ON HAHN BANACH THEOREM IN A PARTIALLY ORDERED VECTOR SPACE

The Hahn-Banach theorem is one of the most fundamental theorems in the functional analysis theory. This theorem is known well in the case where the range space is the real number system as follows:

Let p be a sublinear mapping from a vector space X to the real number system R, Y a vector subspace of X and q a linear mapping from Y to R such that $q \leq p$ on Y. Then q can be extended to a linear mapping g defined on the whole space X to R such that $g \leq p$.

It is known that this theorem establishes in the case where the range space is a Dedekind complete Riesz space as follows [4, 16, 18]:

Let p be a sublinear mapping from a vector space X to a Dedekind complete Riesz space E, Y a vector subspace of X and q a linear mapping from Y to E such that $q \leq p$ on Y. Then q can be extended to a linear mapping g defined on the whole space X to E such that $g \leq p$.

Moreover, it is known that the Hahn-Banach extension property and a Dedekind completeness, which is equivalent the least upper bound property, are equivalent in a partially ordered vector space [2, 9, 17].

The Hahn-Banach theorem is often proved by using the Zorn lemma. On the other hand, Hirano, Komiya, and Takahashi [8] showed the Hahn-Banach theorem by using the Markov-Kakutani fixed point theorem [10] in the case where the range space is the real number system.

In this paper, in Section 3, using the Bourbaki-Knese fixed point theorem, we give a new proof of the Hahn-Banach theorem and the Mazur-Orlicz theorem in the case where the range space is a Dedekind complete partially ordered vector space (Theorem 3.3, Theorem 3.4). In Section 4, we give a new proof of the separation theorem in a Cartesian product of the vector space and Dedekind complete partially ordered vector space (Theorem 4.1); see [6, 7, 15]. The Bourbaki-Knese fixed point theorem is proved without using the Zorn lemma; see [11]. Therefore the theorems above are proved without using the Zorn lemma.

2. Preliminaries

Let R be the set of real numbers, N the set of natural numbers, I an indexed set, (E, \leq) a partially ordered set and F a subset of E. The set F is called a chain if any two elements are comparable, that is, $x \leq y$ or $y \leq x$ for any $x, y \in F$. An element $x \in E$ is called a lower bound of F if $x \leq y$ for any $y \in F$. An element $x \in E$ is called the minimum of F if x is a lower bound of F and $x \in F$. If there exists a lower bound of F, then F is said to be bounded from below. An element $x \in E$ is called an upper bound of F if $y \leq x$ for any $y \in F$. An element $x \in E$ is called the maximum of F if x is an upper bound and $x \in F$. If there exists an upper bound of F, then F is said to be bounded from above. If the set of all lower bounds of F has the maximum, then
the maximum is called an \textit{infimum} of \(F \) and denoted by \(\inf F \). If the set of all upper bounds of \(F \) has the minimum, then the minimum is called a \textit{supremum} of \(F \) and denoted by \(\sup F \).

A partially ordered set \(E \) is said to be \textit{complete} if every nonempty chain of \(E \) has an infimum; \(E \) is said to be \textit{Dedekind complete} if every nonempty subset of \(E \) which is bounded from below has an infimum. A mapping \(f \) from \(E \) to \(E \) is called \textit{decreasing} if \(f(x) \leq x \) for every \(x \in E \). For the further information of a partially ordered set, see \([1, 4, 5, 14, 16]\).

In a complete partially ordered set, the following theorem is obtained \([3, 11, 12]\).

\textbf{Theorem 2.1} (Bourbaki-Kneser). \textit{Let } \(E \) \textit{be a complete partially ordered set. Let } \(f \) \textit{be a decreasing mapping from } \(E \) \textit{to } \(E \). \textit{Then } \(f \) \textit{has a fixed point.}

Recently, T. C. Lim \([13]\) proved a common fixed point theorem for the family of decreasing commutative mapping, which is a generalization of Theorem 2.1.

