fact that it contradicts the Axiom of Choice by the second
item of Theorem 2.2, Mycielski and Steinhaus [20] introduced the Axiom of
Determinacy (AD), which states that every subset of the Baire space is de-
termined and investigated the consequences of this axiom. They proved that
AD implies that every set of reals is Lebesgue measurable and that every
subset of the Baire space has the Baire property and the perfect set prop-
erty where each of the statements contradict the Axiom of Choice. Beside
such properties for sets of reals, AD supplies a beautiful structural theory.
Moreover, models of AD $($or $AD^{+})$ have been investigated for a long time
and they are essential for the research on inner models with large cardinals.
In this way, the study of AD has been one of the central topics in set theory
despite the fact that AD contradicts AC.

One can define AD$x$ for a nonempty set $X$ as follows: Every subset of
$\omega X$ is determined. Let us list some known observations on $AD_{X}$ :

Proposition 2.5.

1. Let $X,$ $Y$ be nonempty sets and assume that there is an injection from $X$

to $Y$ . Then $AD_{Y}$ implies $AD_{X}$ . In particular, $AD_{R}$ implies $AD_{\omega}=$ AD.

2. The axioms $AD_{\omega_{1}}$ and $AD_{P(R)}$ are inconsistent.

Proof. The first statement is a folklore and it is easy (one can simulate the
games on $X$ by those on $Y$ by using a given injection from $X$ to $Y$ ). For
the second statement, the inconsistency of $AD_{\omega_{1}}$ is due to Mycielski [19] and
that of $AD_{P(\mathbb{R})}$ follows from the inconsistency of $AD_{\omega_{1}}$ , the fact that there is
an injection from $\omega_{1}$ into $\mathcal{P}(\mathbb{R})$ , and the first item of this proposition. (One
can send a countable ordinal $\alpha$ to the set of all reals coding the structure
$(\alpha, \in)$ and this is an injection from $\omega_{1}$ into $\mathcal{P}(\mathbb{R}).)$

$\square$

We investigate AD and $AD_{\mathbb{R}}$ in later sections.
Next, we introduce Blackwell games which are infinite games with im-

perfect information. Although one can simulate many kinds of games with
Gale-Stewart games, players often do not know about the opponent‘s moves
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in many games in real Iife an$d$ game theory such as rock-paper-scissors. It
is certainly the case that none of the players has a winning strategy in rock-
paper-scissors (otherwise people would not want to decide things by play-
ing rock-paper-scissors). In rock-paper-scissors, instead of having a winning
strategy, one can demand them having an optimal strategy in the sense that
they can maximize the probability of their winning if they are asked to assign
probabilities on each hand, namely both players assign 1/3 to each hand and
having at least 1/2 as the probability of their winning.

In 1928, John von Neumann extended this phenomenon to zero-sum
games with finite choices and proved so-called minimax theorem. Blackwell
games are one version of infinite two-player zero-sum games with imperfect
information and their determinacy is an extension of von Neumann‘s mini-
max theorem.

Let us describe what Blackwell games are: Let $X$ be a nonempty finite
set. As with Gale-Stewart games, Blackwell games are played by two play-
ers, player I and player II. Players choose probabilities on $X$ (i.e., functions
$p:Xarrow[0,1]$ such that $\sum_{x\in X}p(x)=1)$ instead of elements of $X\omega$ times
one by one in turn. With those probabilities, one can deduce a Borel prob-
ability $\mu$ on $\omega X$ , i.e., a measure assigning probabilities to each Borel subset
of $\omega X$ . Then given a payoff set $A\subseteq\omega X,$ $\mu^{-}(A)$ is the probability of winning
for player I and $1-\mu^{+}(A)$ is the probability of winning for player II, where
$\mu^{-}$ is the inner measure of $\mu$ and $\mu^{+}$ is the outer measure of $\mu$ . Blackwell
determinacy for $A$ asserts that

$\sup_{\sigma}\inf_{\tau}\mu_{\sigma,\tau}^{-}(A)=\inf_{\tau}\sup_{\sigma}\mu_{\sigma,\tau}^{+}(A)$ ,

where $\sigma(\tau)$ ranges over strategies for player I (player II resp.) in this game
and $\mu_{\sigma,\tau}$ is the Borel probability derived from $\sigma$ and $\tau$ . Here is the precise
definition:

Definition 2.6. Let $X$ be a nonempty finite set. A Blackwell stmtegy for
player $I$ is a function $\sigma:X^{Even}arrow$ Prob(X), where Prob(X) is the set of
functions $\mu:Xarrow[0,1]$ with $\sum_{x\in X}\mu(x)=1$ . A Blackwell strategy for player
$\Pi$ is a function $\sigma:X^{Odd}arrow$ Prob(X) such that for any $s\in X$Even and $x,$ $y\in$

$X,$ $\tau(s^{-}\langle x\rangle)=\tau(s^{-}\langle y\rangle)$ .
Given Blackwell strategies $\sigma,$ $\tau$ for player I and II respectively, let $\nu(\sigma, \tau):<\omega Xarrow$
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Prob(X) be as follows: For each finite sequence $s$ of elements of $X$ ,

$\nu(\sigma, \tau)(s)=\{\begin{array}{ll}\sigma(s) if s\in X^{Even},\tau(s) if s\in X^{Odd}.\end{array}$

For each finite sequence $s$ of elements of $X$ , define

$\mu_{\sigma,\tau}([s])=\prod_{i=0}^{1h(s)-1}\nu(\sigma, \tau)(sri)(s(i))$ ,

where $[s]$ denotes the set of $x\in\omega X$ such that $x\supseteq s$ and these sets are
basic open sets in the topological space $\omega X$ . With the help of $DC_{w}x$ , one
can uniquely extend $\mu_{\sigma,\tau}$ to a Borel probability on $\omega X$ , i.e., the probability
whose domain is the set of all Borel sets in the space $\omega X$ . Let us also use
$\mu_{\sigma,\tau}$ for denoting this Borel probability.

A subset $A$ of $\omega X$ has a value if

$\sup_{\sigma}\inf_{\tau}\mu_{\sigma,\tau}^{-}(A)=\inf_{\tau}\sup_{\sigma}\mu_{\sigma,\tau}^{+}(A)$ ,

where $\sigma(\tau)$ ranges over Blackwell strategies for I (II resp.) and $\mu_{\overline{\sigma},\tau}(\mu_{\sigma,\tau}^{+})$

denotes the inner (outer resp.) measure of $\mu_{\sigma,\tau}$ .
The Axiom of Blackwell Determinacy (BI-AD) asserts that for any nonempty

finite set $X$ , every subset $A$ of $\omega X$ has a value.

Note that one can formulate rock-paper-scissors with Blackwell games by
setting $X=$ {rock, paper, scissors} and $A=$ { $x\in\omega X|x(O)$ wins” against $x(1)$ }.
This is why we demand the additional condition to Blackwell strategies $\tau$ for
II, namely for any $s\in X$Even and $x,$ $y\in X,$ $\tau(s^{-}\langle x\rangle)=\tau(s^{-}\langle y\rangle)$ . (Other-
wise, player II could decide her hand $(i.e., x(1))$ after looking at the player
I $s$ hand $(i.e., x(O)).)$

The following theorem explains how Blackwell determinacy affects the
properties for sets of reals:

Theorem 2.7 (Vervoort). Let $\Gamma\subseteq P(\mathbb{R})$ be a pointclass closed under con-
tinuous preimages. Then if every set in $\Gamma$ has a value, then every set in $\Gamma$ is
Lebesgue measurable.2 In particular, BI-AD implies that every set of reals is
Lebesgue measurable and it contradicts the Axiom of Choice.

2Here by Lebesgue measure, we mean the product measure $\mu_{L}$ on the Cantor space,
i.e., $\mu_{L}([s])=2^{-1h(s)}$ for every $s\in<\omega 2$ , where lh$(s)$ denotes the length of $s$ .
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Proof. Set $X=2$ and let $\sigma_{0}$ be the randomized Blackwell strategy for I,
i.e., $\sigma_{0}(s)(O)=\sigma_{0}(s)(1)=1/2$ for any $s\in 2^{Even}$ . Let $\tau_{0}$ be the randomized
Blackwell strategy for II, i.e., $\sigma_{0}(s)(0)=\sigma_{0}(s)(1)=1/2$ for any $s\in 2^{Odd}$ .
The idea is to realize the Lebesgue measure $\mu_{L}$ by taking a pull-back measure
of $\mu_{\sigma_{0},\tau}(\mu_{\sigma,\tau 0})$ for any $\tau$ ( $\sigma$ resp.) via a certain continuous function.

Let $\pi:^{\omega}2arrow\omega 2$ be the following function: For each $x$ in $\omega 2$ and $n$ in $\omega$ ,
$\pi(x)(n)=|x(2n)-x(2n+1)|$ . Then it is easy to see that $\pi$ is continuous.
Claim 2.8. For any Blackwell strategy $\tau$ for II, $\mu_{L}$ is the pull-back measure
of $\mu_{\sigma 0,\tau}$ via $\pi$ , i.e., for any Borel subset $B$ of the Cantor space, $\mu_{L}(B)=$

$\mu_{\sigma,\tau}0(\pi^{-1}(B))$ . The corresponding statement holds for $\tau_{0}$ .
Proof of Claim 2.8. It is enough to show that $\mu_{L}([s])=\mu_{\sigma\tau}0,(\pi^{-1}([s]))$ for
any $s\in<\omega 2$ and this can be done by induction on the length of $s$ . Here the
additional condition for Blackwell strategies for player II is essential. Since
this is a routine calculation, we omit the details. $\square$ (Claim 2.8)

Let $A$ be in $\Gamma$ . We show that $A$ is Lebesgue measurable. It is enough to
show that $\mu_{L}^{+}(A)\leq\mu_{L}^{-}(A)$ . Since $\pi$ is continuous, $\pi^{-1}(A)\in\Gamma$ , hence by the
assumption, $\pi^{-1}(A)$ has a value, i.e.,

$\sup_{\sigma}\inf_{\tau}\mu_{\sigma,\tau}^{-}(\pi^{-1}(A))=\inf_{\tau}\sup_{\sigma}\mu_{\sigma,\tau}^{+}(\pi^{-1}(A))$ . (1)

Then by Claim 2.8, for any $\tau$ ,

$\mu_{L}^{+}(A)=\mu_{\sigma 0,\tau}^{+}(\pi^{-1}(A))\leq\sup_{\sigma}\mu_{\sigma,\tau}^{+}(\pi^{-1}(A))$

and hence

$\mu_{L}^{+}(A)\leq\inf_{\tau}\sup_{\sigma}\mu_{\sigma,\tau}^{+}(\pi^{-1}(A))$ .

By the same argument, one can prove that

$\sup_{\sigma}\inf_{\tau}\mu_{\sigma,\tau}^{-}(\pi^{-1}(A))\leq\mu_{L}^{-}(A)$ .

Therefore, by the formula (1),

$\mu_{L}^{+}(A)\leq\inf_{\tau}\sup_{\sigma}\mu_{\sigma,\tau}^{+}(\pi^{-1}(A))$

$= \sup_{\sigma}\inf_{\tau}\mu_{\sigma,\tau}^{-}(\pi^{-1}(A))$

$\leq\mu_{L}^{-}(A)$ ,

as desired. $\blacksquare$
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We discuss the connection between Blackwell determinacy and other reg-
ularity properties such as the Baire property in \S 4.

As for Gale-Stewart games, one could ask what kind of subsets of $\omega X$ have
a value for a nonempty finite $X$ . After proving that every $G_{\delta}$ set of reals
has a value, Blackwell asked whether every Borel set of reals has a value. In
1998, Martin proved the following:

Theorem 2.9 (Martin). Let $\Gamma$ be a pointclass closed under continuous
preimages. Then if every set in $\Gamma$ is determined, then every set in $\Gamma$ has
a value. In particular, every Borel set of reals has a value and AD implies
BI-AD.

Proof. See [16]. $\square$

Hence determinacy implies Blackwell determinacy. After proving the
above theorem, Martin conjectured the following:

Conjecture 2.10 (Martin). AD and BI-AD are equivalent.

This conjecture is still open to be true or false. We discuss this conjecture
in \S 3 and \S 5.

It is a natural question whether one can introduce Blackwell determinacy
when the base set $X$ is infinite. It is possible exactly in the same way. But
when $X=\omega$ , a simple subset of $\omega X$ already does not have a value as follows:

Proposition 2.11. Let $X=\omega$ and $A=\{x\in\omega\omega|x(O)>x(1)\}$ . Then $A$

does not have a value.

The above game is namely about “Which player takes a larger natural
number on their first moves¿‘, which is a game of just one move for each
player.

Proof of Proposition 2.11. We show that $\sup_{\sigma}\inf_{\tau}\mu_{\sigma,\tau}^{-}(A)=0$ while $\inf_{\tau}\sup_{\sigma}\mu_{\sigma,\tau}^{+}(A)=$

1.
To prove $\inf_{\tau}\sup_{\sigma}\mu_{\sigma,\tau}^{+}(A)=1$ , let $\epsilon>0$ and $\tau$ be any Blackwell strategy

for player II. Then by the condition for a Blackwell strategy for player II,
for all natural numbers $m,$ $n,$ $\tau(\langle m\rangle)=\tau(\langle n\rangle)$ . Let us call it $\tau_{0}$ . Then since
$\sum_{n\in\omega}\tau_{0}(n)=1$ , there is a natural number $n_{0}$ such that $\sum_{n\geq n_{0}}\tau_{0}(n)<\epsilon$ . Let
$\sigma$ be any Blackwell strategy for player I such that $\sigma(\emptyset)(n_{0})=1$ . Then by the
definition of $\mu_{\sigma,\tau},$

$\mu_{\sigma,\tau}(A)<\epsilon$ . Since $\epsilon$ and $\tau$ are arbitrary, $\inf_{\tau}\sup_{\sigma}\mu_{\sigma,\tau}^{+}(A)=$

1, as desired.
The argument for $\sup_{\sigma}\inf_{\tau}\mu_{\sigma,\tau}^{-}(A)=0$ is similar. $\blacksquare$
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Note that for the above proof, we used the additional condition for Black-
well strategies for player II essentially.

