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Abstract Here we prove some basic facts about Mathias-like forcings using properness and su-
perproperness instead of fusion arguments. We then show how these apply to the standard Math-
ias forcing and to Mathias-like forcings involving projections on a separable infinite dimensional
Hilbert space.

1 Order Properties

Definition 1.1 For p,q in a preorder P,
(i) plg & 3r € P(r < p,q),
(i) pTg <« Ar e P(r < p,q), and
(i) p < g & Vr < p(rlg).
P is separative if < is identical to <.
In the results that follow, NV is countable and P € N < H(x), for sufficiently large x.

Definition 1.2 p € P is N-generic if, for every dense D € NN P(P), DN N is predense below
p. P is proper if (for all/some N) the set of N-generic elements is dense below PN N.

As the downwards closure of any D € N N Z(P) is again in N, it makes no difference above
if we quantify over predense, open dense or maximal antichain D. We also have the following
characterisation.

Proposition 1.3 p € P is N-generic if and only if, whenever p > q € C € NN P(P), we have
r € CNN with g|r.

Proof: If pis N-genericand p>gc Ce NN P(P) thenlet D=CU{de€P:Vce C(dTc)} €
NNZP(P). As D is predense we can find » € DN N such that r|g € C and hence r € CN N.

On the other hand say that whenever p > g € C € NN P(P), we have r € C N N with g|r.
Given dense D € NNZ(P) and ¢q < p we can find s < ¢ such that s € D. Thus we have r € DNN
such that s|r and hence g|r, i.e. p is N-generic. [

We will also need the following stronger concept in 2.12.

Definition 1.4 p € P is N-supergeneric if, for every dense D € NN Z(P), we have g€ DN N
with ¢ > p. P is superproper if (for all/some N) the set of N-supergeneric elements is dense
below PN N,

Again, it makes no difference above if we quantify over predense, open dense or maximal
antichain D € N. We also have the following analog of 1.3.

Proposition 1.5 p € P is N-supergeneric if and only if, whenever p > g€ C € NN P(P), we
haver € CN N with r > p.



Proof: If p is N-supergeneric and p > ¢ € C € N N Z(P) then let
D=CU{deP:VYce C(dTc)} € NN Z(P).

As D is predense we can find r€ DN N withr > p > gand hencerlge Csore CNN.

On the other hand say that whenever p > g € C € NN F#(P), we have r € CN N with r > p.
Given dense D € NN 2 (P) and g < p we can find s < g such that s € D. Thus we have r € DNN
such that r > p, i.e. p is N-supergeneric. O

In what follows we fix preorders P and Q.
Definition 1.6 7: P — Q is a dense embedding if it is
(i) order preserving, i.e. Vp,q € P(p < ¢ = i(p) < i(q)),
(%) incompatibility preserving, i.e. Vp,q € P(pTq = i(p)Ti(q)) and
(iii) has dense image, i.e. Vg € Q3p € P(i(p) < q).
Despite the term ‘embedding’, dense embeddings are not necessarily one-to-one.
Proposition 1.7 Ifi: P — Q is order and incompatibility preserving then, for all p,q € P,

i(p) <ilg) =>p<gq.

Proof: Forr € P,r < p=i(r) <i(p) = i(r)]i(g) = r|g by 1.6(i), 1.1(iii) and 1.6(ii) respectively.
O

Proposition 1.8 If P is o-closed it is superproper.

Proof: Let (D,) enumerate the dense sets of P in N. Given d_; € PN N, recursively choose
d, € D, NN such that d,, < d,,_;, for each n € w. As P is o-closed we can find d € P with d < dy,

for all n € w. This d is N-supergeneric. J

Proposition 1.9 Ifi: P — Q is a dense embedding in N and i(p) is N -supergeneric, so too is p.

Proof: Take dense D € NN P (P). As i[D] is dense, 3¢ € D(i(q) > i(p)). By 1.7,¢>p . O

Corollary 1.10 Ifi: P — Q is a dense embedding and Q is superproper, so is P.

