A topology in a vector lattice and fixed point theorems for nonexpansive mappings

川崎敏治
(Toshiharu Kawasaki, toshiharu.kawasaki@nifty.ne.jp)

Abstract

In the previous paper [4] we show Takahashi's and Fan-Browder's fixed point theorems in a vector lattice and in the previous paper [5] we show Schauder-Tychonoff’s fixed point theorem using Fan-Browder’s fixed point theorem. The purpose of this paper is to introduce a topology in a vector lattice and to show a fixed point theorem for a nonexpansive mapping and also common fixed point theorems for commutative family of nonexpansive mappings in a vector lattice.

1 Introduction

There are many fixed point theorems in a topological vector space, for instance, Kirk’s fixed point theorem in a Banach space, and so on; see for example [8].

In this paper we consider fixed point theorems in a vector lattice. As known well every topological vector space has a linear topology. On the other hand, although every vector lattice does not have a topology, it has two lattice operators, which are the supremum \lor and the infimum \land, and also an order is introduced from these operators; see also [6,9] about vector lattices. There are some methods how to introduce a topology to a vector lattice. One method is to assume that the vector lattice has a linear topology [1]. On the other hand, there is another method to make up a topology in a vector lattice, for instance, in [2] one method is introduced in case of the vector lattice with unit.

In the previous paper [4] we show Takahashi’s and Fan-Browder’s fixed point theorems in a vector lattice and in the previous paper [5] we show Schauder-Tychonoff’s fixed point theorem using Fan-Browder’s fixed point theorem. The purpose of this paper is to introduce a topology in a vector lattice and to show a fixed point theorem for a nonexpansive mapping and also common fixed point theorems for commutative family of nonexpansive mappings in a vector lattice.

2 Topology in a vector lattice

First we introduce a topology in a vector lattice introduced by [2]; see also [4, 5].
Let X be a vector lattice. $e \in X$ is said to be an unit if $e \wedge x > 0$ for any $x \in X$ with $x > 0$. Let \mathcal{K}_X be the class of units of X. In case where X is the set of real numbers \mathbb{R}, $\mathcal{K}_\mathbb{R}$ is the set of positive real numbers. Let X be a vector lattice with unit and let Y be a subset of X. Y is said to be open if for any $x \in Y$ and for any $e \in \mathcal{K}_X$ there exists $\varepsilon \in \mathcal{K}_\mathbb{R}$ such that $[x - \varepsilon e, x + \varepsilon e] \subset Y$. Let \mathcal{O}_X be the class of open subsets of X. Y is said to be closed if $Y^C \in \mathcal{O}_X$. For $e \in \mathcal{K}_X$ and for an interval $[a, b]$ we consider the following subset

$$[a, b]^e = \{x \mid \text{there exists some } \varepsilon \in \mathcal{K}_\mathbb{R} \text{ such that } x - a \geq \varepsilon e \text{ and } b - x \geq \varepsilon e\}.$$

By the definition of $[a, b]^e$ it is easy to see that $[a, b]^e \subset [a, b]$. Every mapping from $X \times \mathcal{K}_X$ into $(0, \infty)$ is said to be a gauge. Let Δ_X be the class of gauges in X. For $x \in X$ and $\delta \in \Delta_X$, $O(x, \delta)$ is defined by

$$O(x, \delta) = \bigcup_{e \in \mathcal{K}_X} [x - \delta(x, e)e, x + \delta(x, e)e]^e.$$

$O(x, \delta)$ is said to be a δ-neighborhood of x. Suppose that for any $x \in X$ and for any $\delta \in \Delta_X$ there exists $U \in \mathcal{O}_X$ such that $x \in U \subset O(x, \delta)$.

For a subset Y of X we denote by $\text{cl}(Y)$ and $\text{int}(Y)$, the closure and the interior of Y, respectively. Let X and Y be vector lattices with unit, $x_0 \in Z \subset X$ and f a mapping from Z into Y. f is said to be continuous in the sense of topology at x_0 if for any $V \in \mathcal{O}_Y$ with $f(x_0) \in V$ there exists $U \in \mathcal{O}_X$ with $x_0 \in U$ such that $f(U \cap Z) \subset V$.

