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1. INTRODUCTION

In 1948, Lorentz [11] introduced a notion of almost convergence for
bounded sequences of real numbers: Let $\{x_{n}\}$ be a bounded sequence
of real numbers. Then, $\{x_{n}\}$ is said to be almost convergent if

$\mu_{n}(x_{n})=\nu_{n}(x_{n})$

for any Banach limits $\mu$ and $\nu$ . Day [6] defined a notion of almost
convergence for bounded real-valued functions defined on an amenable
semigroup.

On the other hand, von Neumann [15] introduced a notion of almost
periodicity for bounded real-valued functions defined on a group and
proved the existence of the mean values for those functions. Later,
Bochner and von Neumann [3] proved the existence of the mean values
for vector-valued almost periodic functions defined on a group with
values in a locally convex space. Recently, Miyake and Takahashi [13,
14] proved the existence of the mean values for vector-valued almost
periodic functions defined on an amenable semigroup and obtained non-
linear mean ergodic theorems for transformation semigroups of various
types.

In this paper, we announce some results recently obtained in study-
ing on almost convergence for vector-valued functions defined on an
amenable semigroup with values in a locally convex space. First, moti-
vated by the work of Lorentz, we introduce a notion of almost conver-
gence for those functions and obtain characterizations of vector-valued
almost convergent functions. Next, we introduce a notion of the mean
values for those functions defined on a semigroup without assumption
of amenability and prove characterizations of the space of bounded
real-valued functions defined on a semigroup. Finally, by study on al-
most convergence for commutative semigroups of non-linear mappings,
we prove mean ergodic theorems for non-Lipschitzian asymptotically
isometric semigroups of continuous self-mappings of a compact convex
subset of a general Banach space.
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2. PRELIMINARIES
Throughout this paper, we denote by $S$ a semigroup with identity

and by $E$ a locally convex topological vector space (or l.c. $s.$ ). We also
denote by $\mathbb{R}+$ and $N+$ the set of non-negative real numbers and the
set of non-negative integers, respectively. Let $\langle E,$ $F)$ be the duality
between vector spaces $E$ and $F$ . For each $y\in F$ , we define a linear
functional $f_{y}$ on $E$ by $f_{y}(x)=\langle x,y\rangle$ . We denote by $\sigma(E, F)$ the weak
topology on $E$ generated by $\{f_{y} : y\in F\}$ . $E_{\sigma}$ denotes a l.c. $s$ . $E$ with
the weak topology $\sigma(E, E’)$ . If $X$ is a l.c. $s.$ , we denote by $X$‘ the
topological dual of $X$ . We also denote by $\langle\cdot,$ $\cdot\rangle$ the canonical bilinear
form between $E$ and $E’$ , that is, for $x\in E$ and $x’\in E’,$ $\langle x,$ $x’\rangle$ is the
value of $x’$ at $x$ .

We denote by $l^{\infty}(S)$ the Banach space of bounded real-valued func-
tions on $S$ . For each $s\in S$ , we define operators $l(s)$ and $r(s)$ on $l^{\infty}(S)$

by
$(l(s)f)(t)=f(st)$ and $(r(s)f)(t)=f(ts)$

for each $t\in S$ and $f\in l^{\infty}(S)$ , respectively. A subspace $X$ of $l^{\infty}(S)$ is
said to be translation invariant if $l(s)X\subset X$ and $r(s)X\subset X$ for each
$s\in S$ . Let $X$ be a subspace of $l^{\infty}(S)$ which contains constants. A linear
functional $\mu$ on $X$ is said to be a mean on $X$ if $||\mu\Vert=\mu(e)=1$ , where
$e(s)=1$ for each $s\in S$ . We often write $\mu_{s}f(s)$ instead of $\mu(f)$ for each
$f\in X$ . For $s\in S$ , we define a point evaluation $\delta_{s}$ by $\delta_{\epsilon}(f)=f(s)$

for each $f\in X$ . A convex combination of point evaluations is called a
finite mean on $S$ . As is well known, $\mu$ is a mean on $X$ if and only if