Instead of giving up generalizing Blackwell determinacy to arbitrary nonempty
set $X$ , we will look at another formulation of Blackwell games, which is with
less imperfect information in some sense. As mentioned, the reason why the
payoff set $A=\{x\in\omega\omega|x(O)>x(1)\}$ does not have a value is that we
demand player II to choose probabilities independent of the Iast positions
she is at, i.e., $\tau(\langle m\rangle)=\tau(\langle n\rangle)$ for each $m$ and $n$ . The natural question is:
What if we do not demand such additional condition to player II? In such a
case, $\inf_{\tau}\sup_{\sigma}\mu_{\sigma,\tau}^{+}(A)=0$ and $A$ has a value.3

This observation lead Martin, Neeman, and Vervoort to introduce the
following formulation of Blackwell determinacy and prove the following the-
orem:

Definition 2.12. Let $X$ be a nonempty finite set. A mixed stmtegy for
player $I$ is $a$ function $\sigma:X^{Even}arrow$ Prob(X). A mixed stmtegy for player $\Pi$ is
a function $\sigma:X^{Odd}arrow$ Prob(X). Given mixed strategies $\sigma$ , and $\tau$ for player
I and II respectively, one can introduce the Borel probability $\mu_{\sigma,\tau}$ on $\omega X$ in
the same way as in Definition 2.6.

A subset $A$ of $\omega X$ has a mixed value if

$\sup_{\sigma}\inf_{\tau}\mu_{\sigma,\tau}^{-}(A)=\inf_{\tau}\sup_{\sigma}\mu_{\sigma,\tau}^{+}(A)$ ,

where $\sigma(\tau)$ ranges over mixed strategies for I (II resp.).

Theorem 2.13 (Martin, Neeman, and Vervoort). Let $\Gamma$ be a pointclass
closed under continuous preimages.

1. Assume every set in $\Gamma$ has a mixed value. Then for any $A$ in $\Gamma$ , its
mixed value is either $0$ or 1 and there is a mixed strategy witnessing
it, i.e., either there is a mixed strategy $\tau$ for player II such that for any
mixed strategy $\sigma$ for I, $\mu_{\sigma,\tau}(A)=0$ or there is a mixed strategy $\sigma$ for
player I such that for any mixed strategy $\tau$ for player II, $\mu_{\sigma,\tau}(A)=1$ .

2. Every set in $\Gamma$ has a value if and only if every set in $\Gamma$ has a mixed
value.

3Indeed, given $\sigma$ , let $\tau$ be any such that $\tau((n\rangle)(n+1)=1$ , i.e., II plays $n+1$ with
probability 1 on her first move if I plays $n$ . Then $\mu_{\sigma,\tau}(A)=0$ .
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Proof. For the first item, see [17, Lemma $3.7$ & 3.10].
For the second item, the direction from left to right is easy because one

can simulate the latter formulation of Blackwell games with the former of
them by looking at the function $\pi:^{\omega}Xarrow\omega X$ with $\pi(x)(2n)=x(4n)$ and
$\pi(x)(2n+1)=x(4n+3)$ . For right to left, one should check that the
arguments in the proof of Theorem 2.9 go through by using mixed strategies
witnessing the mixed value to be $0$ or 1 instead of using winning strategies.

$\square$

Following the lead by Theorem 2.13, we now introduce Blackwell deter-
minacy for arbitrary nonempty set $X$ :

Definition 2.14. Let $X$ be a nonempty set. We assume the axiom $DC_{td}X^{4}$ .
A mixed strategy for player $I$ is a function $\sigma:X^{Even}arrow Prob_{\omega}(X)$ , where
$Prob_{\omega}(X)$ is the set of functions $\mu:Xarrow[0,1]$ with $\sum_{x\in X}\mu(x)=1^{5}$ A
mixed stmtegy for player II is a function $\tau:X^{Odd}arrow Prob_{\omega}(X)$ .

Given mixed strategies $\sigma,$ $\tau$ for player I and II respectively, with the help
of $DC_{w}x$ , one can introduce the Borel probability $\mu_{\sigma,\tau}$ on $\omega X$ in the same
way as in Definition 2.6.

Let $A$ be a subset of $\omega X$ . A mixed strategy $\sigma$ for player I is optimal in $A$ if
for any mixed strategy $\tau$ for player II, $A$ is $\mu_{\sigma,\tau}$-measurable and $\mu_{\sigma,\tau}(A)=1$ .
A mixed strategy $\tau$ for player II is optimal in $A$ if for any mixed strategy
$\sigma$ for player I, $A$ is $\mu_{\sigma,\tau}$-measurable and $\mu_{\sigma,\tau}(A)=0$ . A set $A$ is Blackwell-
determined if one of the players has an optimal strategy in $A$ . The axiom
$B1-AD_{X}$ states that every subset of $\omega X$ is Blackwell-determined.

Note that BI-AD is equivalent to $B1-AD_{2}$ by the second item of Theo-
rem 2.13 and that one can state $B1-AD_{\mathbb{R}}$ within ZF $+DC_{\mathbb{R}}$ . The following is
an analogue with Proposition 2.5:

Proposition 2.15. Let $X,$ $Y$ be nonempty sets and suppose that there is $an$

injection from $X$ to $Y$ and assume DC.$dY$ . Then $B1-AD_{Y}$ implies $B1arrow AD_{X}$ .
In particular, $B1-AD_{R}$ implies BI-AD.

Proof. This is easy and routine. We omit the details. $\square$

4In other words, for any relation $R$ on $\omega X$ such that $(\forall x)($ョ$y)(x,y)\in R$ , there is a
function $f:\omegaarrow\omega X$ such that $(f(n), f(n+1))\in R$ for every $n\in\omega$ .

5We use $Prob_{td}(X)$ to denote such functions because they are the same as Borel prob-
abilities $\mu$ on $X$ with countable support, i.e., there is a countable subset $A$ of $X$ with
$\mu(A)=1$ .
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As suspected, determinacy implies Blackwell determinacy even with the
latter formulation:

Theorem 2.16 (Martin). Let $X$ be a nonempty set and assume $DC_{w}x$ . If
there is a winning strategy for player I (resp., II) in a subset $A$ of $\omega X$ , then
there is an optimal strategy for player I (resp., II) in $A$ . In particular, $AD_{\mathbb{R}}$

implies that $B1-AD_{\mathbb{R}}$ .

Proof. Given a strategy $\sigma$ for player I (resp., II), one can naturally translate
$\sigma$ into a mixed strategy $\hat{\sigma}$ for player I (resp., II) by setting $\hat{\sigma}(s)$ to be the
Dirac measure concentrating on $\sigma(s)$ , i.e., $\hat{\sigma}(s)(\sigma(s))=1$ . It is easy to see
that if $\sigma$ is winning in $A$ , then $\hat{\sigma}$ is optimal in A. $\blacksquare$

We discuss the relationship between $AD_{\mathbb{R}}$ and $B1-AD_{\mathbb{R}}$ in \S 5 and \S 6.

3 AD and BI-AD
In the last section, we saw the definitions of Gale-Stewart games and Black-
well games and learned that determinacy implies Blackwell determinacy. Let
us discuss the other implication: Does Blackwell determinacy imply deter-
minacy? In fact, this is the case if we focus on finite games:

Definition 3.1. Let $X$ be a nonempty set and $A$ be a subset of $\omega X$ . The set
$A$ describes a finite game if there are a natural number $n<\omega$ an$d$ a subset
$B$ of $X^{n}$ such that $A= \bigcup_{s\in B}[s]$ .

Theorem 3.2 (L\"owe). Let $X$ be $a$ nonempty set which is totally ordered
and assume $DC_{\omega}X$ . Let $A$ be a subset of $\omega X$ which describes a finite game.
Then if $A$ is Blackwell determined, then it is determined.

Proof. The idea is to choose a path (i.e., a run of the game) with positive
probability without using the Axiom of Choice.6 We need that $X$ is totally
ordered to avoid using the Axiom of Choice. Here are the details: Let $<x$ be
a total order on $X$ and $n,$ $B$ witness that $A$ describes a finite game. Assume $\sigma$

is an optimal strategy for I in $A$ . We show that there is a winning strategy for
I in A. (The case player II having an optimal strategy in $A$ can be treated in
the same way.) We will define a strategy $\tilde{\sigma}$ for I and prove that it is winning
for I in $A$ .

6Indeed, the determinacy of closed sets follow from the Axiom of Choice easily.
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Let us first look at the probability $\sigma(\emptyset)$ on $X$ . Since $\sum_{x\in X}\sigma(\emptyset)(x)=1$ ,
there is a natural number $m>0$ such that

$\{x\in X|\sigma(\emptyset)(x)>1/m\}\neq\emptyset$ .
Take the least such $m$ and call it $m_{0}$ . Then the set $C_{0}=\{x\in X|\sigma(\emptyset)(x)>$

$1/m_{0}\}$ is a nonempty finite subset of $X$ (the number of elements of $C_{0}$ is at
most $m_{0}$ ). Since any total order on a finite set is well-ordered, $C_{0}$ is well-
ordered by $<x$ . So take the $<X$-least element $x_{0}$ of $C_{0}$ and define $\tilde{\sigma}(\emptyset)=x_{0}$ .
We have now specified the first move of $\tilde{\sigma}$ .

We continue this process and define a in the same way: More precisely,
for $s\in X^{Even}$ , we define $\tilde{\sigma}(s)$ as follows: Let $m$ be the least positive natural
number such that $C=\{x\in X|\sigma(s)(x)>1/m\}\neq\emptyset$ . Then let $\tilde{\sigma}(s)$ be the
$<X$ -least element $x$ of $C$ .

We show that $\tilde{\sigma}$ is a winning strategy for I in $A$ . Let $\tau$ be any strategy
for II. We prove that the run $\tilde{\sigma}*\tau$ of the game belongs to $A$ . First, it is
easy to observe that for any natural number $\ell\leq n,$ $\mu_{\sigma,\dot{\tau}}([(\tilde{\sigma}*\tau)rp])>0$

by induction on $\ell$ , where $\hat{\tau}$ is the derived mixed strategy for II from $\tau$ , i.e.,
$\hat{\tau}(s)(\tau(s))=1$ for any $s\in X^{Odd}$ . In particular, $\mu_{\sigma,\hat{\tau}}([(\tilde{\sigma}*\tau)\square n])>0$. But
since $\sigma$ is optimal, this means that $(\sigma*\tau)rn$ is in $B$ , which implies that
$\tilde{\sigma}*\tau\in A$ , as desired. $\blacksquare$

If we look at the argument above carefully, one could notice that it works
also for every clopen subset $A$ of $\omega X$ : Suppose $\sigma$ is an optimal strategy for
I in $A$ . Since $A$ is closed, there is a tree $T$ on $X$ such that $A=[T]$ , where
$[T]=\{x\in\omega X|(\forall n\in\omega)xrn\in T\}$ . Then if $\tilde{\sigma}$ and $\tau$ are as above, for
any natural number $n,$ $(\tilde{\sigma}*\tau)rn\in T$ because $\mu_{\sigma,\hat{\tau}}([(\tilde{\sigma}*\tau)rn])>0$ and
$\sigma$ is optimal for I in $A$ . Hence $\tilde{\sigma}*\tau\in[T]=A$ , as desired. We need to
assume that $A$ is also open because we need to do the same argument for the
complement of $A$ in case player II has an optimal strategy in $A$ .

Moreover, if we look at this argument more carefully, we could notice that
this argument is based on some kind of “continuity“ of $A$ , i.e., when player
I (or II) deals with the conditions at any finite stage, she will win the game.
This “continuity“ is realized by the fact that A $h$as a tree representation
($A=[T]$ in this case). One might wonder if one could arrange this kind of
“continuity“ for even more complicated sets and that is in fact possible: A
set $A$ of reals is Suslin if there are an ordinal $\gamma$ and a tree $T$ on $2\cross\gamma$ such that
$A=p[T]$ , where $p[T]=\{x\in \mathbb{R}|(\exists y\in\omega\gamma)(x, y)\in[T]\}$ . A set $A$ of reals
is co-Suslin if the complement of $A$ is Suslin. Suslin sets are generalization
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of closed sets (consider $\gamma=1$ for closed sets) and Suslin & co-Suslin sets are
generalization of clopen sets.

Theorem 3.3 (Martin, Neeman, and Vervoort). Assume BI-AD. Then every
Suslin & co-Suslin set of reals is determined.

Proof. See [17, Lemma 4.1]. $\square$

By using Theorem 3.3, one can prove that much more complicated sets
of reals are determined assuming BI-AD: It is a basic fact that every $\Sigma_{2}^{1}$

set of reals is Suslin. Hence every $\Delta_{2}^{1}$ set of reals is Suslin & co-Suslin,
hence determined by Theorem 3,3. Then by Moschovakis’ Second Periodicity
Theorem, every $\Sigma_{4}^{1}$ set of reals is Suslin and so every $\Delta_{4}^{1}$ set of reals is Suslin
& co-Suslin, and again determined by Theorem 3.3 and so on. . . By looking
at the scale analysis in $L(\mathbb{R})$ by Steel, one can go up to the fact that every
set of reals in $L_{\delta_{1}^{2}}(\mathbb{R})$ is determined, where $\delta_{1}^{2}$ is the supremum of ordinals
which can be obtained by the length of $\Delta_{1}^{2}$ prewellorderings on the reals.
Since $L_{\delta_{1}^{2}}(\mathbb{R})\prec_{\Sigma_{1}}L(\mathbb{R})$ , if there is a non-determined set of reals in $L(\mathbb{R})$ ,
then there is one in $L_{\delta_{1}^{2}}(\mathbb{R})$ . Hence AD holds in $L(\mathbb{R})$ . This brief description
is summarized by the following theorem:

Theorem 3.4 (Kechris and Woodin). Assume every Suslin & co-Suslin set
of reals is determined. Then AD holds in $L(\mathbb{R})$ .