Let X be a vector lattice with unit. X is said to be Hausdorff if for any $x_1, x_2 \in X$ with $x_1 \neq x_2$ there exists $O_1, O_2 \in \mathcal{O}_X$ such that $x_1 \in O_1$, $x_2 \in O_2$ and $O_1 \cap O_2 = \emptyset$. A subset Y of X is said to be compact if for any open covering of Y there exists a finite sub-covering. A subset Y of X is said to be normal if for any closed subsets F_1 and F_2 with $F_1 \cap F_2 \cap Y = \emptyset$ there exists $O_1, O_2 \in \mathcal{O}_X$ such that $F_1 \subset O_1$, $F_2 \subset O_2$ and $O_1 \cap O_2 \cap Y = \emptyset$.

A vector lattice is said to be Archimedean if it holds that $x = 0$ whenever there exists $y \in X$ with $y \geq 0$ such that $0 \leq rx \leq y$ for any $r \in \mathcal{K}_\mathbb{R}$.

Let X be a vector lattice with unit and Y a vector lattice, $x_0 \in Z \subset X$ and f a mapping from Z into Y. f is said to be continuous at x_0 if there exists $\{v_e \mid e \in \mathcal{K}_X\}$ satisfying the conditions (U1), (U2)d and (U3)s such that for any $e \in \mathcal{K}_X$ there exists $\delta \in \mathcal{K}_\mathbb{R}$ such that for any $x \in Z$ if $|x - x_0| \leq \delta e$, then $|f(x) - f(x_0)| \leq v_e$; where

(U1) $v_e \in Y$ with $v_e > 0$;

(U2)d $v_{e_1} \geq v_{e_2}$ if $e_1 \geq e_2$;

(U3)s For any $e \in \mathcal{K}_X$ there exists $\theta(e) \in \mathcal{K}_\mathbb{R}$ such that $v_{\theta(e)e} \leq \frac{1}{2}v_e$.

Let X be an Archimedean vector lattice. Then there exists a positive homomorphism f from X into \mathbb{R}, that is, f satisfies the following conditions:

(H1) $f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$ for any $x, y \in X$ and for any $\alpha, \beta \in \mathbb{R}$;

(H2) $f(x) \geq 0$ for any $x \in X$ with $x \geq 0$;
see [5, Example 3.1]. Suppose that there exists a homomorphism \(f \) from \(X \) into \(\mathbb{R} \) satisfying the following condition instead of (H2):

\[(H2)^* \quad f(x) > 0 \text{ for any } x \in X \text{ with } x > 0.\]

Example 2.1. We consider of a sufficient condition to satisfy \((H2)^*\). Let \(X \) be a Hilbert lattice with unit, that is, \(X \) has an inner product \(\langle \cdot, \cdot \rangle \) and for any \(x, y \in X \) if \(|x| \leq |y| \), then \(\langle x, x \rangle \leq \langle y, y \rangle \). For any \(e \in \mathcal{K}_X \) let \(f \) be a function from \(X \) into \(\mathbb{R} \) defined by \(f(x) = \langle x, e \rangle \). Then \(f \) satisfies (H1) and \((H2)^*\) clearly.

3 Fixed point theorem for a nonexpansive mapping

Let \(X \) be a vector lattice and \(Y \) a subset of \(X \). A mapping \(f \) from \(Y \) into \(Y \) is said to be nonexpansive if \(|f(x) - f(y)| \leq |x - y| \) for any \(x, y \in Y \). In this section we consider a fixed point theorem for a nonexpansive mapping.

Lemma 3.1. Let \(X \) be a Hausdorff Archimedean vector lattice with unit and \(K \) a non-empty compact convex subset of \(X \). Then

\[
c(K) = \left\{ x \mid x \in K, \bigvee_{y \in K} |x - y| = \bigwedge_{y \in K} \bigvee_{x \in K} |x - y| \right\}
\]

is non-empty compact convex.