$\inf_{s\in S}f(s)\leq\mu(f)\leq\sup_{s\in S}f(s)$

for each $f\in X$ ; see Day [6] and Takahashi [22] for more details. Let $X$

be also translation invariant. Then, a mean $\mu$ on $X$ is said to be left (or
right) invariant if $\mu(l(s)f)=\mu(f)$ $(or \mu(r(s)f)=\mu(f))$ for each $s\in S$

and $f\in X$ . A mean $\mu$ on $X$ is said to be invariant if $\mu$ is both left and
right invariant. If there exists a left (or right) invariant mean on $X$ ,
then $X$ is said to be left (or right) amenable. If $X$ is also left and right
amenable, then $X$ is said to be amenable. We know from Day [6] that
if $S$ is commutative, then $X$ is amenable. Let $\{\mu_{\alpha}\}$ be a net of means
on $X$ . Then $\{\mu_{\alpha}\}$ is said to be asymptotically invariant (or strongly
regular) if for each $s\in S$ , both $l(s)’\mu_{\alpha}-\mu_{\alpha}$ and $r(s)’\mu_{\alpha}-\mu_{\alpha}$ converge
to $0$ in the weak topology $\sigma(X’, X)$ (or the norm topology), where $l(s)’$

and $r(s)’$ are the adjoint operators of $l(s)$ and $r(s)$ , respectively. Such
nets were first studied by Day [6].

We denote by $l^{\infty}(S, E)$ the vector space of vector-valued functions
defined on $S$ with values in $E$ such that for each $f\in l^{\infty}(S, E),$ $f(S)=$
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$\{f(s) : s\in S\}$ is bounded. Let $U$ is a neighborhood base of $0$ in $E$

and let $M(V)=\{f\in l^{\infty}(S, E) : f(S)\subset V\}$ for each $V\in$ U. A family
$\mathfrak{B}=\{M(V) : V\in U\}$ is a filter base in $l^{\infty}(S, E)$ . Then, $l^{\infty}(S, E)$ is
a l.c. $s$ . with the topology $\mathfrak{T}$ of uniform convergence on $S$ that has a
neighborhood base $\mathfrak{B}$ of $0$ . For each $s\in S$ , we define the operators
$R(s)$ and $L(s)$ on $l^{\infty}(S, E)$ by

$(R(s)f)(t)=f(ts)$ and $(L(s)f)(t)=f(st)$

for each $t\in S$ and $f\in l^{\infty}(S, E)$ , respectively. Let $f\in l^{\infty}(S, E)$ .
We denote by $\mathcal{R}\mathcal{O}(f)$ the right orbit of $f$ , that is, the set $\{R(s)f\in$

$l^{\infty}(S, E)$ : $s\in S\}$ of right translates of $f$ . Similarly, we also denote by
$\mathcal{L}\mathcal{O}(f)$ the left orbit of $f$ , that is, the set $\{L(s)f\in l^{\infty}(S, E) : s\in S\}$ of
left translates of $f$ . A subspace $\Xi$ of $l^{\infty}(S, E)$ is said to be translation
invariant if $L(s)\Xi\subset\Xi$ and $R(s)\Xi\subset\Xi$ for each $s\in S$ . Let $\Xi$ be
a subspace of $l^{\infty}(S, E)$ which contains constant functions. For each
$s\in S$ , we define a (vector-valued) point evaluation $\Delta_{s}$ by $\Delta_{\delta}(f)=f(s)$

for each $f\in l^{\infty}(S, E)$ . A convex combination of vector-valued point
evaluations is said to be a (vector-valued) finite mean. A mapping $M$

of $\Xi$ into $E$ is called a vector-valued mean on $\Xi$ if $M$ is contained in
the closure of convex hull of $\{\Delta_{s} : s\in S\}$ in the product space $(E_{\sigma})^{\Xi}$ .
Then, a vector-valued mean $M$ on $\Xi$ is a linear continuous mapping of
$\Xi$ into $E$ such that (i) $Mp=p$ for each constant function $p$ in $\Xi$ , and (ii)
$M(f)$ is contained in the closure of convex hull of $f(S)$ for each $f\in\Xi$ .
We denote by $\Phi_{\Xi}$ the set of vector-valued means on $\Xi$ . Let $\Xi$ be also
translation invariant. Then, a vector-valued mean $M$ on $\Xi$ is said to be
left (or right) invariant if $M(L(s)f)=M(f)$ $(or M(R(s)f)=M(f))$
for each $s\in S$ and $f\in---$ . A vector-valued mean $M$ on $\Xi$ is said to
be invariant if $M$ is both left and right invariant. Let $f\in\Xi$ and let
$M$ be a vector-valued mean on $\Xi$ . We define a vector-valued function
M.$f\in l^{\infty}(S, E)$ by $(M.f)(s)=M(L(s)f)$ for each $s\in S$ . Then, $\Xi$ is
said to be introverted if for each $f\in\Xi$ and vector-valued mean $M$ on
$\Xi$ , M. $f$ is contained in $\Xi$ .