Proof. See [14]. $\square$

Corollary 3.5 (Martin, Neeman, and Vervoort). In $L(\mathbb{R})$ , AD and BI-AD
are equivalent. Hence they are equiconsistent,

Proof. It follows from Theorem 3.3 and Theorem 3.4. $\square$

Hence AD and BI-AD are equiconsistent while the equivalence between
them is still not known to be true or false as mentioned in \S 2.

4 Consequences of $B1-AD_{\mathbb{R}}$

In this section, we focus on what one can deduce from $B1-AD_{\mathbb{R}}$ . The folIowing
is an easy corollary obtained from Theorem 3.2:
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Corollary 4.1 (L\"owe). Assume $B1-AD_{R}$ . Then every relation on the reals
can be uniformized by a function with the same domain, i.e., $(\forall R\subseteq \mathbb{R}\cross$

$\mathbb{R})(\exists f\subseteq R)$ such that $f$ is a function and dom $(f)=$ dom $(R)$ .

Proof. Let $R$ be a relation on the reals. Consider the following game with
length 2: Player I first chooses a real $x$ and player II replies by choosing a
real $y$ . Player II wins if $(x, y)\in R$ or $x$ is not in the domain of $R$ . This
game be easily finitely described by a payoff set $A\subseteq\omega \mathbb{R}$. By $B1-AD_{\mathbb{R}}$ and
Theorem 3.2, this game is determined. So either player I or II has a winning
strategy.

We show that player II has a winning strategy by arguing that player I
cannot have a winning strategy. Let $\sigma$ be any strategy for I. If $\sigma(\emptyset)$ is not in
the domain of $R$ , II wins. If it is in the domain, there is a real $y$ such that
$(\sigma(\emptyset), y)\in R$ . Let II play this $y$ . Then II wins the game as well. So II can
defeat the strategy $\sigma$ in either case, as desired.

Let $\tau$ be a winning strategy for II in this game. Then the function
$f$ : dom $(R)arrow \mathbb{R}$ can be obtained by $f(x)=\tau(x)$ for each $x\in R$ , which
is the desired function uniformizing R. $\blacksquare$

In the last section, we saw that the determinacy of every Suslin & co-
Suslin set follows from BI-AD. One can ask what kind of other sets can be
determined assuming $B1-AD_{\mathbb{R}}$ . Here is a useful example:

Definition 4.2. A subset $A$ of $\omega \mathbb{R}$ is mnge-invariant if for any $\overline{x},\vec{y}\in\omega \mathbb{R}$

with ran $(\vec{x})=$ ran $(yT,$ $x^{\neg}\in A$ if and only if $\vec{y}\in A$ .

Theorem 4.3 (I.). Assume $B1-AD_{\mathbb{R}}$ . Then every range-invariant set is de-
termined.

Proof. Let $A$ be range-invariant and $\sigma$ be an optimal strategy for player I in
$A$ . We show that there is a winning strategy for player I in A. (The case
for player II is similar.) The following is the key-point: Let $\mathcal{P}_{\omega_{1}}(\mathbb{R})$ be the
set of all countable sets of reals. A countable set $a$ of reals is closed under
a function $F:<\omega \mathbb{R}arrow P_{\omega_{1}}(\mathbb{R})$ if for any finite sequence $s$ of elements in $a$ ,
$F(s)\subseteq a$ .
Claim 4.4. Player I has a winning strategy in $A$ if and only if there is
a function $F:<\omega \mathbb{R}arrow \mathcal{P}_{\omega_{1}}(\mathbb{R})$ such that if $a$ is closed under $F$ , then any
enumeration of $a$ belongs to $A$ .
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Proof of Claim 4.4. The direction from left to right is easy: Given a winning
strategy $\sigma’$ : $\mathbb{R}^{Even}arrow \mathbb{R}$ for player I in $A$ , let $\hat{\sigma}’$ : $\omega \mathbb{R}arrow \mathbb{R}$ be any extension of
$\sigma’$ and $F$ be such that $F(s)=\{\sigma’(s)\}\wedge$ . This $F$ works for our purpose using
the range-invariance of $A$ .

For the direction from right to left, given such $F$ , we uniformize the
relation $\{(s,$ $y)\in<\omega \mathbb{R}\cross \mathbb{R}|y$ codes $F(s)\}$ by a function $g$ . This is possible by
Corollary 4.1. Then by a standard book-keeping argument, one can arrange
a strategy $\sigma’$ for I in such a way that any run $\vec{x}$ of the game following $\sigma’$

gives its domain to be closed under $g$ , hence closed under $F$ , so $\vec{x}\in A$ by the
range-invariance of $A$ , as desired.

For the details, see [11, Claim $3.2$ & 3,3]. $\square$ (Claim 4.4)

By Claim 4.4, it suffices to find an $F:<\omega \mathbb{R}arrow \mathcal{P}_{\omega_{1}}(\mathbb{R})$ such that if $a$ is
closed under $F$ , then any enumeration of $a$ belongs to $A$ .

Let $F$ be as follows:

$F(s)=\{\begin{array}{ll}\emptyset if lh (s) is odd,\{y\in \mathbb{R}|\sigma(s)(y)\neq 0\} otherwise.\end{array}$

Then $F$ is as desired: If $a$ is closed under $F$ , then enumerate $a$ to be
$\langle a_{n}|n\in\omega\rangle$ and let player I follow $\sigma$ and let player II play the Dirac
measure for $a_{n}$ at her nth move. Then by the closure of $a$ under $F$ , the
probability of the set $\{x\in\omega \mathbb{R}|$ ran$(x)=a\}$ is 1 and since $\sigma$ is optimal for
player I in $A$ , there is an $x$ such that the range of $x$ is $a$ and $x$ is in $A$ . But
by the range-invariance of $A$ , any enumeration of $a$ belongs to A. $\blacksquare$

The determinacy of range-invariant sets can be used to show the following
theorem: Let $X$ be a set and $\kappa$ be an uncountable cardinal. Let $\mathcal{P}_{\omega 1}(\mathbb{R})$ be
the set of all countable sets of reals. Let $U$ be a set of subsets of $\mathcal{P}_{\omega\iota}(\mathbb{R})$ . We
say that $U$ is $\sigma$ -complete if $U$ is closed under countable intersections; we say
it is fine if for any $x\in X,$ $\{a\in \mathcal{P}_{\omega_{1}}(\mathbb{R})|x\in a\}\in U$ ; we say that $U$ is normal
if for any family $\{A_{x}\in U|x\in \mathbb{R}\}$ , the diagonal intersection $\triangle_{x\in \mathbb{R}}A_{x}$ is in $U$

(where $\triangle_{x\in X}A_{x}=\{a\in \mathcal{P}_{\omega_{1}}(\mathbb{R})|(\forall x\in a)a\in A_{x}\}$ ); we say that it is a fine
normal measure if it is a non-principal, fine, normal, $\sigma$-complete ultrafilter.

Theorem 4.5 (de Kloet, L\"owe, I.). Assume $B1-AD_{\mathbb{R}}$ . Then there is a fine
normal measure on $\mathcal{P}_{\omega_{1}}(\mathbb{R})$ .

Sketch of proof. We define a family $U\subseteq \mathcal{P}(P_{\omega_{1}}(\mathbb{R}))$ as follows: Fix $A\subseteq$

$\mathcal{P}_{\omega 1}(\mathbb{R})$ and consider the following game $\tilde{G}_{A}$ : Players alternately play reals;
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say that they produce an infinite sequence $\tilde{x}=(x_{i}|i\in\omega)$ . Then player II
wins the game $\tilde{G}_{A}$ if ran $(\vec{x})\in A$ , otherwise player I wins. Since the payoff
set of this game is range-invariant as a Gale-Stewart game, by Theorem 4.3,
it is determined.

We say that $A\in U$ if and only if player II has a winning strategy in the
game $\tilde{G}_{A}$ . We show that $U$ is a fine normal measure under the assumption
of $B1-AD_{\mathbb{R}}$ . The determinacy of games of the form $\tilde{G}_{A}$ can be used to show
that $U$ is an ultrafilter. Except the normality, the argument is exactly the
same as the one in [22, Lemma 3.1] and it is not difficult. So we will omit
it. For the normality of $U$ , one needs to use $B1-AD_{\mathbb{R}}$ . For the details, see
Section 3 in [11]. $\square$

Solovay proved the following interesting theorem:

Theorem 4.6 (Solovay). Assume there is $a$ fine normal measure on $\mathcal{P}_{\omega_{1}}(\mathbb{R})$ .
Then $\mathbb{R}\#$ exists.7

Sketch of proof. Fix a fine normal measure $U$ on $P_{\omega 1}(\mathbb{R})$ . It is easy to con-
struct a surjection $\pi:\mathcal{P}_{\omega\iota}(\mathbb{R})arrow\omega_{1}$ such that $\pi^{-1}(\{\alpha\})\not\in U^{8}$ Then from $U$ ,
$\pi$ derives a measure on $\omega_{1}$ and hence $\omega_{1}$ is measurable. From this, it follows
that every real has a sharp and that every $a\in \mathcal{P}_{\omega_{1}}(\mathbb{R})$ has a sharp (because
every $a$ can be coded by a real).

We now define $X$ as follows: For a sentence $\phi$ in the language for $\mathbb{R}\#$ ,

$\phi\in X\Leftrightarrow\{a\in \mathcal{P}_{\omega_{1}}(\mathbb{R})|\phi\in a^{\#}\}\in U$ .

It is a routine to check that $X$ satisfies the conditions for $\mathbb{R}\#$ . For the details,
see [22, Lemma $4.1$ & Theorem 4.4]. $\square$

Corollary 4.7 (de Kloet, L\"owe, I.).

1. $B1-AD_{\mathbb{R}}$ implies that $\mathbb{R}\#$ exists.

2. The consistency of $B1-AD_{\mathbb{R}}$ is strictly stronger than that of AD.

Proof. The first item follows from Theorem 4.5 and Theorem 4.6.
For the second item, first note that $B1-AD_{\mathbb{R}}$ implies $AD^{L(\mathbb{R})}$ by Propo-

sition 2.15 and Corollary 3.5. Since we have $\mathbb{R}\#$ by the first item of this

$\overline{7For}$the definition of $\mathbb{R}\#$ , see[22].
8In fact, let $\rho:\mathbb{R}arrow\omega_{1}$ be any surjection and set $\pi(a)=\sup_{x\in a}\rho(x)$ .
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theorem, by the property of $\mathbb{R}\#$ , one can construct a set-size elementary sub-
structure of $L(\mathbb{R})$ and that structure knows that $AD^{L(\mathbb{R}}$) holds. Therefore,
$B1-AD_{\mathbb{R}}$ implies the consistency of AD and by G\"odel $s$ Second Incompleteness
Theorem, the consistency of $B1-AD_{\mathbb{R}}$ is strictly stronger than that of AD. $\blacksquare$

Next, we show that $B1-AD_{\mathbb{R}}$ implies that every set of reals has almost all
the known regularity properties and is $\infty$-Borel. We start with proving the
perfect set property for every set of reals. Recall that a set of reals A $h$as the
perfect set property if either $A$ is countable or $A$ contains a perfect subset,
where a perfect set of reals is a closed set without isolated points.

Theorem 4.8 (I.). Assume $B1-AD_{\mathbb{R}}$ . Then every set of reals has the perfect
set property.

Proof. The theorem follows from the following two lemmas:

Lemma 4.9. Assume $B1-AD_{\mathbb{R}}$ . Then every relation on the reals can be
uniformized by a Borel function modulo a Lebesgue null set, i.e., for any
relation $R$ on the reals, there is a Borel function $f$ such that the set $\{x|$

$(x, f(x))\in R$ or there is no real $y$ with $(x, y)\in R\}$ is of Lebesgue measure
one.

Proof of Lemma 4. $g$ . The conclusion follows by a folklore argument from
Lebesgue measurability and uniformization for any relation on the reals both
of which are consequences of $B1-AD_{R}$ by Theorem 2.7 and Corollary 4.1.

Let $R$ be an arbitrary relation on the reals. We may assume the domain of
$R$ is the whole space, i.e., for any real $x$ , there is a real $y$ such that $(x, y)\in R$ .
We will find a Borel function uniformizing $R$ almost everywhere.

By the uniformization principle, there is a function $g$ uniformizing $R$ .
For each finite binary sequence $s$ , the set $g^{-1}([s])$ is Lebesgue measurable by
Theorem 2.7. Hence for each $s$ there is a Borel set $B_{s}$ such that $g^{-1}([s])\triangle B_{s}$

is Lebesgue null. Now define $f$ so that the following holds: For each finite
binary sequence $s$ ,

$f(x)\in[s]\Leftrightarrow x\in B_{s}$ .

Then by the property of $B_{s},$ $f$ is defined almost everywhere, Borel, and is
equal to $g$ almost everywhere. Hence any Borel extension of $f$ will be the
one we desired. $\square$ (Lemma 4.9)
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Lemma 4.10 (Raisonnier and Stern). Suppose every relation on the reals
can be uniformized by a Borel function modulo a Lebesgue null set. Then
every set of reals has the perfect set property.

Proof of Lemma 4.10. See [21, Theorem 5], $\square$

$\square$ (Theorem 4.8)

We now prove that every set of reals has the Baire property assuming
$B1-AD_{\mathbb{R}}$ . Let us first prepare some notions for the proof. We first introduce
the Blackwell meager ideal as an analogue of the meager ideal. A set $A$ of
reals is Blackwell meager if player II has an optimal strategy in the Banach-
Mazur game $G^{**}(A)$ . Let $I_{BM}$ denote the set of all Blackwell meager sets of
reals.