Proof. For any \(x \in K \) and for any \(e \in \mathcal{K}_X \) let

\[
F(x, e) = \left\{ y \mid y \in K, |x - y| \leq \bigwedge_{x \in K} \bigvee_{y \in K} |x - y| + e \right\}.
\]

Then \(F(x, e) \) is non-empty compact convex. Let \(C(e) = \bigcap_{x \in K} F(x, e) \). Since \(\bigcap_{i=1}^n F(x_i, e) \neq \emptyset \) for any \(x_1, \ldots, x_n \in K \), \(C(e) \) is non-empty compact convex. Since \(C(e_1) \supset C(e_2) \) for any \(e_1, e_2 \in \mathcal{K}_X \) with \(e_1 \geq e_2 \), \(\bigcap_{e \in \mathcal{K}_X} C(e) \) is non-empty compact convex. Moreover \(c(K) = \bigcap_{e \in \mathcal{K}_X} C(e) \). Indeed \(c(K) \subset \bigcap_{e \in \mathcal{K}_X} C(e) \) is clear. Let \(x \in C(e) \) for any \(e \in \mathcal{K}_X \). Then

\[
|x - y| \leq \bigwedge_{x \in K} \bigvee_{y \in K} |x - y| + e
\]

for any \(y \in K \). Therefore

\[
\bigvee_{y \in K} |x - y| \leq \bigwedge_{x \in K} \bigvee_{y \in K} |x - y| + \bigwedge_{e \in \mathcal{K}_X} e = \bigwedge_{x \in K} \bigvee_{y \in K} |x - y|.
\]

By definition

\[
\bigvee_{y \in K} |x - y| \geq \bigwedge_{x \in K} \bigvee_{y \in K} |x - y|.
\]
Therefore

$$\bigvee_{y \in K} |x - y| = \bigwedge_{x \in K} \bigvee_{y \in K} |x - y|,$$

that is, $x \in c(K)$.

Let X be a Hausdorff Archimedean vector lattice with unit and Y a subset of X. We say that Y has the normal structure if for any compact convex subset K, which contains two points at least, of Y there exists $x \in K$ such that

$$\bigvee_{y \in K} |x - y| < \bigvee_{x, y \in K} |x - y|.$$

Lemma 3.2. Let X be a Hausdorff Archimedean vector lattice with unit and K a non-empty compact convex subset, which contains two points at least, of X. Suppose that K has the normal structure. Then

$$\bigvee_{x, y \in c(K)} |x - y| < \bigvee_{x, y \in K} |x - y|.$$

Proof. Since K has the normal structure, there exists $z \in K$ such that

$$|x - y| \leq \bigvee_{y \in K} |x - y| = \bigwedge_{x \in K} \bigvee_{y \in K} |x - y| \leq \bigvee_{y \in K} |x - y| < \bigvee_{x, y \in K} |x - y|$$

for any $x, y \in c(K)$. Therefore

$$\bigvee_{x, y \in c(K)} |x - y| < \bigvee_{x, y \in K} |x - y|.$$

Theorem 3.3. Let X be a Hausdorff Archimedean vector lattice with unit and K a non-empty compact convex subset of X. Suppose that K has the normal structure. Then every nonexpansive mapping from K into K has a fixed point.

Proof. Let f be a nonexpansive mapping from K into K and $\{K_\lambda \mid \lambda \in \Lambda\}$ the family of non-empty compact convex subsets of K satisfying that $f(K) \subset K$. By Zorn's lemma there exists a minimal element K_0 of $\{K_\lambda \mid \lambda \in \Lambda\}$. Assume that K_0 contains two points at least. By Lemma 3.1 $c(K_0)$ is non-empty compact convex. Let $x \in c(K_0)$. For any $y \in K_0$

$$|f(x) - f(y)| \leq |x - y| \leq \bigvee_{y \in K_0} |x - y| = \bigwedge_{x \in K_0} \bigvee_{y \in K_0} |x - y|.$$