A partially ordered set \(E \) is called a partially ordered vector space if \(E \) is a vector space and \(x+z \leq y+z \) and \(\alpha x \leq \alpha y \) hold whenever \(x, y, z \in E, x \leq y, \) and \(\alpha \) is a nonnegative real number. If a partially ordered vector space \(E \) is a lattice, that is, any two elements have a supremum and an infimum, then \(E \) is called a \textit{Riesz space}.

Let \(E \) be a vector space and \(E \) a partially ordered vector space. A mapping \(f \) from \(E \) to \(E \) is said to be \textit{concave} if \(f(tx + (1-t)y) \geq tf(x) + (1-t)f(y) \) for any \(x, y \in E \) and \(t \in [0, 1] \). A mapping \(f \) from \(E \) to \(E \) is called \textit{sublinear} if the following conditions are satisfied.

\begin{enumerate}[(S1)]
 \item For any \(x, y \in E \), \(p(x + y) \leq p(x) + p(y) \).
 \item For any \(x \in E \) and \(\alpha \geq 0 \) in \(R \), \(p(\alpha x) = \alpha p(x) \).
\end{enumerate}

3. \textbf{The Hahn-Banach Theorem}

\textbf{Lemma 3.1.} \textit{Let } \(p \) \textit{be a sublinear mapping from a vector space } \(X \) \textit{to a Dedekind complete partially ordered vector space } \(E \), \(K \) \textit{a nonempty convex subset of } \(X \) \textit{and } \(q \) \textit{a concave mapping from } \(K \) \textit{to } \(E \) \textit{such that } \(q \leq p \) \textit{on } \(K \). \textit{For any } \(x \in X \), \textit{let}

\[
f(x) = \inf \{p(x + ty) - tq(y) \mid t \in [0, \infty) \text{ and } y \in K\}.
\]

\textit{Then } \(f \) \textit{is sublinear such that } \(f \leq p \). \textit{Moreover if } \(g \) \textit{is a linear mapping from } \(X \) \textit{to } \(E \), \textit{then } \(g \leq f \) \textit{is equivalent to } \(g \leq p \) \textit{on } \(X \) \textit{and } \(q \leq g \) \textit{on } \(K \).

\textbf{Proof.} \textit{For any } \(x \in X \), \{\(p(x + ty) - tq(y) \mid t \in [0, \infty) \text{ and } y \in K\} \textit{is bounded from below. Indeed, since}

\[
p(x + ty) - tq(y) \geq p(ty) - p(-x) - tq(y) \geq -p(-x),
\]

\textit{it is established. Since } \(E \) \textit{is Dedekind complete, } \(f \) \textit{is well-defined and we have } \(f(x) \geq -p(-x) \). \textit{By definition of } \(f \), \textit{we have } \(f(x) \leq p(x) \) \textit{and } \(f(\alpha x) = \alpha f(x) \) \textit{for any } \(\alpha \geq 0 \). \textit{Thus (S2) is established. Let } \(x_1, x_2 \in X \). \textit{For any } \(y_1, y_2 \in K \) \textit{and } \(s, t > 0 \), \textit{we have}

\[
p(x_1 + sy_1) - sq(y_1) + p(x_2 + ty_2) - tq(y_2)
\]
\[
\geq p(x_1 + x_2 + (s + t)w) - (s + t)q(w)
\]
\[
\geq f(x_1 + x_2),
\]

\textit{where } \(w = \frac{1}{s+t}(sy_1 + ty_2) \in K \). \textit{For } \(p(x_1 + sy_1) - sq(y_1) \), \textit{take infimum with respect to } \(s > 0 \) \textit{and } \(y \in K \), \textit{we have}

\[
f(x_1) + p(x_2 + ty_2) - tq(y_2) \geq f(x_1 + x_2)
\]