Lemma 4.11 (I.). Assume BI-AD. Then any meager set is in $I_{BM},$ $[s]\not\in I_{BM}$

for each finite binary sequence $s$ , and $I_{BM}$ is a $\sigma$-ideal. Moreover, every set
of reals is measurable via $I_{BM}$ , i.e., for any set $A$ of reals and finite binary
sequence $s$ , there is a finite binary sequence $t$ extending $s$ such that either
$[t]\cap A$ or $[t]\backslash A$ is in $I_{BM^{9}}$.

Proof. See [11, Lemma 4.4]. Although it is not difficult, the argument comes
with several codings and it is tedious. $\square$

Next, we introduce the Stone space St(IF’) and P-Baireness for a partial
order IP‘. For a partial order $\mathbb{P}$ , the Stone space of IP (denoted by St(IP))
is the set of all ultrafilters on $\mathbb{P}$ equipped with the topology generated by
$\{O_{p}|p\in \mathbb{P}\}$ , where $O_{p}=\{u\in St(P) 1 u\ni p\}$ . For example, if 1’ is Cohen
forcing $\mathbb{C}$, then St $(\mathbb{C})$ is homeomorphic to the Baire space $\omega\omega$ .

Before defining P-Baireness, let us see the connection between Baire mea-
surable functions from St(P) to the reals and IF’-names for reals. Let $X,$ $Y$

be topological spaces. Then a function $f:Xarrow Y$ is Baire measurable if for
any open set $U$ in $Y,$ $f^{-1}(U)$ has the Baire property in $X$ . Baire measurable
functions are the same as continuous functions modulo meager sets: Let $X,$ $Y$

be topological spaces and assume $Y$ is second countable. Then it ls fairly
easy to see that a function $f:Xarrow Y$ is Baire measurable if and only if there
is a comeager set $D$ in $X$ such that $frD$ is continuous.

9This formulation of measurability is equivalent to the existence of an open set $U$ such
that the symmetric differenoe $A\triangle U$ is Blackwell meager.
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There is a natural correspondence between Baire measurable functions
from St(P) to the reals and P-names for reals:

Lemma 4.12 (Feng, Magidor, and Woodin). Let $\mathbb{P}$ be a partial order.
1. If $f$ : St $(\mathbb{P})arrow\omega\omega$ is a Baire measurable function, then

$\tau_{f}=\{(m,$ $n)^{\vee},p)|O_{p}\backslash \{u\in$ St $(\mathbb{P})|f(u)(m)=n\}$ is meager $\}$

is $a\mathbb{P}$-name for a real.
2. Let $\tau$ be a P-name for a real. Define $f_{\tau}$ as follows: For $u\in$ St $(\mathbb{P})$ and

$m,$ $n\in\omega$ ,

$f_{\tau}(u)(m)=n\Leftrightarrow(\exists p\in u)p|\vdash\tau(\check{m})=\check{n}$.
Then the domain of $f_{\tau}$ is comeager in St $(\mathbb{P})$ and $f_{r}$ is continuous on the
domain. Hence it can be uniquely extended to a Baire measurable function
from St $(\mathbb{P})$ to the reals modulo meager sets.

3. If $f$ : St $(\mathbb{P})arrow\omega\omega$ is a Baire measurable function, then $f_{\tau_{f}}$ and $f$ agree
on a comeager set in St(IP). Also, if $\tau$ is a $\mathbb{P}$-name for a real, then $|\vdash\tau_{f_{\tau}}=\tau$ .

Proof. See [6, Theorem 3.2]. $\square$

We now define the property $\mathbb{P}$-Baireness. Let $\mathbb{P}$ be a partial order and
$A$ be a set of reals. Then $A$ is P-Baire if for any Baire measurable function
$f$ : St $(\mathbb{P})arrow\omega\omega,$ $f^{-1}(A)$ has the Baire property in St(IE“). It is easy to see
that every Borel set of reals is P-Baire for any P.

If $\mathbb{P}$ is an element of $\mathcal{H}_{\omega_{1}}$ , then St(P) is essentially the same as St $(\mathbb{C})$

where $\mathbb{C}$ is Cohen forcing, hence the Baire space $\omega\omega$ by the following lemma:

Lemma 4.13. If $i:\mathbb{P}arrow \mathbb{Q}$ is dense for partial orders $\mathbb{P}$ and $\mathbb{Q}$ in $\mathcal{H}_{\omega 1}$ , then
$St(\mathbb{P})$ and $St(\mathbb{Q})$ are isomorphic as Baire spaces, i.e., there is a topological
homeomorphism between a comeager set in $St(\mathbb{P})$ and a comeager set in
$St(\mathbb{Q})$ . In particular, if every set of reals has the Baire property, then every
set of reals is $\mathbb{P}$-Baire for any $\mathbb{P}$ with IP‘ $\in \mathcal{H}_{\omega 1}$ .

Proof. Since $\mathbb{P}$ and $\mathbb{Q}$ are in $\mathcal{H}_{\omega 1}$ , so is $i$ . Pick a real $x$ coding $(\mathbb{P}, \mathbb{Q}, i)$ and
take a countable transitive model $M$ of ZF-P with $x\in M$ , where $P$ denotes
the Power Set Axiom. (E.g., consider $L_{\alpha}[x]$ for a suitable countable $\alpha.$ ) Then
$i$ induces a natural bijection between $\mathbb{P}$-generic filters over $M$ and $\mathbb{Q}-$-generic
filters over $M$ . Since $M$ is countable, the set of all $\mathbb{P}$-generic filters over $M$ is
comeager in St(P) and the same holds for $\mathbb{Q}$ . This natural bijection witnesses
the conclusion. $\blacksquare$
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Since every meager set is Blackwell meager as we have seen in Lemma 4.11,
if $\mathbb{P}$ is in $\mathcal{H}_{\omega_{1}}$ , then one can define Blackwell meagerness for subsets of St(P)
via an isomorphism between the Baire space and St(IP’) as Baire spaces and
identify them as structures of topological spaces together with Blackwell
meager ideals. From now on, we will use this identification without any
notice.

We are now ready to prove the Baire property for every set of reals
from $B1-AD_{N}$ .
Theorem 4.14. Assume $B1-AD_{R}$ . Then every set of reals has the Baire
property.

Pmof. Take any set $A$ of reals. We show that $A$ has the Baire property.
Let $A_{A}^{2}$ be the second-order arithmetic structure with $A$ as a unary predi-
cate. Since any relation on the reals can be uniformized by a function by
Corollary 4.1, we can construct a Skolem function $F$ for $\mathcal{A}_{A}^{2}$ and by a sim-
ple coding of finite sequences of reals and formulas via reals, we regard it
as a function from the reals to themselves. Let $\Gamma_{F}$ be the graph of $F$ , i.e.,
$\Gamma_{F}=\{(x, s)\in \mathbb{R}\cross<\omega 2|F(x)\supseteq s\}$ .

The following are the key objects for the proof (they are called term rela-
tions): Recall from Lemma 4.12 that for a P-name $\tau$ for a real, $f_{\tau}$ is the Baire
measurable function (which is continuous on a comeager set) corresponding
to $\tau$ .

$\tau_{A}=\{(P,p, \sigma)\in \mathcal{H}_{\omega_{1}}|\sigma$ is a $\mathbb{P}$-name for a real and
$(\forall^{\infty}G\in St(\mathbb{P}))p\in G\Rightarrow f_{\sigma}(G)\in A\}$ ,

where $(\forall^{\infty}G\in$ St $(\mathbb{P}))$ means “for all $G$ modulo a Blackwell meager set in
St(IP). . .” One can define $\tau_{A^{c}},$ $\tau_{\Gamma_{F}}$ , and $\tau_{(\Gamma_{F})^{C}}$ in the same way.

Let $M=HOD_{x}^{L[X]}$ where $X=(\tau_{A},$ $\tau_{A^{c})}\tau_{\Gamma_{F}},$
$\tau_{(\Gamma_{F})^{C)}}$ and for $G\in$ St $(P)$ , let

$A_{G}=\{f_{\sigma}(G)|(\exists p\in G)(\mathbb{P},p, \sigma)\in\tau_{A}\cap M\}$ .
The following are the key claims:

Claim 4.15.
1. Let $\mathbb{P}$ be a partial order in $M$ . Then $(\forall^{\infty}G\in$ St $(\mathbb{P}))A_{G}=A\cap M[G]\in$

$M[G]$ and $M[G]$ is closed under $F$ .
2. Let IP $=$ Coll $(\omega, 2^{\omega})^{M}$ , where Coll $(\omega, 2^{\omega})$ is the forcing collapsing the

cardinal $2^{\omega}$ into countable with finite conditions. Then $(\forall^{\infty}G\in$ St $(\mathbb{P}))A_{G}$

has the Baire property in $M[G]$ .
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Idea of Claim 4.15. The intuition for the first item is that since $M$ knows
$\tau_{A}$ and $\tau_{\Gamma_{F}},$ $M[G]$ knows $A_{G}$ and is closed under $F$ for Blackwell comeager
many $G$ .

The point for the second item is that $G$ is P-generic over $M$ for a comeager
many $G^{10}$ and that in $M[G]$ , the set of Cohen reals over $M$ is comeager while
$A_{G}$ is captured by $M$ in some sense.

For the details, see [11, Claim 4.8]. $\square$ (Claim 4.15)

We now finish the proof of Theorem 4.14 by showing that $A$ has the Baire
property. Let $G$ be such that the conclusions of Claim 4.15 hold. By the
first item of Claim 4.15, the structure $(\omega,\omega\omega\cap M[G]$ , app, $+,$ $\cdot,$ $=,$ $0,1,$ $A_{G})$ is
an elementary substructure of $\mathcal{A}_{A}^{2}$ . Since the Baire property for $A$ can be
described in the structure $\mathcal{A}_{A}^{2}$ in this language and $A_{G}$ has the Baire property
in $M[G],$ $A$ also has the Baire property, as desired. $\blacksquare$ (Theorem 4.14)

We now prove that every set of reals is $\infty$-Borel assuming $B1-AD_{\mathbb{R}}$ . Let
us first introduce infinitary Borel codes and discuss their basic properties.
Infinitary Borel codes ( $\infty$-Borel codes) are a transfinite generalization of
Borel codes: Let $\mathcal{L}_{\infty,0}(\{a_{n}\}_{n\in\omega})$ be the language allowing arbitrary many
conjunctions and disjunctions and no quantifiers with atomic sentences $a_{n}$

for each $n\in\omega$ . The $\infty$ -Borel codes are the sentences in $\mathcal{L}_{\infty,0}(\{a_{n}\}_{n\in\omega})$

belonging to any $\Gamma$ such that

$\bullet$ the atomic sentence $a_{n}$ is in $\Gamma$ for each $n\in\omega$ ,

$\bullet$ if $\phi$ is in $\Gamma$ , then so is $\neg\phi$ , and

$\bullet$ if $\alpha$ is an ordinal and $\langle\phi_{\beta}|\beta<\alpha\rangle$ is a sequence of sentences each of
which is in $\Gamma$ , then $_{\beta<\alpha}\phi_{\beta}$ is also in $\Gamma$ .

To each $\infty$-Borel code $\phi$ , we assign a set of reals $B_{\phi}$ in the same way as
decoding Borel codes:

$\bullet$ if $\phi=a_{n}$ , then $B_{\phi}=\{x\in\omega 2|x(n)=1\}$ ,

$\bullet$ if $\phi=\neg\psi$ , then $B_{\phi}=\omega 2\backslash B_{\psi}$ , and

$1$This is because $\mathcal{P}(\alpha)\cap M$ is countable for any ordinal $\mathfrak{a}$ in $M$ : Indeed, since $M$ is a
transitive model of ZFC, if $\mathcal{P}(\alpha)\cap M$ was uncountable, then there would be an uncountable
sequence of distinct reals from which one can construct a set of reals without the perfect
set property, contradicting Theorem 4.8.
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$\bullet$ if $\phi=_{\beta<\alpha}\psi_{\beta}$ , then $B_{\phi}= \bigcup_{\beta<\alpha}B_{\psi_{\beta}}$ .

A set of reals $A$ is called $\infty$ -Borel if there is an $\infty$-Borel code $\phi$ such that
$A=B_{\phi}$ .

As Borel codes, one can regard $\infty$-Borel codes as wellfounded trees with
atomic sentences $a_{n}$ on terminal nodes and decode them by assigning sets
of reals on each node recursively from terminal nodes. (If a node has only
one successor, then it means “negation“ and if a node has more than one
successors, then it means “disjunction”.) The only difference between Borel
codes and $\infty$-Borel codes is that trees are on $\omega$ for Borel codes while trees
are on ordinals for $\infty$-Borel codes. From this visualization, it is easy to see
that the statement $\phi$ is an $\infty$-Borel code” is absolute between any transitive
models of ZF.

Given an $\infty$-Borel code $\phi$ and a real $x$ , the problem whether $x$ is in $B_{\phi}$

can be easily translated into the following kind of satisfaction game using the
above visualization of $\infty$-Borel codes via wellfounded trees: Let us regard $\phi$

as a wellfounded tree $T_{\phi}$ on ordinals with terminal nodes labeled by atomic
sentences. In the game $G_{c}(T_{\phi})$ , there are two players, Spoiler and Duplicator,
and a counter designating which player should move next.

We start with the top node (the empty sequence) with the counter desig-
nating Duplicator. If the node has only one successor, no player is supposed
to decide anything and they move to the unique successor and exchange the
name in the counter. (This is for the negation.) If the node has more than
one successor, then the player designated by the counter chooses one of the
successors and keeps the name of the counter. (This is for the disjunction.) If
the node is a terminal node, then look at the atomic sentence labeled at the
node, say $a_{n}$ . If the real $x$ satisfies that $x(n)=1$ , then the player designated
by the counter wins, otherwise the other player wins.