Let

$$M = \left\{ y \mid y \in K, |f(x) - y| \leq \bigwedge_{x \in K_0} \bigvee_{y \in K_0} |x - y| \right\}.$$
Then \(f(K_0) \subset M \) and hence \(f(K_0 \cap M) \subset K_0 \cap M \). Since \(K_0 \) is a minimal element, it holds that \(K_0 \subset M \). Therefore

\[
\bigvee_{y \in K_0} |f(x) - y| \leq \bigwedge_{x \in K_0} \bigvee_{y \in K_0} |x - y|.
\]

By definition

\[
\bigvee_{y \in K_0} |f(x) - y| \geq \bigwedge_{x \in K_0} \bigvee_{y \in K_0} |x - y|.
\]

Therefore

\[
\bigvee_{y \in K_0} |f(x) - y| = \bigwedge_{x \in K_0} \bigvee_{y \in K_0} |x - y|,
\]

that is, \(f(x) \in c(K_0) \). Since \(K_0 \) is a minimal element, it holds that \(c(K_0) = K_0 \) and hence

\[
\bigvee_{x,y \in c(K_0)} |x - y| = \bigvee_{x,y \in K_0} |x - y|.
\]

However by Lemma 3.2

\[
\bigvee_{x,y \in c(K_0)} |x - y| < \bigvee_{x,y \in K_0} |x - y|.
\]

It is a contradiction. Therefore \(K_0 \) only contains a unique point. The point is a fixed point. \(\square \)

4 **Fixed point theorem for the commutative family of nonexpansive mappings**

For any nonexpansive mapping \(f \) from \(K \) into \(K \) let \(F_K(f) \) be the set of fixed points of \(f \).

Lemma 4.1. Let \(X \) be a Hausdorff Archimedean vector lattice with unit, \(Y \) a subset of \(X \) and \(f \) a nonexpansive mapping from \(Y \) into \(Y \). Suppose that there exists a homomorphism from \(X \) into \(\mathbb{R} \) satisfying the condition \((H2)^* \). Then \(F_Y(f) \) is closed.

Proof. Assume that \(F_Y(f) \) is not closed. Then for any \(\delta \in \Delta_X \) there exists \(x \in F_Y(f)^{\complement} \) such that \(O(x, \delta) \not\subset F_Y(f)^{\complement} \). Take \(y_\delta \in O(x, \delta) \cap F_Y(f) \). Then \(f(y_\delta) = y_\delta \). Note that every nonexpansive mapping is continuous and hence by [5, Lemma 3.2] it is also continuous in the sense of topology. Since \(\{y_\delta \mid \delta \in \Delta_X\} \) is convergent to \(x \) in the sense of topology, \(\{f(y_\delta) \mid \delta \in \Delta_X\} \) is convergent to \(f(x) \) in the sense of topology. Since \(X \) is Hausdorff, \(f(x) = x \). It is a contradiction. Therefore \(F_Y(f) \) is closed. \(\square \)
Lemma 4.2. Let X be a vector lattice. If $|x-z| = |x-w|$, $|y-z| = |y-w|$ and $|x-z| + |y-z| = |x-y|$, then $z = w$.

Proof. Note that $|a + b| = |a - b|$ if and only if $|a| \wedge |b| = 0$. Since

$$|x-z| = \left| x - \frac{1}{2}(z+w) - \frac{1}{2}(z-w) \right|$$

and

$$|x-w| = \left| x - \frac{1}{2}(z+w) + \frac{1}{2}(z-w) \right|,$$

it holds that $|x - \frac{1}{2}(z+w)| \wedge \frac{1}{2}|z-w| = 0$. In the same way it holds that $|y - \frac{1}{2}(z+w)| \wedge \frac{1}{2}|z-w| = 0$. Note that $(a + b) \wedge c \leq a \wedge c + b \wedge c$ for any $a, b, c \geq 0$. Therefore

$$|x-y| \wedge \frac{1}{2}|z-w| \leq \left(\left| x - \frac{1}{2}(z-w) \right| + \frac{1}{2}(z-w) - y \right) \wedge \frac{1}{2}|z-w| \leq \left| x - \frac{1}{2}(z-w) \right| \wedge \frac{1}{2}|z-w| + \left| y - \frac{1}{2}(z+w) \right| \wedge \frac{1}{2}|z-w| = 0. $$