We also denote by $l_{c}^{\infty}(S, E)$ the subspace of $l^{\infty}(S, E)$ such that for
each $f\in l_{c}^{\infty}(S, E),$ $f(S)$ is relatively weakly compact in $E$ . Let $X$ be a
subspace of $l^{\infty}(S)$ containing constants such that for each $f\in l_{c}^{\infty}(S, E)$

and $x’\in E’$ , a function $s\mapsto(f(s),$ $x’\rangle$ is contained in $X$ . Such an $X$ is
caUed admissible. Let $\mu\in X’$ . Then, for each $f\in l_{c}^{\infty}(S, E)$ , we define
a linear functional $\tau(\mu)f$ on $E’$ by

$\tau(\mu)f:x’\mapsto\mu\langle f(\cdot),x’\rangle$ .
It follows from the bipolar theorem that $\tau(\mu)f$ is contained in $E$ . A
mapping $\tau$ of $X$‘ onto $\Phi_{l_{c}^{\infty}(S,E)}$ is linear and continuous where $X’$ is
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equipped with the weak topology $\sigma(X’, X)$ . Then, for each mean $\mu$

on $X,$ $\tau(\mu)$ is a vector-valued mean on $l_{c}^{\infty}(S, E)$ (generated by $\mu$).
Conversely, every vector-valued mean on $l_{c}^{\infty}(S, E)$ is also a vector-
valued mean in the sense of Goldberg and Irwin [8], that is, for each
$M\in\Phi_{\iota_{c}\infty(S,E)}$ , there exists a mean $\mu$ on $X$ such that $\tau(\mu)=M$ . Note
that $\Phi_{l_{c}^{\infty}(S,E)}$ is compact and convex in $(E_{\sigma})^{l_{c}^{\infty}(S,E)}$ ; see also Day [6],
Takahashi [20, 22] and Kada and Takahashi [10]. Let $X$ be also trans-
lation invariant and amenable. If $\mu$ is a left (or right) invariant mean
on $X$ , then $\tau(\mu)$ is also left (or right) invariant. Conversely, if $M$ is
a left (or right) invariant vector-valued mean on $l_{c}^{\infty}(S, E)$ , then there
exists a left (or right) invariant mean $\mu$ on $X$ such that $\tau(\mu)=M$ .

Let $C$ be a closed convex subset of a l.c. $s$ . $E$ and let $\mathfrak{F}$ be the semi-
group of continuous self-mappings of $C$ under operator multiplication.
If $T$ is a semigroup homomorphism of $S$ into $S$ , then $T$ is said to be a
representation of $S$ as continuous self-mappings of $C$ . Let $S=\{T(s)$ :
$s\in S\}$ be a representation of $S$ as continuous self-mappings of $C$ such
that for each $x\in C$ , the orbit $\mathcal{O}(x)=\{T(s)x : s\in S\}$ of $x$ under $S$

is relatively weakly compact in $C$ and let $X$ be a subspace of $l^{\infty}(S)$

containing constants such that for each $x\in C$ and $x’\in E’$ , a function
$s\mapsto\langle T(s)x,$ $x’\rangle$ is contained in $X$ . Such an $X$ is called admissible with
respect to $S$ . If no confusion will occur, then $X$ is simply called admis-
sible. Let $\mu\in X’$ . Then, there exists a unique point $x_{0}$ of $E$ such that
$\mu\langle T(\cdot)x,x^{f}\rangle=\langle x_{0},$ $x’\rangle$ for each $x’\in E’$ . We denote such a point $x_{0}$ by
$T(\mu)x$ . Note that if $\mu$ is a mean on $X$ , then for each $x\in C,$ $T(\mu)x$ is
contained in the closure of convex hull of the orbit $\mathcal{O}(x)$ of $x$ under $S$ .

3. ON ALMOST CONVERGENCE FOR VECTOR-VALUED FUNCTIONS

Motivated by the work of Lorentz [11], we introduce a notion of al-
most convergence for vector-valued functions defined $on$ a left amenable
semigroup with values in a locally convex space and also obtain char-
acterizations of almost convergence for those functions.
Definition 1. Let $S$ be left amenable and let $f\in l_{c}^{\infty}(S, E)$ . Then, $f$

is said to be almost convergent in the sense of Lorentz if
$\tau(\mu)f=\tau(\nu)f$

for any left invariant means $\mu$ and $\nu$ on $l^{\infty}(S)$ . Note that $f$ is almost
convergent in the sense of Lorentz if and only if $M(f)=N(f)$ for any
left invariant vector-valued means on $M$ and $N$ on $l_{c}^{\infty}(S, E)$ .
Theorem 1. Let $S$ be left amenable and let $f\in t_{c}^{\infty}(S, E)$ . Then, the
following are equivalent:

(i) $f$ is almost convergent in the sense of $Lorentz_{f}$.
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(ii) the closure $\mathcal{K}$ of convex hull of $\mathcal{R}O(f)$ contains exactly one
constant function in the topology $\tau_{wp}$ of weakly pointwise con-
vergence on $S$;

(iii) for each function $g\in \mathcal{K}$ , the $\tau_{wp}$ -closure of convex hull $of\mathcal{R}\mathcal{O}(g)$

contains exactly one constant hnction.
Theorem 2. Let $S$ be commutative, let $f\in l_{c}^{\infty}(S, E)$ and let $X$ be a
closed, tmnslation invariant and admissible subspace of $l^{\infty}(S)$ contain-
ing $\omega nstant$ functions. Then, the following are equivalent:

(i) $f$ is almost convergent in the sense of Looentz,$\cdot$

(ii) there exists a strongly regular net $\{\lambda_{\alpha}\}$ of finite means such
that $\{\tau(\lambda_{\alpha}).f\}$ converges in the topology $\tau_{wu}$ of weakly unifom
convergence on $S$;

(iii) for each strongly regular net $\{\mu_{\alpha}\}$ of means on $X,$ $\{\tau(\mu_{\alpha}).f\}$

converges in the topology $\tau_{wu}$ .
Next, we introduce a notion of the mean value for bounded vector-

valued functions defined on a semigroup without assumption of amen-
ability and ako obtain characterizations of the space of bounded real-
valued functions defined on a semigroup which have the mean values.

Definition 2. Let $f\in l^{\infty}(S, E)$ and let $\mathcal{K}$ be the closure of convex
hull of $\mathcal{R}\mathcal{O}(f)$ in the topology $\tau_{wp}$ of weakly pointwise convergence on
$S$ . If for each function $g$ in $\mathcal{K}$ , the $\tau_{wp}$-closure of convex hull of $\mathcal{R}\mathcal{O}(g)$

contains exactly one constant function with value $p$, then $p$ is said to
be the mean value of $f$ ; see also von Neumann [15], Bochner and von
Neumann [3] and Miyake and Takahashi [13]. In particular, if $S$ is
commutative, then it follows from Theorem 1 that $f\in l_{c}^{\infty}(S, E)$ has
the mean value if and only if the $\tau_{wp}$-closure of convex hull of $\mathcal{R}\mathcal{O}(f)$

contains exactly one constant function. We denote by $AC(S)$ the set
of bounded real-valued functions defined on $S$ with the mean values.

As in similar arguments of Lemma 1 (the localization theorem) in [9],
we obtain some characterizations of the space of bounded real-valued
functions defined on a semigroup with the mean values.

Proposition 1. $AC(S)$ is a translation invariant and introverted sub-
space of $l^{\infty}(S)$ containing constant functions.

Note that it follows from Theorem 1 that if $S$ is left amenable, then
$AC(S)$ is the subspace of $l^{\infty}(S)$ consisting of bounded real-valued func-
tions defined on $S$ which are almost convergent in the sense of Lorentz.

Theorem 3. $AC(S)$ is amenable and has a unique invantant mean $\mu$ .
In this case, $\mu$ is also a unique left invariant mean on $AC(S)$ .
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Theorem 4. $AC(S)$ is a maximum tmnslation invariant and intro-
verted subspace of $l^{\infty}(S)$ containing constant functions which has a
unique left invari ant mean, ordered by set inclusion.
Theorem 5. If $S$ is commutative, then $AC(S)$ is a manimum trans-
lation invariant subspace of $l^{\infty}(S)$ containing constant functions which
has a unique invariant mean, ordered by set inclusion.

4. APPLICATIONS
By studying on almost convergence in the sense of Lorentz for com-

mutative semigroups of non-linear mappings, we prove mean ergodic
theorems for non-Lipschitzian asymptotically isometric semigroups of
continuous mappings in general Banach spaces. The following lemma
is crucial for proving our results.
Lemma 1. Let $S$ be commutative and let $f\in l_{c}^{\infty}(S, E)$ . If the closure
of $\omega nvex$ hull of $\mathcal{R}\mathcal{O}(f)$ contains a constant function with value $p$ in
the topology of unifom convergence on $S$ , then $f$ is almost converg $ent$

in the sense of Lorentz (equivalently, $f$ has the mean value $p.$)
Definition 3. Let $S$ be commutative and let $S=\{T(s) : s\in S\}$ be a
representation of $S$ as continuous mappings of a closed convex subset
$C$ of a Banach space $E$ into itself. Then, $S$ is said to be asymptotically
isometric on $C$ if, for each $x\in C$ ,

$\lim_{s\in S}\Vert T(s+k)x-T(s+h)x\Vert$ exists uniformly in $k,$ $h\in S$ .