It is fairly easy to see that a real $x$ is in $B_{\phi}$ if and only if Duplicator has a
winning strategy in the game $G_{c}(T_{\phi})$ . By the fact that the payoff set of this
game is a clopen subset of $\omega\gamma$ for some ordinal $\gamma$ , being a winning strategy
in this game is absolute in any transitive model of ZF. Hence the statement
“a real $x$ is in $B_{\phi}$

” is absolute between transitive models of ZF.
The following characterization of $\infty$-Borel sets is very useful:

Fact 4.16 (Folklore). Let $A$ be a set of reals. Then the following are equiv-
alent:

1. $A$ is $\infty$-Borel, and
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2. there is a formula $\phi$ in the language of set theory and a set $S$ of ordinals
such that for each real $x$ ,

$x\in A\Leftrightarrow L[S, x]F\phi(x)$ .

Proof. See [23]. $\square$

Standard examples of $\infty$-Borel sets are Suslin sets. Recall that a set of
reals $A$ is Suslin if there are an ordinal $\gamma$ and a tree $T$ on $2\cross\gamma$ such that
$A=p[T]$ , where $p[T]$ is the projection of $[T]$ to the first coordinate, i.e.,

$p[T]=\{x\in\omega 2|(\exists f\in\omega\gamma)(x, f)\in[T]\}$ .

By the above fact, every Suslin set is $\infty$-Borel. Assuming the Axiom of
Choice, it is easy to see that every set of reals is Suslin, in particular $\infty-$

Borel. Hence the property $\infty$-Borelness is trivial in the ZFC context while
it is nontrivial and powerful in a determinacy world, as we will see later.

Theorem 4.17 (Woodin, I.). Assume $B1-AD_{\mathbb{R}}$ . Then every set of reals is
$\infty$-Borel.

Idea of proof. 11 Let $A$ be an arbitrary set of reals. We show that $A$ is $\infty-$

Borel. By Fact 4.16, it is enough to find a set of ordinals $S$ and $\phi$ such that
for each real $x$ ,

$x\in A\Leftrightarrow L[S, x]F\phi(x)$ .

The idea is that to each $a\in \mathcal{P}_{\omega_{1}}(\mathbb{R})$ , we assign a transitive model $M_{a}$ of
ZFC such that for each real $x$ in $a,$ $x\in A\Leftrightarrow M_{a}[x]F\phi(x)$ , where $\phi$ is
uniform in $a$ . By taking $M_{a}$ to be the HOD of some structure and using a
variant of Vop\v{e}nka algebra, one can make sense of $M_{a}[x]$ because any real is
generic over HOD with respect to a Vop\v{e}nka algebra. Using a fine normal
measure $U$ on $\mathcal{P}_{\omega 1}(\mathbb{R})$ (whose existence was ensured by Theorem 4.5), we
take the ultraproduct $M_{\infty}$ of $M_{a}(a\in \mathcal{P}_{\omega_{1}}(\mathbb{R}))$ . Then for any real $x$ ,

$x\in A\Leftrightarrow M_{\infty}[x]F\phi(x)$ .

1lFor the details, see [11, Theorem 4.10].
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This is enough to see the second item of Fact 4.16 for $A$ since $M_{\infty}$ is a
transitive model of ZFC and its large fragment can be coded by a set of
ordinals.12 By Fact 4.16, we can conclude that $A$ is $\infty$-Borel.

Here are more descriptions for $M_{a}$ : Let $\tau_{A}’$ be the term relation as in the
proof of Theorem 4.14 except that this time we use the meager ideal instead
of Blackwell meager ideal. Let $R_{A}$ be as follows:

$R_{A}=\{(x, y)|$ if $x$ codes a $(P,p, \sigma)\in\tau_{A}$ , then $y$ codes a $(D_{i}|i<\omega)$

such that $(\forall i)D_{i}$ is dense in $P$ and
$(\forall G\in St(\mathbb{P}))(p\in G,$ $(\forall i)G\cap D_{i}\neq\emptyset\Rightarrow f_{\sigma}(G)\in A)\}$ .

Let $F_{A}$ uniformize $R_{A}$ and $\Gamma_{A}$ be the graph of $F_{A}$ , i.e., $\Gamma_{A}=\{(x, s)|$

$s\in<\omega 2,$ $F_{A}(x)\supseteq s\}$ . One can define $\tau_{A^{c}}’,$ $\tau_{\Gamma p}’$ , and $\tau_{(\Gamma_{F})^{C}}’$ in the same
way. Then for each $a\in \mathcal{P}_{\omega_{1}}(\mathbb{R}),$ $M_{a}$ would be $HOD_{x^{1}}^{L.[X](a)}$ , where $X=$
$(A, \tau_{A}, \tau_{\Gamma_{A}}, \tau_{A^{c}}, \tau_{\Gamma_{A^{C}}})$ . The following is the key-point:

Claim 4.18 (Woodin). Let $M$ be a transitive subset of $\mathcal{H}_{\omega 1}$ and $(M,$ $\in$

, $\tau_{A},$
$\tau_{\Gamma_{A}})$ is a model of ZFC.13 Let $(P,p, \sigma)\in M\cap\tau_{A}$ . Then for every P-

generic filter $G$ over $M$ , if $p$ is in $G$ , then $\sigma^{G}\in A$ . The same holds for
$A^{c}$ .

Proof of Claim 4.18. See [11, Claim 4.12]. $\square$ (Claim 4.18)

It is easy to check that $M_{a}$ satisfies the condition for $M$ in Claim 4.18.
Then one can prove that for any $a$ and $x$ in $a$ ,

$x\in A\Leftrightarrow M_{a}[x]Fb_{a}\in G_{x}$ ,

where $b_{a}= \sup\{q\in oe|(\mathfrak{U}, q, y_{G})\in\tau_{A}\}$ in $M_{a},$ $\mathfrak{G}$ is a variant of Vop\v{e}nka
algebra, $\mathscr{K}c$ is a name for a generic real, and $G_{x}$ is the generic filter induced
by $x$ . This is what we desired. $\square$ (Theorem 4.17)

Together with the non-existence of uncountable sequences of distinct re-
als, the strong $\infty$-Borelness for every set of reals gives us almost all the

12Here we used Lo\’{s}’s theorem for $M_{a}(a\in \mathcal{P}_{\omega 1}(\mathbb{R}))$ . It is not in general the case that
Lo6’s theorem holds in a choiceless world. This is possible in this case because we have a
uniform way of defining $M_{a}$ and its well-order.

$1S$ Here it satisfies Comprehension scheme and Replacement scheme for formulas in the
language of set theory with predicates for $\tau A$ and $\tau r_{A}$ .
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regularity properties. For that, we introduce P-measurability for a wide class
of tree-type forcings, which covers almost all the known regularity properties.

We start with defining a class of tree-type forcings we will work on. A
partial order $P$ is arboreal if its conditions are perfect trees on $\omega$ (or on 2)
ordered by inclusion. But this class of forcings contains some trivial forcings
such as $P=\{^{<\omega}\omega\}$ . We need the following stronger notion:

Definition 4.19. A partial order $P$ is strongly arboreal if it is arboreal and
the following holds:

$(\forall T\in P)(\forall t\in T)T_{t}\in P$,

where $T_{t}=\{s\in T|$ either $s\subseteq t$ or $s\supseteq t\}$ .

With strongly arboreal forcings, one can code generic objects by reals in
the standard way: Let $P$ be strongly arboreal and $G$ be P-generic over $V$ .
Let $x_{G}=\cup\{$ stem$(T)|T\in G\}$ , where stem$(T)$ is the longest $t\in T$ such that
$T_{t}=T$ . Then $x_{G}$ is a real and $G=\{T\in P|x_{G}\in[T]\}$ , where $[T]$ is the set
of all infinite paths through $T$ . Hence $V[x_{G}]=V[G]$ . We call such real $x_{G}$ a
P-generic real over $V$ .

Almost all typical forcings related to regularity properties are strongly
arboreal. For the details, see [10, Example 2.5].

We now introduce a $\sigma$-ideal $I_{\mathbb{P}}$ on the reals expressing “smallness“ for
each strongly arboreal forcing $P$ .

Definition 4.20. Let $P$ be a strongly arboreal forcing. A set of reals $A$ is
P-null if for any $T$ in $\mathbb{P}$ there is a $T’\leq T$ such that $[T^{f}]\cap A=\emptyset$ . Let $N_{\mathbb{P}}$

denote the set of all P-null sets and $I_{\mathbb{P}}$ denote the $\sigma$-ideal generated by P-null
sets, i.e., the set of all countable unions of P-null sets.

Most typical $\sigma$-ideals related to regularity properties are the same as $I_{\mathbb{P}}$ .
For the details, see [10, Example 2.7].

We now introduce P-measurability:

Definition 4.21. Let $P$ be strongly arboreal. A set of reals $A$ is P-measumble
if for any $T$ in $\mathbb{P}$ there is a $T’\leq T$ such that either $[T’]\cap A\in I_{\mathbb{P}}$ or $[T’]\backslash A\in I_{\mathbb{P}}$ .

Before proving regularity properties from $B1-AD_{\mathbb{R}}$ , let us introduce a vari-
ant of proper forcing. Let IP be a partial order. We say IP is stmngly proper if
for any countable transitive model $M$ of a finite fragment of ZFC, if $P,$ $\leq \mathbb{P},$ $\perp_{\mathbb{P}}$
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are absolute between $M$ and $V$ respectively, (i.e., $P^{M},$ $\leq_{\mathbb{P}}^{M},$ $1_{\mathbb{P}}^{M}$ are the same
as $P\cap M,$ $\leq \mathbb{P}\cap(M\cross M),$ $\perp_{\mathbb{P}}\cap(M\cross M)$ respectively), then for any condition
$p$ in $P^{M}$ $(or P\cap M)$ , there is an $(M, P)$-generic condition $q$ below $p$ , i.e., if
$MF$ $A$ is a maximal antichain in $P$”, then $A\cap M$ is predense below $q$ . Every
strongly proper, projective forcing is proper and all the typical examples of
proper, provably $\Delta_{2}^{1}$ forcings are strongly proper.

Proposition 4.22. Assume that there is no uncountable sequence of distinct
reals and every set of reals is $\infty$-Borel. Then every set of reals is P-measurable
for any strongly arboreal, strongly proper forcing $P$.

Proof. The results for Cohen forcing, random forcing, and Mathias forcing
are well-known. Let $A$ be a set of reals and $P$ be a strongly arboreal, strongly
proper forcing. Take any condition $T$ in $P$ . We show that there is an extension
$T”\leq T$ such that either $[T”]\cap A$ or $[T”]\backslash A$ is in $I_{\mathbb{P}}$ .

Pick $\infty$-Borel codes $S_{1}$ and $S_{2}$ coding $A$ and $P$ with formulas $\phi$ and $\psi$ ,
respectively. Then $L[S_{1}, S_{2}, T]$ correctly computes $P$ and $P^{L[S_{1},S_{2},T]}$ is strongly
arboreal in $L[S_{1}, S_{2}, T]$ . Also, there is an extension $T’\leq T$ in $P^{L[S_{1},S_{2},T]}$ such
that either $L[S_{1}, S_{2}, T]FT’1\vdash L[S_{1}, x_{G}]F\phi(x_{G},\check{S}_{1})$” or $L[S_{1}, S_{2}, T]FT’|\vdash$

$L[S_{1}, x_{G}]F\neg\emptyset(x_{G},\check{S}_{1})$ ”, where $x_{G}$ is a canonical P-name for a generic real.
We may assume that $L[S_{1}, S_{2}, T]FT’1\vdash L[S_{1}, x_{G}]F\phi(x_{G},\check{S}_{1})$” (The other
case is similar.)

Since there is no uncountable sequence of distinct reals, the set of all dense
sets of $P^{L[S_{1},S_{2},T]}$ in $L[S_{1}, S_{2}, T]$ is countable. Take any countable transitive
model $M\subseteq L[S_{1}, S_{2},T]$ such that $M$ contains all the reals and all the dense
subsets of $P^{L[S_{1},S_{2},T]}$ in $L[S_{1}, S_{2}, T]$ . Since $L[S_{1}, S_{2}, T]$ computes $P$ correctly,
$M$ also computes $P$ correctly.

Now we apply the strong properness of $P$ and get an extension $T”\leq$

$T’$ such that $T”$ is $(M, P)$-generic condition and hence also $(L[S_{1}, S_{2}, T], P)-$

generic. Therefore maximal antichains in $P^{L[S_{1},S_{2},T]}$ stay maximal in $V$ below
$T”$ . Together with the condition that the set of all dense sets in $L[S_{1}, S_{2}, T]$

is countable, we can conclude that almost all the reals are P-generic over
$L[S_{1}, S_{2}, T]$ below $T”$ in $V$ . Since we have $L[S_{1}, S_{2}, T]F$ $T^{f}|\vdash L[S_{1}, x_{G}]F$

$\phi(x_{G},\check{S}_{1})$”, almost all the reals below $T”$ belong to $A$ , as desired. $\blacksquare$

Corollary 4.23. Assume $B1-AD_{\mathbb{R}}$ . Then every set of reals is P-measurable
for any strongly arboreal, strongly proper forcing $P$.
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5 Toward the equivalence between AD$\mathbb{R}$ and
$B1-AD_{\mathbb{R}}$

In this section, we discuss the following conjecture:

Conjecture 5.1. Assume DC.14 $AD_{\mathbb{R}}$ and $B1-AD_{\mathbb{R}}$ are equivalent.

Since $AD_{\mathbb{R}}$ implies $B1-AD_{\mathbb{R}}$ by Theorem 2.16, the question is whether
$B1-AD_{\mathbb{R}}$ implies $AD_{\mathbb{R}}$ in $ZF+DC$ . Woodin proved the following:

Theorem 5.2 (Woodin). Assume AD and DC. Then the following are equiv-
alent:

1. every set of reals is Suslin,

2. the axiom $AD_{\mathbb{R}}$ holds, and

3. every relation on the reals can be uniformized.