\textit{and for } \(p(x_2 + ty_2) - tq(y_2) \), \textit{also take infimum with respect to } \(t > 0 \) \textit{and } \(y \in K \), \textit{we have}

\[
f(x_1) + f(x_2) \geq f(x_1 + x_2).
\]

\textit{This shows that } \(f(x_1) + f(x_2) \geq f(x_1 + x_2) \). \textit{Thus (S1) is established. Suppose that } \(g \) \textit{is a linear mapping from } \(X \) \textit{to } \(E \). \textit{If } \(g \leq f \), \textit{then we have } \(g \leq p \). \textit{Moreover for any } \(y \in K \), \textit{since}

\[
-g(y) = g(-y) \leq f(-y) \leq p(-y + y) - q(y) = -q(y),
\]
we have $g \geq q$ on K. To prove the converse, suppose that $g \leq p$ on X and $q \leq g$ on K. For any $x \in X$, $y \in K$ and $t > 0$, we have
\[
g(x) = g(x + ty) - tg(y) \leq p(x + ty) - tq(y).
\]
This implies that $g \leq f$.

The above lemma is proved in case where the range space is a Dedekind complete Riesz space, see [16, Lemma 1.5.1].

By Theorem 2.1 and Lemma 3.1, we can give a following Lemma.

Lemma 3.2. Let f be a sublinear mapping from a vector space X to a Dedekind complete partially ordered vector space E. Then there exists a linear mapping g from X to E such that $g \leq f$.

Proof. Put $f^*(x) = -f(-x)$ for any $x \in X$. Let $y \in X$ and
\[
Y = \{h \in E^X \mid h \text{ is sublinear, } f^* \leq h \leq f\}.
\]
Then Y is an ordered set by its canonical order. Since E is Dedekind complete, E^X is also so. Consider an arbitrary chain $Z \subset Y$. Since E^X is Dedekind complete and Z is bounded from below, there exists a $g = \inf Z$ in E^X. Then g is sublinear. Since Y is bounded from below, it holds that $g \in Y$. Thus Y is complete. Let $K = \{y\}$. We define a decreasing operator S by
\[
S h(x) = \inf\{h(x + ty) - h(ty) \mid t \in [0, \infty), y \in K\}
\]
for any $h \in Y$. By Lemma 3.1, $S h$ is sublinear and S is a mapping from Y to Y. Thus by Theorem 2.1, we have a fixed point $g \in Y$. Then for any $x \in X$, we have
\[
g(x) = g(x + ty) - tg(y)
\]
and
\[
g(x) + g(y) \leq g(x + y) \leq g(x) + g(y).
\]
Thus g is linear.

By lemma 3.2 and lemma 3.1, we can prove the Hahn-Banach theorem and the Mazur-Orlicz theorem in case where the range space is a Dedekind complete partially ordered vector space.

Theorem 3.3. Let p be a sublinear mapping from a vector space X to a Dedekind complete ordered vector space E, Y a vector subspace of X and q a linear mapping from Y to E such that $q \leq p$ on Y. Then q can be extended to a linear mapping g defined on the whole space X such that $g \leq p$.

Proof. By Lemma 3.1, there exists a sublinear mapping f such that $f \leq p$. By lemma 3.2, there exists a linear mapping g such that $g \leq f$. Then putting $K = Y$ in Lemma 3.1, we have $g \leq p$ on X and $q \leq g$ on Y. Since q is linear, we have $g = h$ on Y. Thus the assertion holds.

We obtain the Mazur-Orlicz theorem in a Dedekind complete partially ordered vector space.

Theorem 3.4. Let p be a sublinear mapping from a vector space X to a Dedekind complete partially ordered vector space E. Let $\{x_j \mid j \in I\}$ be a family of elements of X and $\{y_j \mid j \in I\}$ a family of elements of E. Then the following (1) and (2) are equivalent.

1. There exists a linear mapping f from X to E such that $f(x) \leq p(x)$ for any $x \in X$ and $y_j \leq f(x_j)$ for any $j \in I$.