Assume that $z \neq w$. Note that, if $|b| \wedge |c| = 0$, then $||a| - |b| \wedge |c| = |a| \wedge |c|$. Therefore

$$ (|x-z| + |y-z|) \wedge \frac{1}{2}|z-w| \geq |x-z| \wedge \frac{1}{2}|z-w| \geq \left| x - \frac{1}{2}|z-w| - \frac{1}{2}|z-w| \right| \wedge \frac{1}{2}|z-w| = \frac{1}{2}|z-w| > 0. $$

It is a contradiction. Therefore $z = w$. \(\square\)

Lemma 4.3. Let X be a Hausdorff Archimedean vector lattice with unit, Y a subset of X and f a nonexpansive mapping from Y into Y. Then $F_Y(f)$ is convex.

Proof. Let $x, y \in F_Y(f)$ and $0 \leq \alpha \leq 1$. Then

$$|x - f((1-\alpha)x + \alpha y)| = |f(x) - f((1-\alpha)x + \alpha y)| \leq |x - ((1-\alpha)x + \alpha y)| = \alpha|x - y|,$$

$$|y - f((1-\alpha)x + \alpha y)| = |f(y) - f((1-\alpha)x + \alpha y)| \leq |y - ((1-\alpha)x + \alpha y)| = (1 - \alpha)|x - y|.$$

Since

$$|x - y| \leq |x - f((1-\alpha)x + \alpha y)| + |y - f((1-\alpha)x + \alpha y)| \leq |x - ((1-\alpha)x + \alpha y)| + |y - ((1-\alpha)x + \alpha y)| = |x - y|,$$
it holds that
\[|x - f((1 - \alpha)x + \alpha y)| = |x - ((1 - \alpha)x + \alpha y)|, \]
\[|y - f((1 - \alpha)x + \alpha y)| = |y - ((1 - \alpha)x + \alpha y)|, \]
and hence
\[|x - f((1 - \alpha)x + \alpha y)| + |y - f((1 - \alpha)x + \alpha y)| = |x - y|. \]
By Lemma 4.2 \(f((1 - \alpha)x + \alpha y) = (1 - \alpha)x + \alpha y \), that is, \(F_{Y}(f) \) is convex.

\section*{Theorem 4.4.}
Let \(X \) be a Hausdorff Archimedean vector lattice with unit, \(K \) a compact convex subset of \(X \) and \(\{f_{i} | i = 1, \cdots, n \} \) the finite commutative family of nonexpansive mappings from \(K \) into \(K \). Suppose that there exists a homomorphism from \(X \) into \(R \) satisfying the condition \((H2)^{*}\) and \(K \) has the normal structure. Then \(\bigcap_{i=1}^{n} F_{K_{i}}(f_{i}) \) is non-empty.