Hence, to prove Conjecture 5.1, it suffices to show that every set of reals is
Suslin from $B1-AD_{\mathbb{R}}$ : If every set of reals is Suslin, then by Theorem 3.3, AD
holds. Now by Theorem 5.2 and Corollary 4.1, $AD_{\mathbb{R}}$ holds assuming $B1-AD_{\mathbb{R}}$

and DC.
It is important to note that Martin’s conjecture (i.e., that AD and Bl-

AD are equivalent) implies Conjecture 5.1 by Theorem 5.2. Hence proving
Conjecture 5.1 would be a partial answer to the question whether AD and
BI-AD are equivalent.

We try to mimic the arguments for the implication from uniformization to
Suslinness in Theorem 5.2 and reduce Conjecture 5.1 to a small conjecture.
For the implication, we need the following three steps:

Step
1. Prove that every set of reals is strongly $\infty$-Borel.

14Here DC stands for the Axiom of Dependent Choice, i.e., for any nonempty set $X$ and
a relation $R$ on $X$ with $(\forall x)($ョ$y)(x, y)\in R$ , there exists a function $f:\omegaarrow X$ such that
$(f(n),$ $f(n+1))\in R$ for every natural number $n$ .
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2. Prove the statement so-called (Becker’s bound“, i.e., let $A$ be a subset
of $\mathbb{R}^{3}$ and assume $\exists^{\mathbb{R}}A$ is a strict well-founded relation on a set of reals
where $\exists^{R}A=\{(x, y)|(\exists z)(x, y, z)\in A\}$ . Suppose $A$ has a strong
$\infty$-Borel code $S$ and let $\gamma$ be an ordinal less than $\Theta$ such that the tree
of $S$ is on $\gamma$ . Then the length of $\exists^{\mathbb{R}}A$ is less than $\gamma^{+}$ , the least cardinal
above $\gamma$ .

3. Prove that every set of reals is Suslin using Becker’s bound.

We will achieve the first item & the second item from $B1-AD_{R}$ and make
a small conjecture toward the third item. For the rest of this section, we
assume $B1-AD_{\mathbb{R}}$ & DC, and fix a fine normal measure $U$ on $\mathcal{P}_{\omega_{1}}(\mathbb{R})$ , which
exists by Theorem 4.5.

We start with the definition of strong $\infty$-Borel codes. An $\infty$-Borel code $S$

is stmng if the tree of $S$ is a tree on $\gamma$ for some $\gamma<\Theta$ and for any $f:<\omega \mathbb{R}arrow \mathbb{R}$

and surjection $\pi:\mathbb{R}arrow\gamma$ , there is an $a\in P_{\omega_{1}}(\mathbb{R})$ such that $a$ is closed under
$f,$ $Sr(\pi a)$ is an $\infty$-Borel code, and $B_{Sr(\pi {}^{t}a)}\subseteq B_{S}$ . A set of reals $A$ is strong
$\infty$ -Borel if $A=B_{S}$ for some strong $\infty$-Borel code $S$ .

Intuitively, an $\infty$-Borel code $S$ is strong if and only if for stationary many
$a\in \mathcal{P}_{\omega_{1}}(\mathbb{R}),$ $a$ behaves nicely to $S$ .

There is a finer version of Fact 4.16 as follows:

Fact 5.3.
1. Let $S$ be a strong $\infty$-Borel code and $\gamma<\Theta$ be such that $S$ is a tree

on $\beta$ for some $\beta<\gamma$ and $L_{\gamma}[S, x]F$ $KP+\Sigma_{1}$-Separation” for any real $x$ .
Let $\phi(S, x)$ be a $\Sigma_{1}$-formula expressing $x\in B_{S}$

” Then for any function
$f:<\omega \mathbb{R}arrow \mathbb{R}$ and surjection $\pi:\mathbb{R}arrow\gamma$ , there is an $a\in \mathcal{P}_{\omega_{1}}(\mathbb{R})$ such that $a$ is
closed under $f$ and for any real $x$ , if $L_{\overline{\gamma}}[\overline{S}, x]F\phi(\overline{S}, x)$ , then $L_{\gamma}[S, x]F\phi(S, x)$ ,
where $L_{\overline{\gamma}}[\overline{S}]$ is the transitive collapse of the Skolem hull of $(\pi a)\cup\{S\}$ in
$L_{\gamma}[S]$ .

2. Let $\gamma$ be an ordinal with $\gamma<\Theta,$ $\phi$ be a $\Sigma_{1}$ -formula, and $S$ be a bounded
subset of $\gamma$ such that $L_{\gamma}[S, x]F$ $KP+\Sigma_{1}$-Separation” for any real $x$ . Set
$A=\{x\in \mathbb{R}|L_{\gamma}[S, x]\models\phi(S, x)\}$ . Assume that for any function $f:<\omega \mathbb{R}arrow \mathbb{R}$

and surjection $\pi:\mathbb{R}arrow\gamma$ , there is an $a\in \mathcal{P}_{\omega_{1}}(\mathbb{R})$ such that $a$ is closed under
$f$ and for any real $x$ , if $L_{7}[\overline{S}, x]F\phi(\overline{S}, x)$ , then $L_{\gamma}[S, x]F\phi(S, x)$ , where
$L_{\overline{\gamma}}[\overline{S}]$ is the transitive collapse of the Skolem hull of $(\pi a)\cup\{S\}$ in $L_{\gamma}[S]$ .
Then $A$ is strong $\infty$-Borel.

Proof. This can be done by closely looking at the argument for Fact 4.16 in
[23]. $\square$
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We now proceed Step 1:

Theorem 5.4 (Woodin, I.). Assume $B1-AD_{\mathbb{R}}$ and DC. Then every set of
reals is strong $\infty$-Borel.

Idea of proof. 15

Let $A$ be a set of reals. We show that $A$ is strongly $\infty$-Borel. For $a\in$

$\mathcal{P}_{\omega 1}(\mathbb{R})$ , let $(M_{a}, \mathbb{Q}_{a}^{*}, b_{a})$ be as in the proof of Theorem 4.17. Since each $M_{a}$ is
$a$ transitive model of ZFC, one can code an essential part of $(M_{a}, \mathbb{Q}_{a}^{*}, b_{a})$ by a
bounded subset $S_{a}$ of a countable ordinal $\alpha_{a}$ such that $L_{\alpha_{a}}[S_{a}, x]$ is a model
of KP $+\Sigma_{1}$ -Separation for any real $x$ in $a$ . Let $S_{\infty}= \prod_{a}S_{a},$ $\alpha_{\infty}=\prod_{a}\alpha_{a}$ via
$U$ , where $U$ was the fine normal measure on $\mathcal{P}_{\omega_{1}}(\mathbb{R})$ we fixed at the beginning
of this section. By the argument in the proof of Theorem 4.17, we have that
there is a formula $\phi$ such that for any $a$ and $x$ ,

$x\in A\Leftrightarrow L_{\alpha_{a}}[S_{a}, x]F\phi(S_{a}, x)$ (2)
$x\in A\Leftrightarrow L_{\alpha_{\infty}}[S_{\infty}, x]\models\phi(S_{\infty}, x)$ . (3)

The first point is as follows:

Claim 5.5. $\alpha_{\infty}<\Theta$ .

Proof. If follows from $j(\omega_{1})=\Theta$ , where $j:Varrow$ Ult $(V, U)$ is the ultrapower
embedding because each $\alpha_{a}$ is countable. For the details, see [11, Lemma 5.3].

$\square$ (Claim 5.5)

By Fact 5.3, it is enough to show that $\alpha_{\infty}<\Theta$ and the following: For
any function $f:<\omega \mathbb{R}arrow \mathbb{R}$ and surjection $\pi:\mathbb{R}arrow\alpha_{\infty}$ , there is an $a\in P_{\omega_{1}}(\mathbb{R})$

such that $a$ is closed under $f$ and for $an\underline{y}$ real $x$ , if $L_{\alpha_{\infty}^{-}}[S_{\infty}^{-}, x]\models\phi(S_{\infty}^{-}, x)$ ,
then $L_{\alpha_{\infty}}[S_{\infty}, x]\models\phi(S_{\infty}, x)$ , where $L_{\alpha_{\infty}^{-}}[S_{\infty}]$ is the transitive collapse of the
Skolem hull of $(\pi a)\cup\{S_{\infty}\}$ in $L_{\alpha_{\infty}}[S_{\infty}]$ .

Let us fix $f:<\omega \mathbb{R}arrow \mathbb{R}$ and $\pi:\mathbb{R}arrow\alpha_{\infty}$ . By the formulas (2) and (3)
above, the following claim will complete the proof:

Claim 5.6. There are $a$ and $b$ in $\mathcal{P}_{\omega_{1}}(\mathbb{R})$ such that $a$ is closed under $f$

and $(X_{a}, \in)$ is isomorphic to $(L_{\alpha_{b}}[S_{b}], \in)$ , where $X_{a}$ is the Skolem hull of
$(\pi a)\cup\{S_{\infty}\}$ in $L_{\alpha_{\infty}}[S_{\infty}]$ .

15For the details, see [11, Theorem 5.7]
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Idea for proof of Claim 5.6. Let $\Gamma_{f}$ be the graph of $f$ , i.e., $\Gamma_{f}=\{(x, s)\in$

$\mathbb{R}\cross<\omega 2|f(x)\supseteq s\}$ . For each $b$ , consider the following game $\hat{G}_{b}$ in
$L[S_{b}, S_{\infty}, \Gamma_{f}, \pi]$ : In $\omega$ rounds,

1. Player I and II produce a countable elementary substructure $X$ of
$L_{\alpha_{b}}[S_{b}]$ ,

2. Player II produces an $a\in \mathcal{P}_{\omega_{1}}(\mathbb{R})$ which is closed under $f$ , and

3. Player II tries to construct an isomorphism between $(X, \in)$ and $(X_{a}, \in)$ ,
where $X_{a}$ is the Skolem hull of $(\pi a)\cup\{S_{\infty}\}$ in $L_{\alpha_{\infty}}[S_{\infty}]$ .

Player II wins if she succeeds to construct an isomorphism between $(X, \in)$

and $(X_{a}, \in)$ . This is an open game on $T\cross \mathbb{R}$ for some wellorderable set $T$ .
Hence by $DC_{\mathbb{R}}$ , it is determined.

The main point is as follows:

Subclaim 5.7. There is a $b\in \mathcal{P}_{\omega_{1}}(\mathbb{R})$ such that player II has a winning
strategy in the game $\hat{G}_{b}$ .

Proof. See [11, Subclaim 5.9] $\square$ (Subclaim 5.7)

Hence there is a $b\in \mathcal{P}_{\omega 1}(\mathbb{R})$ such that player II has a winning strategy $\tau$

in the game $\hat{G}_{b}$ in $L[S_{b}, S_{\infty}, \Gamma_{f}, \pi]$ . Since the game is open, $\tau$ is also winning
in $V$ . Since $L_{\alpha_{b}}[S_{b}]$ is countable in $V$ , we can let player I move in such a way
that $X=L_{\alpha_{b}}[S_{b}]$ and let player II follow $\tau$ . Since $\tau$ is winning in $V$ , there is
an $a\in \mathcal{P}_{\omega_{1}}(\mathbb{R})$ such that $a$ is closed under $f$ and $L_{\alpha_{b}}[S_{b}]=X$ is isomorphic
to $X_{a}$ , as desired. $\square$ (Claim 5.6)

$\square$ (Theorem 5.4)

We now proceed Step 2: For a natural number $n$ with $n\geq 1$ and a subset
$A$ of $\mathbb{R}^{n+1},$ $\exists^{\mathbb{R}}A=\{x\in \mathbb{R}^{n}|(\exists y\in \mathbb{R})(x, y)\in A\}$ .

Theorem 5.8. Assume $B1-AD_{R}$ and DC. Let $A$ be a subset of $\mathbb{R}^{3}$ and assume
$\exists^{\mathbb{R}}A$ is a strict well-founded relation on a set of reals. Suppose $A$ has a strong
$\infty$-Borel code $S$ and let $\gamma$ be an ordinal less than $\Theta$ such that the tree of $S$

is on $\gamma$ . Then the length of $\exists^{\mathbb{R}}A$ is less than $\gamma^{+}$ .
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Sketch of pmof. Let $A,$ $S$ , and $\gamma$ be as in the assumptions. We show that
the length of $\exists^{\mathbb{R}}A$ is less than $\gamma^{+}$ . Fix a surjection $\pi:\mathbb{R}arrow\gamma$ . Let us start
with the following lemma As mentioned, if $S$ is strong, then for stationary
$a\in \mathcal{P}_{\omega_{1}}(\mathbb{R}),$ $a$ behaves nicely. With the help of range-invariant determinacy,
one can prove that the set of such as contains a club:
Lemma 5.9. There is a function $f:<\omega \mathbb{R}arrow \mathbb{R}$ such that if $a$ is closed under
$f$ , then $S\square (\pi a)$ is an $\infty$-Borel code and $B_{S\square (\pi a)}\subseteq B_{S}$ .

Proof of Lemma 5.9. Let us consider the following game: Player I and II
choose reals one by one and produce an $\omega$-sequence $\vec{x}$ of reals. Setting
$a=$ ran $(\vec{x})$ , player I wins if $sr(\pi a)$ is an $\infty$-Borel code and $B_{S[(\pi {}^{t}a)}\subseteq B_{S}$ .
Since $S$ is a strong $\infty$-Borel code, player I can defeat any strategy for player
II because strategies can be seen as functions from $<\omega \mathbb{R}$ to $\mathbb{R}$ as in the proof
of Claim 4.4. Since the payoff set of this game is range-invariant, by Theo-
rem 4.3, this game is determined. Hence player I has a winning strategy and
by Claim 4.4, there is a function $f$ as desired. $\square$ (Lemma 5.9)

We fix an $f_{0}$ satisfying the conclusion of Lemma 5.9 for the rest of this
proof. Here is the key-point:

Lemma 5.10. Let $G$ be Coll $(\omega, \gamma)$-generic over $V$ . Then in $V[G]$ , there is
an elementary embedding $j:L(\mathbb{R}, S, f_{0}, \pi)arrow L(j(\mathbb{R}),$ $j(S),j(f_{0}),$ $j(\pi))$ such
that $j(\mathbb{R})=\mathbb{R}^{V[G]}$ .