See Bruck [4] and Kada and Takahashi [10].
Definition 4. Let $S$ be left amenable and let $S=\{T(s) : s\in S\}$

be a representation of $S$ as continuous mappings of a weakly compact
convex subset $C$ of $E$ into itself and define a mapping $\phi_{S}$ of $C$ into
$l_{c}^{\infty}(S, E)$ by $(\phi_{S}(x))(s)=T(s)x$ for each $s\in S$ . Then, a representation
$S$ is said to be almost convergent in the sense of Lorentz if, for each
$x\in C,$ $\phi_{S}(x)$ has the mean value $p_{x}$ . Such a point $p_{x}$ is also said to be
the mean value of $x$ under $S$ .
Theorem 6. Let $S$ be commutative, let $C$ be a compact convex subset
of a Banach space $E_{f}$ let $S=\{T(s) : s\in S\}$ be an asymptoticalty iso-
metric representation of $S$ as continuous mappings of $C$ into itself, let
$X$ be a closed, translation invariant and admissible subspace of $l^{\infty}(S)$

containing constants and let $\{\mu_{\alpha}\}$ be a strongly regular net of means on
X. Then, $S$ is almost convergent in the sense of Lorentz, that is, for
each $x\in C,$ $\{T(l(h)’\mu_{\alpha})x\}$ converges to the mean value $p_{x}$ of $x$ under
$S$ in $C$ uniformly in $h\in S$ . In this case, $p=T(\mu)x$ for each invariant
mean $\mu$ on $X$ .
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Remark 1. Note that the mean value $T(\mu)x$ of $x$ under $S$ is not always
a common fixed point for $S$ . It is known in [19] that there exists a
nonexpansive mapping $T$ of $C$ into itself such that for some $x\in C$ , its
Ces\‘aro means $\{1/n\sum_{k=0}^{n-1}T^{k}x\}$ converge, but its limit point is not a
fixed point of $T$ ; see ako Edelstein [7], Bruck [5], Atsushiba and $Ta\mathscr{A}$

hashi [1], Atsushiba, Lau and Takahashi [2], Miyake and Takahashi [13]
and Miyake and Takahashi [14]. We conjecture in Theorem 6 that if a
Banach space $E$ is strictly convex, then the mean value $p_{x}$ of $x$ under
$S$ is a common fixed point for $S$, that is, $T(s)p_{x}=p_{x}$ for each $s\in S$ .

For example, the following corollaries are the case when $S$ is a set of
the non-negative integers or real numbers.

Corollary 1. Let $C$ be a compact $\omega nvex$ subset of a Banach space, let
$T$ be a continuous mapping of $C$ into itself such that $\lim_{narrow\infty}\Vert T^{n+k}x-$

$T^{n+h}x\Vert$ exists uniformly in $k,$ $h\in N_{+}$ . Then, for each $x\in C$ , the
Ces\‘aro means

$\frac{1}{n}\sum_{i=0}^{n-1}T^{i+h_{X}}$

converge to the mean value of $x$ under $T$ in $C$ unifomly in $h\in N_{+}$ .

Corollary 2. Let $C$ be a compact convex subset of a Banach space and
let $S=\{T(t) : t\in \mathbb{R}_{+}\}$ be an asymptotically isometric one-pammeter
semigroup of continuous mappings of $C$ into itself. Then, for each
$x\in C_{f}$ the Bohr means

$\frac{1}{t}\int_{0}^{t}T(t+h)xdt$

converge to the mean value of $x$ under $S$ in $C$ unifomly in $h\in \mathbb{R}+as$

$tarrow+\infty$ .
Corollary 3. Let $C$ be a compact convex subset of a Banach space and
let $S=\{T(t) : t\in \mathbb{R}_{+}\}$ be an asymptotically isometric one-parameter
semigroup of continuous mappings of $C$ into itself. Then, for each
$x\in C$ , the Abel means

$r \int_{0}^{\infty}\exp(-rt)T(t+h)xdt$

converge to the mean value of $x$ under $S$ in $C$ unifomly in $h\in \mathbb{R}+as$

$rarrow+\infty$ .
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