2. For any $\alpha_n \geq 0$ and $j_1, j_2, \ldots, j_n \in I$, we have
\[
\sum_{i=1}^{n} \alpha_i y_{j_i} \leq p \left(\sum_{i=1}^{n} \alpha_i x_{j_i} \right).
\]
Proof. The assertion from (1) to (2) is clear. For any \(x \in X \), by (2), we have
\[
-p(-x) \leq p \left(x + \sum_{i=1}^{n} \alpha_i x_i \right) - \sum_{i=1}^{n} \alpha_i y_i.
\]
Put
\[
p_0(x) = \inf \left\{ p \left(x + \sum_{i=1}^{n} \alpha_i x_i \right) - \sum_{i=1}^{n} \alpha_i y_i \middle| n \in N, \alpha_i \geq 0 \text{ and } j_i \in I \right\}.
\]
Since \(E \) is Dedekind complete, \(p_0 \) is well-defined and \(p_0 \) is sublinear. Thus by Corollary 3.2, there exists a linear mapping \(f \) from \(X \) to \(E \) such that \(f(x) \leq p_0(x) \) for any \(x \in X \). Since \(p_0(-x_j) \leq -y_j \), we have
\[
y_j \leq p_0(x) \leq f(x_j).
\]
Since \(p_0(x) \leq p(x) \), we have \(f(x) \leq p(x) \). Thus the assertion holds. \(\square \)

4. The separation theorem

Let \(X \) be a vector space, \(E \) a Dedekind complete partially ordered vector space. Let \(A \) be a nonempty subset of \(X \) and \(L(A) \) denotes the affine manifold spanned by \(A \). We define
\[
Int(A) = \left\{ x \in X \mid \text{for any } x' \in L(A) \text{ there exists } \varepsilon > 0 \text{ such that } x + \lambda(x' - x) \in A \text{ for any } \lambda \in [0, \varepsilon) \right\}.
\]
If \(L(A) = E \), then we write \(I(A) \) insted of \(Int(A) \). A subset \(A \) is said to be expandive if for at least one \(x \in Int(A) \) and any \(x' \in A \), \(x + \lambda x' \in Int(A) \) holds for all \(\lambda \in [0, 1) \). Let \(f \) be a linear mapping from \(X \) to \(E \), \(g \) a linear mapping from \(E \) to \(E \) and \(u_0 \) a point in \(E \). Then \(H = \{ (x, y) \in X \times E \mid f(x) + g(y) = u_0 \} \) is empty or an affine manifold in \(X \times E \). Let \(A, B \) be nonempty subsets of \(X \times E \). A subset \(A \subset X \times E \) is cone if \(\lambda A \subset A \) for all \(\lambda > 0 \). It is said that an affine manifold \(H \) separates \(A \) and \(B \) if \(H_- = \{ (x, y) \in X \times E \mid f(x) + g(y) \leq u_0 \} \supset A \) and \(H_+ = \{ (x, y) \in X \times E \mid f(x) + g(y) \geq u_0 \} \supset B \) hold. The operator \(P_X \) defined by \(P_X(x, y) = x \) for any \((x, y) \in X \times E \) is called the projection of \(X \times E \) onto \(X \). Then \(P_X \) is a linear mapping from \(X \times E \) to \(X \). We define
\[
P_X(A) = \{ x \in X \mid \text{there exists } y \in E \text{ such that } (x, y) \in A \}.
\]
Then we have \(P_X(A + B) = P_X(A) + P_X(B) \) for \(A \neq \emptyset \) and \(B \neq \emptyset \). The subset
\[
C(A) = \{ \lambda x \in X \times E \mid \lambda \geq 0, x \in A \}
\]
is called the cone spanned by \(A \). If \(A \) is convex, then \(C(A) \) is convex. We obtain the separation theorem in a Cartesian product of the vector space and the Dedekind complete partially ordered vector space.