Idea for pmof of Lemma 5.10. 16 We briefly discuss the construction of $j$ .
Given a surjection $\pi:\mathbb{R}arrow\gamma$ and a fine normal measure $U$ on $\mathcal{P}_{\omega\iota}(\mathbb{R})$ , let $U_{\pi}$

be the fine normal measure on $\mathcal{P}_{\omega 1}(\gamma)$ induced from $\pi$ and $U$ .
A subset $A$ of $\omega\gamma$ is weakly meager if there is an $X\in U_{\pi}$ such that

$(\forall b\in X)^{\omega}b\cap B$ is meager in the space $\omega b^{17}$ Let $I$ be the set of all weakly
meager subsets of $\omega\gamma$ .

Let $i$ : Coll $(\omega, \gamma)arrow\omega\gamma$ be as follows: $i(s)=[s]/I$ . Then one can prove
that $i$ is a dense embedding. Let $G$ be a Coll $(\omega, \gamma)$ -generic filter over $V$ .
Then one can induce a V-ultrafilter $U’$ on $\omega\gamma$ extending the complements of
weakly meager sets.

16For the details, see [11, Lemma 5.12].
17Note that if $A$ is meager in the topological space $w\gamma$ , then it is weakly meager. The

converse is not true in general.
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We take the generic ultrapower $(^{(^{v}\gamma)^{V}}L(\mathbb{R}, S, f_{0}, \pi)\cap V)/U’$ and let $j$ be
the ultrapower map.18 One can prove that Lo\’{s} $s$ Theorem holds for this
ultrapower and one can also check the desired conditions for $j$ : One of the
issues is the well-foundedness of the target model. This can be dealt with by
observing that $jr$ Ord $=j_{U_{\pi}}r$ Ord, where $U_{\pi}$ is the fine normal measure on
$\mathcal{P}_{\omega_{1}}(\gamma)$ in $V$ induced by $U$ and $\pi$ . Since the latter ultrapower is taken in $V$ ,
its target is well-founded. Hence the target of $j$ is also well-founded.

We omit the rest of the arguments. $\square$ (Lemma 5.10)

We now finish the proof of Theorem 5.8. Let $M=L(j(\mathbb{R}),j(S),j(f_{0}),j(\pi))$ .
We first claim that $S$ and $jS$ are in $M$ . Since $\gamma$ is countable in $V[G]$ , there
is a real $x$ coding $S$ in $V[G]$ . But by Lemma 5.10, such an $x$ is in $M$ . Hence
$S$ is also in $M$ . Since $\gamma$ is countable in $V[G]$ , there is an $a\in P_{\omega_{1}}(\mathbb{R})$ such
that $\pi a=S$ and hence $j(\pi)a=jS$ in $V[G]$ . But since $j(\pi)\in M$ and
$a\in M$ by Lemma 5.10, $jS=j(\pi)$ $a$ is also in $M$ , as desired.

By Lemma 5.9 and elementarity of $j$ , the following is true in $M$ : For any
$a$ closed under $j(f),$ $j(S)ra$ is an $\infty$-Borel code and $B_{j(S)\lceil a}\subseteq B_{j(S)}$ . Also, by
elementarity of $j,$ $\exists^{\mathbb{R}}B_{j(S)}$ is a well-founded relation on a set of reals in $M$ .

Set $a=jS$ . Since $a$ is closed under $j(f)$ , in $M,$ $j(S)ra$ is an $\infty$-Borel
code, $B_{j(S)ra}\subseteq B_{j(S)}$ , and $\exists^{\mathbb{R}}B_{j{}^{t}S}$ is also a wellfounded relation on a set of
reals in $M$ . Since $jS$ is countable in $M$ , the relation $\exists^{\mathbb{R}}B_{jS}$ is $\Sigma_{1}^{1}$ and
hence by Kunen-Martin Theorem $($ see [18, $2G.2])$ , its rank is less than $\omega_{1}$ in
$M$ which is the same as $\gamma^{+}$ in $V$ .

Finally, since $S$ and $jS$ are equivalent as Borel codes, $\exists^{\mathbb{R}}B_{S}$ has length
less than $\omega_{1}$ in $M$ and since $M$ has more reals than $V,$ $(\exists^{\mathbb{R}}B_{S})^{V}\subseteq(\exists^{\mathbb{R}}B_{S})^{M}$

Therefore, the length of $(\exists^{\mathbb{R}}B_{S})^{V}$ is less than $\omega_{1}^{M}=(\gamma^{+})^{V}$ , as desired.
$\square$ (Theorem 5.8)

We now discuss Step 3. Becker proved the following:

Theorem 5.11 (Becker). Assume AD, DC, and the uniformization for every
relation on the reals. Suppose that the conclusion of Theorem 5.8 holds, i.e.,
let $A$ be a subset of $\mathbb{R}^{3}$ and assume $\exists^{\mathbb{R}}A$ is a well-founded relation $on$ a set
of reals. Suppose $A$ has a strong $\infty$-Borel code $S$ and let $\gamma$ be an ordinal Iess
than $\Theta$ such that the tree of $S$ is on $\gamma$ . Then the length of $\exists^{\mathbb{R}}A$ is less than
$\gamma^{+}$ . Then every set of reals is Suslin.

18When we take the ultrapower, we consider all the $L(\mathbb{R}, S, f_{0}, \pi)$-valued functions in $V$

which are not necessarily in $L(\mathbb{R}, S, f_{0}, \pi)$ .
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Proof. See [2]. $\square$

We try to simulate Becker $s$ argument, make a small conjecture, and
reduce Conjecture 5.1 to the small conjecture.

For the rest of this section, we assume $B1-AD_{\mathbb{R}}$ and DC. We fix a set
of reals $A$ and give a scenario to prove that $A$ is Suslin. We fix a simple
surjection $\rho$ from the reals to $\{0,1\}$ , e.g., $x\mapsto x(O)$ .

Claim 5.12. There is a sequence $((\Gamma_{n}, <_{n}, \gamma_{n}, )|n<\omega)$ such that for all $n$ ,

1. $\Gamma_{n}$ is a Spector pointclass closed under $\exists^{\mathbb{R}}$ and $\forall^{\mathbb{R}},$ $\Gamma_{n}\subseteq\Gamma_{n+1}$ , and
$A\in\Gamma_{0}$ ,

2. every relation on the reals which is projective in a set in $\Gamma_{n}$ can be
uniformized by a function in $\Gamma_{n+1}$ ,

3. $<_{n}$ is in $\Gamma_{n}$ and a strict wellfounded relation on the reals with length
$\gamma_{n}$ and every set of reals which is projective in a set in $\Gamma_{n}$ has a strong
$\infty$-Borel code whose tree is on $\gamma_{n+1}$ .

Proof. One can construct such a sequence inductively assuming that every
set of reals is strong $\infty$-Borel, that every relation on the reals can be uni-
formized, and some weak version of Wadge’s Lemma (see Lemma 6.4 in the
next section) ensured by BI-AD. For the details, see [11, Claim 5.22]. $\square$

We fix $((\Gamma_{n}, <_{n}, \gamma_{n})|n<\omega)$ as above and let $\Gamma_{n}^{I}=\Gamma_{2n},$ $\Gamma_{n}^{II}=\Gamma_{2n+1},$ $<_{n}^{I}$

be induced by $\rho,$ $<_{n}^{II}=<2n+1,$ $\gamma_{n}^{I}=\omega$ and $\gamma_{n}^{II}=\gamma_{2n+1}$ , Let $\rho_{n}^{I}=p$ and $\rho_{n}^{II}$ be
the surjection between the reals onto $n\gamma_{2n+1}$ induced by $<_{2n+1}$ .

Let $\pi_{n}^{II}$ be the function $a\mapsto\rho_{n}^{II}[G_{a}^{n}]$ where $G^{n}$ is a universal set for $\Gamma_{n}^{II}$

sets of reals (we do not use $\pi_{n}^{I}$ ). Then by some weak Moschovakis’ Lemmal9,
$\pi_{n}^{II}$ is a surjection from the reals onto $nII\gamma_{n}$ .

Consider the following game $\hat{G}_{A}$ : Player I plays $0$ or 1 and player II
plays reals one by one in turn and they produce a real $z$ and a sequence
$t\in\omega \mathbb{R}$ , respectively. Setting $T_{n}=\pi_{n}^{II}(t(n))$ , player II wins if for all $n<m$ ,
$\tau_{n+1}rn\subseteq T_{n},$ $\tau_{n+1}rn=T_{m}[n$ , and $z \in A\Leftrightarrow\bigcup_{n\in\omega}T_{n+1}rn$ is illfounded,
where $T_{m}[n=\{s(n|s\in T_{m}\}$ . This is an integer-real game in the sense
player I chooses integers and player II chooses reals.

19For the details of such weak Moschovakis’ Lemma, see [11, Theorem 5.18].
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We introduce an integer-integer game $\tilde{G}_{A}$ simulating the game $\hat{G}_{A}$ . In
the game $\tilde{G}_{A}$ , players choose pairs of $0$ or 1 one by one and produce a pair
of reals $(x_{0}, y_{0})$ and $(a_{0}, b_{0})$ in $\omega$ rounds respectively.

From $(x_{0}, y_{0})$ and $(a_{0}, b_{0})$ , we “decode” a real $z$ and an $\omega$-sequence of
reals $t$ respectively as follows: For each pointclass $\Gamma$ above, we fix a set $U^{\Gamma}$

universal for relations in $\Gamma$ . Setting $F_{0}=U_{x0}^{\Gamma_{0}^{1}},$
$F_{0}$ is a function from the reals

to perfect sets of reals (or codes of perfect sets) (otherwise player I loses).
Let $P_{x_{0}}=F(x_{0})$ . Then $y_{0}$ is an element of $P_{x_{0}}$ (otherwise player I loses)
and is identified with a triple $(u_{0}, x_{1}, y_{1})$ of reals by looking at a canonical
homeomorphism between $P_{x_{0}}$ and $\mathbb{R}^{3}$ .

Then setting $F_{1}=U_{x\iota}^{\Gamma_{1}^{I}},$
$F_{1}$ is a function from the reals to perfect trees on

2 (or codes of trees) (otherwise player I loses). Let $P_{x1}=F(x_{1})$ . Then $y_{1}$

is an element of $P_{x_{1}}$ (otherwise player I loses) and is identified with a triple
$(u_{1}, x_{2}, y_{2})$ of reals by looking at a canonical homeomorphism between $P_{x\iota}$

and $\mathbb{R}^{3}$ .
Continuing this process, one can unwrap $(x_{n}, y_{n})$ and obtain $(u_{n}, x_{n+1}, y_{n+1})$

for each $n$ and get an $\omega$-sequence $(u_{n}|n<\omega)$ . Let $z_{0}(n)=\rho(u_{n})$ . In
the same way, one can obtain an $\omega$-sequence $(t_{n}|n<\omega)$ of reals from
$(a_{0}, b_{0})$ . Setting $T_{n}=\pi_{n}^{II}(t(n))$ , player II wins if for all $n<m,$ $T_{n+1}[n\subseteq T_{n}$ ,
$\tau_{n+1}rn=\tau_{m}rn$ , and $z \in A\Leftrightarrow\bigcup_{n\in\omega}T_{n+1}[n$ is illfounded,

Becker proved the following:

Lemma 5.13.

1. If player I has a winning strategy in the game $\tilde{G}_{A}$ , then player I has a
winning strategy $\sigma$ in the game $\hat{G}_{A}$ such that $\sigma$ is a countable union of
sets in I $nII$ for some $n$ as a set of reals.

2. If player II has a winning strategy in the game $\tilde{G}_{A}$ , then player II has
a winning strategy in the game $\hat{G}_{A}$ .

Proof. See [2, Lemma A & $B$ ]. $\square$

We show and conjecture the following: Let $B\subseteq\omega \mathbb{R}$ . A mixed strategy $\sigma$

for player I is weakly optimal in $B$ if for any $s\in \mathbb{R}^{Even}$ , the set $\{x|\sigma(s)(x)\neq$

$0\}$ is finite and for any $\omega$-sequence $y$ of reals, $\mu_{\sigma,\tau_{y}}(B)>1/2$ . One can
introduce the weak optimality for mixed strategies for player II in the same
way. Note that if player I has an optimal strategy in some payoff set, then
player I has a weakly optimal strategy in the same payoff set. The same
holds for player II.
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Lemma 5.14. If player I has an optimal strategy in the game $\tilde{G}_{A}$ , then
player I has a weakly optimal strategy $\sigma$ in the game $\hat{G}_{A}$ such that $\sigma$ is a
countable union of sets in $\Gamma_{n}^{II}$ for some $n$ as a set of reals.

Proof. See [11, Lemma 5.24]. $\square$

Conjecture 5.15. If player II has an optimal strategy in the game $\tilde{G}_{A}$ , then
player II has a weakly optimal strategy in the game $\hat{G}_{A}$ .

From Lemma 5.14 together with Theorem 5.8, one can conclude the fol-
lowing:

Lemma 5.16. There is no optimal strategy for player I in the game $\tilde{G}_{A}$ .

Proof. To derive a contradiction, suppose player I has an optimal strategy in
the game $\tilde{G}_{A}$ . Then by Lemma 5.14, player I has a weakly optimal strategy
$\sigma$ in the game $\hat{G}_{A}$ such that $\sigma$ is in a countable union of sets in $\Gamma_{n}^{I}$ for some
$n$ as a set of reals.