2 Mathias-Like Preorders

Definition 2.1 Say we have preorders P and X x P such that, for all z,y € X and p,q € P,
(i) (z.p) < (y,9) =>p<gq, and
(i) p< g= (x,p) < (2,9).

Then we say X x P is Mathias-like.

Proposition 2.2 If X x P is Mathias-like it is densely embeddable in P x (X x G).



Proof: We prove that the map (n,p) — (p, (n,p)) is a dense embedding. It is immediately seen
to be incompatibility preserving and, by (i), it is an order isomorphism too. Now say we have
(p.(2,4)) € P+ (X x G). Take r < p such that r IF (,¢) = (z,q), for some z € X and g € P. As
r<plk-¢eq, we have r Ik ¢ € G so any P-generic G > r also contains ¢ and hence we can find
s < r,q. But then, by (ii), (s, (z,5)) < (p,(2,9)). O

Lemma 2.3 If w x P is Mathias-like and p € P is N-generic then so is (n,p), for alln € w.

Proof: Take (m,q) € C € NN P(w x P) such that (m,q) < (n,p). By (i), ¢ < p and also
g€ {r:(m,r) € C} € N so 3r € N such that (m,r) € C and g|r. By (ii), (m,q)|(m,r) € N. O

Corollary 2.4 If P is proper then so is w X P.

Proof: By (ii) and the previous lemma. [J

We now apply these results to certain Mathias-like forcings. Generally, the idea is to get a
forcing with nice properties which also generically adds some element of a preorder which is either
below or incompatible with every element of that preorder in the ground model.

Definition 2.5 M = [w]<“ x [w]* with (a, A) < (b,B) & bC aAAC BAa\bC B. For S C [w]*,
M(S) = [w]<¥ x S with this same order.

This M is none other than the standard Mathias forcing. Many authors place the further
restriction on elements (¢, A) € M that max(a) < min(A). For us this would be an unnecessary
complication and, in any case, the restricted version is immediately seen to be dense in the
version used here so any forcing properties proved about the former will also apply to the latter.
(Alternatively, you could note that the above results still hold for a suborder S C w x P so long
asp<qgA(n,q) €S= (n,p)€S)

Definition 2.6 Given G C M, A(G) =, 4y o

Proposition 2.7 For all B € [w]*, 11Fy A(G) C* BV |A(G) N B| < 0.

Proposition 2.8 M is Mathias-like (w.r.t. P = [w]* ordered by C).

Proposition 2.9 [w]¥ ordered by C is superproper.

Proof: ([w]“,C*) is o-closed and hence superproper by 1.8. As the identity on ([w]¥,C) is a

dense embedding into ([w]¥, C*), ([w]¥, C) is superproper too by 1.10. O

Corollary 2.10 M is proper and densely embeddable in [w]* * M(G).

Proof: By 2.9,24and 2.2. O

Note that for [w]“ ordered by C, A< B& AC* B & |A\B| < .

Definition 2.11 X x P has the pure decision property if, for every sentence ¢ of the forcing
language and every (z,p) € X x P, there exists g < p such that (z,q) decides ¢ (i.e. (x,q) !+ ¢ or

(x,q) I —\¢)

Theorem 2.12 M has the pure decision property.
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Proof: Take a sentence ¢ of the forcing language and let D = {p € M : p I ¢}. Take countable
N < H(x) with D € N and N-supergeneric A € [w]*. For each a € [w]<¥, let

D,={B:(a,B)e D} e N

and note that if there exists B C A with B € D, then there exists B, € D (NN) with A C* B,
We claim this can be done for all a € [w]<“. To see this, take any a € [w]<¥ such that B, is
undefined (i.e. for which there exists no B C A with B € D,). We first claim that, for all but
finitely many n € A, Bay(n) is undefined. If not then, for ¢ = ¢ or —¢, there exists infintely
many n € A such that (a U {n}, Bou(n)) IF ¥. Recursively pick distinct (m,) C A such that
My € Ni<n Baugm,} 80d Baygm,) IF . Let M = {my, : n € w} and note that any (b, B) < (a, M)
with b # a will satisfy (b, B) < (aU{mu}, Bau{m,}), where n minimal for m, € b. But this implies
that (a, M) IF ¢ even though M C A, contradicting the fact that B, was undefined.