Theorem 4.1. Let \(A \) and \(B \) be subsets of \(X \times E \) such that \(C(A - B) \) is convex cone, \(P_X(A - B) \) is expansive and satisfies the following (i) and (ii):

(i) \(0 \in I(P_X(A - B)) \),
(ii) if \((x, y_1) \in A \) and \((x, y_2) \in B \), then \(y_1 \geq y_2 \) holds.

Then there exists a linear mapping \(f \) from \(X \) to \(E \) and a \(y_0 \in E \) such that the affine manifold \(H = \{ (x, y) \in X \times E \mid f(x) - y = y_0 \} \) separates \(A \) and \(B \).

Proof. By assumption (i) and the definition of \(I(P_X(A - B)) \), for any \(x \in X \) there exists \(\varepsilon > 0 \) and for any \(\lambda \in [0, \varepsilon) \), there exists \(y \in E \) such that \((\lambda x, y) \in A - B \). Then there exist \(x_1, x_2 \in X \) and \(y_1, y_2 \in E \) such that \((\lambda x, y) = (x_1 - x_2, y_1 - y_2) = (x_1, y_1) - (x_2, y_2) \in A - B \). Define \(E_x = \{ y \in E \mid (x, y) \in C(A - B) \}, x \in X \). Since \(\lambda^{-1}(y_1 - y_2) \in E_x \) for any \(\lambda \in (0, \varepsilon) \), we have \(E_x \neq \emptyset \). Let \(y \in E_0 \) and \(y \neq 0 \), then there exists \(\lambda > 0 \) such that \((x_1, y_1) \in A \) and \((x_2, y_2) \in B \) such that \((0, y) = \lambda((x_1, y_1) - (x_2, y_2)) \) and \(x_1 = x_2 \). By assumption (ii), we have \(y = \lambda(y_1 - y_2) \geq 0 \).
We define $E_+ = \{y \in E \mid y \geq 0\}$. Then we have $y \in E_+$. Since $C(A-B)$ is convex cone, we have $E_x + E_{x'} \subseteq E_{x+x'}$ for any $x, x' \in X$. We prove that for every $x \in X$ the subset E_x possesses a lower bound in E. Since E_x is nonempty, for any $x \in X$, there exists $y' \in E_x$ with $-y' \in E_{-x}$. Thus we have $y - y' \in E_x + E_{-x} \subseteq E_0 \subseteq E_+$ for any $y \in E_x$. This implies $y' \leq y$ for any $y \in E_x$. Since E is Dedekind complete, operator $p(x) = \inf\{y \mid y \in E_x\}$ is well defined. Then $p(x)$ is sublinear. By Lemma 3.2, there exists a linear mapping f from X to E such that $f(x) \leq p(x)$ for all $x \in X$. Then for any $(x_1, y_1) \in A$, $(x_2, y_2) \in B$, take $x = x_1 - x_2$, we have
\[
f(x_1 - x_2) \leq p(x_1 - x_2) \leq y_1 - y_2.
\]
Therefore,
\[
f(x_1) - y_1 \leq f(x_2) - y_2.
\]
Since E is Dedekind complete, there exists a $y_0 \in E$ such that
\[
f(x_1) - y_1 \leq y_0 \leq f(x_2) - y_2
\]
for any $(x_1, y_1) \in A$, $(x_2, y_2) \in B$. Thus the affine manifold H separates A and B.

\[\square\]

References

(Toshikazu Watanabe, Tanaki Tanaka) GRADUATE SCHOOL OF SCIENCE AND TECHNOLOGY, NIIGATA UNIVERSITY, 8050, IGARASHI 2-NO-CHO, NISHI-KU, NIIGATA, 950–2181, JAPAN

E-mail address: wa-toshi@math.sc.niigata-u.ac.jp, tanaki@math.sc.niigata-u.ac.jp