\textbf{Proof.}
Let \(\{K_{\lambda} | \lambda \in \Lambda \} \) be the family of non-empty compact convex subsets of \(K \) satisfying that \(f_{i}(K_{\lambda}) \subset K_{\lambda} \) for any \(i \). By Zorn's Lemma there exists a minimal element \(K_{0} \) of \(\{K_{\lambda} | \lambda \in \Lambda \} \). Assume that \(K_{0} \) contains two points at least. By Theorem 3.3 \(F_{K_{0}}(f_{1} \circ \cdots \circ f_{n}) \) is non-empty. Moreover by Lemma 4.1 and Lemma 4.3 \(F_{K_{0}}(f_{1} \circ \cdots \circ f_{n}) \) is compact convex. It holds that \(f(F_{K_{0}}(f_{1} \circ \cdots \circ f_{n})) = F_{K_{0}}(f_{1} \circ \cdots \circ f_{n}) \) for any \(i \). It is shown as follows. Let \(x \in F_{K_{0}}(f_{1} \circ \cdots \circ f_{n}) \). Since
\[f_{i}(x) = f_{i}((f_{1} \circ \cdots \circ f_{n})(x)) = (f_{1} \circ \cdots \circ f_{n})(f_{i}(x)) \]
for any \(i, f_{i}(x) \in F_{K_{0}}(f_{1} \circ \cdots \circ f_{n}) \), that is, \(f_{i}(F_{K_{0}}(f_{1} \circ \cdots \circ f_{n})) \subset F_{K_{0}}(f_{1} \circ \cdots \circ f_{n}) \). Next let \(x_{i} = (f_{1} \circ \cdots \circ f_{i-1} \circ f_{i+1} \circ \cdots \circ f_{n})(x) \). Since
\[(f_{1} \circ \cdots \circ f_{n})(x_{i}) = (f_{1} \circ \cdots \circ f_{i-1} \circ f_{i+1} \circ \cdots \circ f_{n})(x) = x_{i}, \]
it holds that \(x_{i} \in F_{K_{0}}(f_{1} \circ \cdots \circ f_{n}) \). Moreover \(f_{i}(x_{i}) = x \). Therefore \(F_{K_{0}}(f_{1} \circ \cdots \circ f_{n}) \subset f_{i}(F_{K_{0}}(f_{1} \circ \cdots \circ f_{n})). \) Since \(K \) has the normal structure, there exists \(x_{0} \in K_{0} \) such that
\[\bigvee_{y \in K_{0}} |x_{0} - y| < \bigvee_{x, y \in K_{0}} |x - y|. \]
Let
\[A = \left\{ x \mid x \in K_{0}, \bigvee_{y \in F_{K_{0}}(f_{1} \circ \cdots \circ f_{n})} |x - y| \leq \bigvee_{y \in F_{K_{0}}(f_{1} \circ \cdots \circ f_{n})} |x_{0} - y| \right\}. \]
\(A \) is non-empty and convex clearly. Moreover since \(X \) is Archimedean, \(A \) is closed and hence compact. Let \(x \in A \). Then for any \(i \) and for any \(y \in F_{K_{0}}(f_{1} \circ \cdots \circ f_{n}) \)
\[|f_{i}(x) - y| = |f_{i}(x) - f_{i}(y_{i})| \leq |x - y_{i}| \leq \bigvee_{y \in F_{K_{0}}(f_{1} \circ \cdots \circ f_{n})} |x - y| \leq \bigvee_{y \in F_{K_{0}}(f_{1} \circ \cdots \circ f_{n})} |x_{0} - y| \]
and hence $f_i(a) \in A$, that is, $f_i(A) \subset A$. Since K_0 is minimal, $A = K_0$. Therefore
\[
\bigvee_{x, y \in F_{K_0}(f_1 \circ \cdots \circ f_n)} |x - y| \leq \bigvee_{y \in F_{K_0}(f_1 \circ \cdots \circ f_n)} |x_0 - y| < \bigvee_{x, y \in F_{K_0}(f_1 \circ \cdots \circ f_n)} |x - y|.
\]
It is a contradiction. Therefore K_0 only contains a unique point. The point is a common fixed point of $\{f_i \mid i = 1, \cdots, n\}$.

\begin{proof}
By Theorem 4.4 $\bigcap_{k=1}^{n} F_K(f_{i_k})$ is non-empty for any finite set $i_1, \cdots, i_n \in I$. Since K is compact, $\bigcap_{i \in I} F_K(f_i)$ is non-empty.
\end{proof}

\textbf{Acknowledgement.} The author is grateful to Professor Tamaki Tanaka for his suggestions and comments. Moreover the author got a lot of useful advice from Professor Wataru Takahashi, Professor Masashi Toyoda and Professor Toshikazu Watanabe.

\section*{References}