Now, for each a € [w]<“ such that B, is not defined, let C, C A with |A\C;| < oo be such that
B,ugn) is not defined for all n € ANC,. Given a € [w]<“ such that B, is not defined, recursively
pick distinct (my,) such that mn € Ny (m,ik<n) Cavs. Let M = {mys : n € w} and note that, for
any (c, B) < (a, M), we have c = aUbU {my} with b C {my : k£ < n}, for n maximal for m, € ¢,
which, as m,, € Cyup, means B, is not defined and hence B ¢ D.. But this contradicts the fact
that something below (a, M) must decide ¢. O

Now let H be a separable infinite dimensional Hilbert space H. Order Py, (H), the collection
of infinite rank (self-adjoint) projections on H, by P <* Q & PQ — P is compact. Order

[Poo (H)lmin = {(P, P) : P € P € [Poo(H)]<* AVQ € P(P <* Q)}
by (P,P)<(2.Q)P2Q.

Proposition 2.13 [Py (H)|SY is superproper.

Proof: For (P,P),(Q,Q) € [Puo(H)5L, P 2 @ = P <* Q, while if R <* P,Q then we
have (PU QU {R},R) < (P,P),(2,Q)). So the map (P, P) — P is a dense embedding. As
(Poo(H), <*) is o-closed and hence superproper by 1.8, [Poo(H)|5% is too by 1.10. O

Now take any dense (v,) C H, let Vf:‘; = {span,¢p(vn) : F € [w]<“} and define a preorder
on M* = V%S % xw x [Peo(H) J5¢ by

taking 1/0 = oo > 1/n, for all n € w, i.e. ignoring the last condition when m = 0. Note that if
|IRlyaw+ ]l +1/n < 1/m and ||R|wnx|| +1/m < 1/ then

[1Rlvax+|l +1/n < ||IRlvaws |l + [IRlwnx |l + 1/n < ||Rlwax |l +1/m < 1/1,
so < is indeed transitive. For S C [Poo(H)|5ih, M*(S) = V(25 x w x S with this order.
Definition 2.14 Given G CM*, V(G) =Uw.np.p) V-

Proposition 2.15 For all P € P(H), 1 Iky- Py $" PV PV(G)T"P.
Proposition 2.16 M* is Mathias-like.

Corollary 2.17 M* is proper and densely embeddable in [Poo (H)|SY * M*(G).



Proof: By 2.13,2.4 and 2.2. [

This is nice in the sense that [P (H)|5¥, forcing equivalent to P, (H). However, if we are not

worried about that, we can generically add a closed subspace like V(@) by generically adding a
block subspace. Specifically, take 2 C F* as our Hilbert space and let

V= {vel?:dom(v) <coAVne w(v(n) € A)},
where A is a countable dense subset of F (the algebraic numbers for example). Let
[Volockldom = {V € Viloay : Y0 # w € V(dom(v) N dom(w))}.
We define an order on MPlock = [VA 1<w x [VA 14 by
(F.V) < (G, W) < G C FAevery v €V is a finite linear combination of elements of W.
Definition 2.18 Given G C MPl%, V(@) = span{v: 3(F,V) e Glv € F)} = span(Ur vyeq F)-

Proposition 2.19 For all P € Poo(H), 1 ok Pyysy <* PV Py TP

Proof: Like the proof that projections onto block subspaces are <*-dense in Poo(H).
Proposition 2.20 MP°% s Mathias-like.

By proving an analog of 2.13 we also get the following.
Corollary 2.21 M 45 proper and densely embeddable in [V, 14, .. * MPIock(().

It is also possible to define variations on M* and MP°°* which also generically add subspaces
like V(G). The precise relation between these variants is not clear, although adding a generic for
Voo(H) (the collection of infinite dimensional closed subspaces of H with the inclusion order Q)
will add one for Puo(H) so it seems possible that adding a generic for MP*°¢k might also add one
for M*. It is also not clear what other properties of M generalize to these variants, in particular
if any of them have the pure decision property.