Consider the following set:

$X=\{(t, s)\in\omega \mathbb{R}\cross<\omega \mathbb{R}|\mu_{\sigma,\tau_{t}}(\{(z,$ $t’)|t’=t$ and $z\in A\})>1/2$ and
$(\forall i<s)(|s(0)|_{<_{0<^{II}}^{II}}, \ldots, |s(i)|\dot{.})\in T_{i+1}ri\}$ ,

where $|s(i)|_{<_{i}^{II}}$ is the rank of $s(i)$ with respect to the wellfounded relation $<_{i}^{II}$

and $T_{i}=\rho_{i}^{II}(t(i))$ . For $(t, s)$ and $(t‘, s’)$ in $X,$ $(t, s)<(t’, s’)$ if $t$ and $t’$ code
the same tree $T$ and $s$ codes a node in $T$ extending a node coded by $s’$ . Note
that for any $(t, s)$ in $X$ , if $T$ is the tree coded by $t,$ $T$ is wellfounded because
$\sigma$ is weakly optimal in the game $\hat{G}_{A}$ . Hence $(X, <)$ is a strict wellfounded
relation on $X$ . Let $\gamma_{\omega}=\sup\{\gamma_{n}^{II}|n\in\omega\}$ . By DC, the cofinality of $\Theta$ is
greater than $\omega$ . Hence $\gamma_{\omega}<\Theta$ . Note that for any ordinal $\alpha<\gamma_{\omega}^{+}$ , there is a
wellfounded tree $T$ coded by some real $t$ as in the definition of $X$ such that
the length of $T$ is $\alpha$ . Hence the length of $(X, <)$ is $\gamma_{\omega}^{+}$ .

Since $\sigma$ is a countable union of sets in $\Gamma_{n}^{II}$ for some $n$ as a set of reals,
the set $<$ on $X$ is in $\exists^{\mathbb{R}}\wedge^{\omega}^{\omega}\bigcup_{n\in\omega}\Gamma_{n}^{II}$ , i.e., it is a projection of a countable
intersection of countable unions of sets in $\Gamma_{n}^{II}$ for some $n$ . Since every set
in $\Gamma_{n}^{II}$ has a strong $\infty$-Borel code whose tree is on $\gamma_{n}^{II}$ for every $n$ , every
set in $\wedge^{\omega}^{\omega}\bigcup_{n\in\omega}\Gamma_{n}^{II}$ has a strong $\infty$-Borel code whose tree is on $\gamma_{\omega}^{+}$ . By
Theorem 5.8, the length of $<$ on $X$ must be less than $\gamma_{\omega}^{+}$ , which is not possible
because it was equal to $\gamma_{\omega}^{+}$ . Contradiction! $\blacksquare$
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We close this section by proving that Conjecture 5.15 implies Conjec-
ture 5.1.
Theorem 5.17. Conjecture 5.15 implies Conjecture 5.1.

Proof. By Lemma 5.16, player I does not have an optimal strategy in the
game $\tilde{G}_{A}$ . Hence by BI-AD, player II has an optimal strategy in the game
$\overline{G}_{A}$ . By Conjecture 5.15, player II has a weakly optimal strategy $\tau$ in the
game $\hat{G}_{A}$ . Note that $\tau$ can be seen as a real because each measure on the
reals given by $\tau$ is with finite support by the weak optimality of $\tau$ .

For each finite binary sequence $s$ with length $n$ , let $t_{s}=\{u\in n\mathbb{R}|$

$(\forall i<n)\tau((sri)*(ur(i-1)))(s(i))\neq 0\}$ , where $(sr\iota)*(ur(i-1))$ is the
concatenation of $sri$ and $ur(i-1)$ bit by bit. For each finite binary sequence
$s$ , we identify $t_{s}$ with $a$ set of n-tuples of natural numbers via a map $\pi_{s}$ by
using the isomorphisms between $(a, <R)$ and $(n, \in)$ for a finite set of reals $a$

and a natural number, where $<\mathbb{R}$ is a standard total order on the reals.
For any real $x,$ $t_{x}= \bigcup_{n\in\omega}t_{xrn}$ is a tree on natural numbers and $(\pi_{s}|s\in$

$<\omega\omega)$ induces a homeomorphism $\pi_{x}$ between $[t_{x}]$ and $[\{t’\in<\omega \mathbb{R}|\mu_{\sigma_{x},\tau}([t’])\neq$

$0\}]$ . Consider the following tree:

$T=\{(s,$ $t,$
$u) \in\bigcup_{n\in\omega}(^{n}2\cross n\omega\cross n\gamma_{\omega})|t\in\pi_{s}(t_{s})$

and $(\forall i<$ lh $(s))u(i)=|x_{i}|_{<^{1I}}.\}$ ,

where $x_{i}$ is the $t(i)$ th real of the set of successors of $(x_{j}|j<i)$ in $t_{s}ri$ .
Then by the weak optimality of $\tau$ , the following holds: Setting $B=\{(x, y)\in$

$\mathbb{R}\cross\omega\omega|(\exists f\in\omega\gamma_{\omega})(x, y, f)\in[T]\}$ , for any real $x$ ,
$x\in A\Leftrightarrow\mu_{\sigma_{x\prime}\tau}(\pi_{x}[B_{x}])>1/2$

$\Leftrightarrow$ ( $\exists T^{f}$ : a tree on 2) $[T’]\subseteq B_{x}$ and $\mu_{\sigma_{x},\tau}(\pi_{x}[[T’]])>1/2$ .
Since $B$ is Suslin, the set $\{(x, T’)|[T’]\subseteq B_{x}\}$ is also Suslin. Hence $A$ is

Suslin, as desired.
We have shown that every set of reals is Suslin. Then by Theorem 3.3,

AD holds. Now by Theorem 5.2 and Theorem 4.1, $AD_{R}$ holds. $\blacksquare$

6 Toward the equiconsistency between $AD_{\mathbb{R}}$

and Bl-AD$\mathbb{R}$

In the last section, we discussed the possibility of the equivalence between
$AD_{\mathbb{R}}$ and $B1-AD_{\mathbb{R}}$ under ZF$+DC$ . Solovay proved the following:
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Theorem 6.1 (Solovay). If we have $AD_{\mathbb{R}}$ and DC, then we can prove the
consistency of $AD_{\mathbb{R}}$ . Hence the consistency of $AD_{\mathbb{R}}+DC$ is strictly stronger
than that of $AD_{\mathbb{R}}$ .
Proof. See [22]. $\square$

Hence assuming DC to see the equivalence between $AD_{\mathbb{R}}$ and $B1-AD_{\mathbb{R}}$ is
not optimal. One can ask whether they are equivalent without DC. So far
we do not have any scenario to answer this question. Instead, one could ask
the equiconsistency between $AD_{\mathbb{R}}$ and $B1-AD_{\mathbb{R}}$ . In this section, we discuss
the following conjecture:

Conjecture 6.2. $AD_{\mathbb{R}}$ and $B1-AD_{\mathbb{R}}$ are equiconsistent.

Woodin conjectured the following:

Conjecture 6.3 (Woodin). Assume the following:

1. every Suslin & co-Suslin set of reals is determined, and

2. there is a fine normal measure on $\mathcal{P}_{\omega 1}(\mathbb{R})$ .
Then either there is an inner model of $AD_{\mathbb{R}}$ or there is an inner model $M$ of
$AD^{+}$ such that $M$ contains all the reals and $\Theta^{M}=\Theta^{V}$ .

Here $AD^{+}$ is conjunction of the statements that $DC_{\mathbb{R}}$ holds, that every set
of reals is $\infty$-Borel, and that Ordinal Determinacy holds, i.e., for any ordinal
$\gamma<\Theta$ , a continuous function $\pi:^{\omega}\gammaarrow \mathbb{R}$ , and a set of reals $A,$ $\pi^{-1}(A)$ is
determined.

We show that Conjecture 6.3 implies Conjecture 6.2. For that, we need a
weak Wadge’s Lemma: Let $A$ be a set of reals. For a natural number $n\geq 1$ ,
a set of reals $B$ is $\Sigma_{n}^{1}$ in $A$ if $B$ is definabIe by a $\Sigma_{n}^{1}$ formula in the structure
$\mathcal{A}_{A}^{2}$ that is the second order structure with $A$ as an unary predicate with a
parameter $x$ for some real $x$ .
Lemma 6.4 (Weak version of Wadge’s Lemma). Assume BI-AD. Then for
any two sets of reals $A$ and $B$ , either $A$ is $\Sigma_{2}^{1}$ in $B$ or $B$ is $\Sigma_{2}^{1}$ in $A$ .
Proof. We consider the Wadge game $G_{W}(A, B)$ . By BI-AD, one of the players
has an optimal strategy in $G_{W}(A, B)$ . Assume player II has an optimal
strategy $\tau$ in $G_{W}(A, B)$ . Then for any real $x$ ,

$x\in A\Leftrightarrow\mu_{\sigma_{x},\tau}$ $(\{(x^{f},$ $y)|x’=x$ and $y\in B\})=1$ .
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It is easy to see that the right hand side of the equivalence is $\Sigma_{2}^{1}$ in $B$ . If
player I has an optimal strategy in $G_{W}(A, B)$ , then one can prove that $B$ is
$\Sigma_{2}^{1}$ in $A^{c}$ in the same way and hence $B$ is $\Sigma_{2}^{1}$ in A. $\blacksquare$

Theorem 6.5. Suppose Conjecture 6.3 holds, Then Conjecture 6.2 holds,
i.e., $AD_{\mathbb{R}}$ and $B1-AD_{\mathbb{R}}$ are equiconsistent,

Proof. First note that the assumptions in Conjecture 6.3 hold if we assume
$B1-AD_{R}$ . Hence by Conjecture 6.3, there is an inner model of $AD_{\mathbb{R}}$ or there is
an inner model $M$ of $AD^{+}$ such that $M$ contains all the reals and $\Theta^{M}=\Theta^{V}$ .
If there is an inner model of $AD_{\mathbb{R}}$ , then we are done. Hence we assume that
there is an inner model $M$ of $AD^{+}$ such that $M$ contains all the reals and
$\Theta^{M}=\Theta^{V}$ .

We show that $AD_{\mathbb{R}}$ holds in $V$ . First we claim that $M$ contains all the
sets of reals. Suppose not. Then there is a set of reals $A$ which is not in $M$ .
Then by Lemma 6.4, every set of reals in $M$ is $\Sigma_{2}^{1}(A)$ . Then $\Theta^{M}$ must be
less than $\Theta^{V}$ because one can code all the prewellorderings by reals using $A$

in $V$ , which contradicts the condition of $M$ . Hence every set of reals is in $M$ .
Since we have uniformization for every relation on the reals in $V$ , it is also
true in $M$ . We use the following fact:

Fact 6.6. Assume $AD^{+}$ . Then the following are equivalent:

1. the axiom $AD_{\mathbb{R}}$ holds, and

2. every relation on the reals can be uniformized.

Proof. See [23]. 口 (Fact 6.6)

By Fact 6.6, since every relation on the reals can be uniformized in $M$ ,
$M$ satisfies $AD_{\mathbb{R}}$ . Since $\mathcal{P}(\mathbb{R})\cap M=\mathcal{P}(\mathbb{R}),$ $AD_{\mathbb{R}}$ holds in $V$ , as desired.

$\blacksquare$ (Theorem 6.5)

At the end, we briefly discuss the connection between Conjecture 6.3 and
the recent technique Core Model Induction in inner model theory.

Core Model Induction is a powerful technique to establish consistency of
large cardinals from that of combinatorial principles. In core model theory,
one usually first assumes some “smallness” of $V$ with respect to having inner
models with large cardinals and using the properties of $K$ and its closeness
to $V$ , one derives a contradiction from some combinatorial principle, thus
establishing the consistency of some targeted large cardinals.
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In Core Model Induction, one repeats this process by induction on the
complexity of sets of reals coding sharp operations for large cardinals (such as
$x\mapsto M_{n}\#(x))$ , mouse operations, or nice iteration strategies for a countable
mouse. In this process, one proves that more and more complex sets of
reals are determined, produces larger models of $AD^{+}$ more and more, and
translates those models of $AD^{+}$ to mice with large cardinals.

Sargsyan proved the following striking theorem describing the connection
between strong generic embeddings and models of $AD_{\mathbb{R}}$ :

Theorem 6.7 (Sargsyan). Assume CH and that there is a generic embedding
$j:Varrow M$ such that

1. $M$ is transitive and $\omega M\cap V[G]\subseteq M$ ,

2. $G$ is a generic filter of a homogeneous forcing, and

3. $jr$ Ord is definable in $V$ .

Then there is a model of ZF $+AD_{\mathbb{R}}+\Theta$ is regular“

By the result of Woodin, it is also known that the converse is true, thus
the above two statements are equiconsistent.

The reason why Conjecture 6.3 or the equiconsistency of $AD_{\mathbb{R}}$ and $B1-AD_{\mathbb{R}}$

is plausible to achieve, is that one can produce similar generic embeddings
to the one in Theorem 6.7:

Proposition 6.8. Assume $B1-AD_{\mathbb{R}}$ . Then for any $\alpha<\Theta$ and $A\subseteq \mathbb{R}$, there
is a generic embedding $j:L(A, \mathbb{R})arrow M$ such that

1. $M$ is transitive, $\mathbb{R}^{V[G]}\subseteq M$ , and $\alpha$ is countable in $M$ ,

2. $G$ is a generic filter of a homogeneous forcing, and

3. $j\square$ Ord is definable in $V$ .

Core Model Induction seems very useful to establish consistency of large
cardinals from several principles in set theory such as the existence of ideals
on $\omega_{2}$ or $\mathcal{P}_{\kappa}(\lambda)$ with strong properties and one could expect to have new
interesting results in this direction.
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