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Abstract.
We propose to answer the Jacobian conjecture in boolean algebra. The

boolean analogue of the Jacobian problem in $\{0,1\}^{n}$ has been proved: if a map
from $\{0,1\}^{n}$ to itself defines a boolean network has the property that all the
boolean eigenvalues of the discrete Jacobian matrix of this map evaluated at each
element of $\{0,1\}^{n}$are zero, then it has a unique fixed point. We propose extending
this result to any map $F$ from the product space $X$ of $n$ finite boolean algebras
to itself.
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1. Introduction
In 2004, a boolean analogue of the Jacobian problem has been proved[12].

Theorem 1.1. If a boolean function $F$ : $\{0,1\}^{n}arrow\{0,1\}^{n}$ has the
property that $aU$ the boolean eigenvalues of the discrete Jacobian matrix of
each element of $\{0,1\}^{n}$ are zero, then it has a unique fixed point.

It raised by Shih and Ho [13] in 1999 in automata networks. In this
note, we attempted to extend this result to any map $Fhom$ the product
$X$ of $n$ finite boolean algebras to itself. In the course of Robert’s analysis
of boolean contraction and applications, he introduced the boolean vector
distance, the discrete incidence matrix for the maps ffom $\{0,1\}^{n}$ to itself
and the notion of spectra of boolean matrices [1–6]. Also we have studied
some conclusions about the global convergence [7-11].

In order to extend this theorem from the $\{0,1\}$ case to the fimte boolean
algebra case, we will introduce here, the Jacobian matrix for maps from the
product $X$ of $n$ finite boolean algebras to itself which generalizes Robert’s
discrete derivative for maps from $\{0,1\}^{n}$ to itself. We will present and prove
the Jacobian problem in boolean algebra: if the boolean spectra radius of the
Jacobian matrix of a map $F$ from the product $X$ of $n$ fimite boolean algebras
to itself is zero, then it has a unique fixed point.

2. Jacobian matrix
Let $(A, +, \cdot, -, 0,1)$ be a finite boolean algebra. Define $a\in A$ to be an

atom of $A$ if $0<a$ but there is no $x$ in A $satis\Phi ing0<x<a$ . We denoted
by At$(A)$ the set of atoms of $A$ . Write the cardinality of At$(A)$ by $\# At(A)$

and the power set algebra of At$(A)$ by $P(At(A))$ . Remark that for every
boolean algebra $A$, the map $\varphi$ from $A$ to the power set algebra $P(At(A))$

defined by

$\varphi(x)=\{a\in At(A):a\leq x\}$

is an isomorphism.($see[11$ , Lemma 3.1])

Given a finite boolean algebra $(A, +, \cdot, -,0,1)$ with At$(A)=\{a_{1}, \ldots,a_{m}\}$ ,
consider a positive integer $n$ , such that $X_{i}=A(i=1, \ldots, n)$ . Then
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$X=X_{1}\cross\ldots\cross X_{n}$ is a product of $n$ finite boolean algebras. For $x=$
$(x_{1}, \ldots, x_{n})\in X$ , we denoted by $\tilde{x}^{j(k)}$ the $j(k)$ th neighbour of $x(j=1,$ $\ldots,$

$n$ ;
$k=1,$ $\ldots,$

$m)$ .

$\dot{d}_{i}^{\sim(k)}=\{\begin{array}{l}x_{i}\varphi^{-1}(\varphi(x_{j})\cup\{a_{k}\}\varphi^{-1}(\varphi(x_{j})\backslash \{a_{k}\})\end{array}$

$(i=1, \ldots, n)$ .

if $i\neq j$ ,
if $i=j$ and $a_{k}\not\in\varphi(x_{j})$ ,
if $i=j$ and $a_{k}\in\varphi(x_{j})$ .

Furthermore, we denoted by $c_{k}$ the element in $\{0,1\}^{m}$ whose kth com-
ponent is 1 and whose other components are $0$ . Therefore, if $m=n$ then it
is the kth unit vector $e_{k}$ of $\{0,1\}^{n}$ . For any $D\in P(At(A))$ , we denoted by
$I(D)$ the set $\{k : a_{k}\in D\}$ . Define the map $\eta$ from the power set algebra
$P(At(A))$ to$\{0,1\}^{m}$ by

$\eta(D)=\{\begin{array}{ll}0 (zero vector) if D=\phi,c_{k\sum_{j\in I(D)}c_{j}} otherwise.\end{array}$
if $D=\{a_{k}\}$ ,

Note that $\eta$ is also an isomorphism.(see [11, Lemma 3.1])

For a map $F=(f_{1}, \ldots, f_{n})$ from the product $X$ of $n$ finite boolean alge
bras to itself. Define a map $\overline{F}=(\overline{f}_{1(1)}, \ldots,\overline{f_{1(m)}},\overline{f}_{2(1)}, \ldots,\overline{f_{2(m)}}, \ldots,\overline{f}_{n(1)}, \ldots,\overline{f}_{n(m)})$

from $X$ to $\{0,1\}^{nm}$ by

$\overline{f_{i(k)}}(x)=[\eta(\varphi(f_{i}(x)))]_{k}(i=1, \ldots, n;k=1, \ldots, m)$ .

Now, it is in position to introduce the notion of Discrete Jacobian
matrix in boolean algebra. Given a map $F=(f_{1}, \ldots, f_{n})$ from the product
$X$ of $n$ finite boolean algebras with $\# At(X_{i})=m$ to itself and $x\in X$ . We
call discrete Jacobian matrix of $F$ evaluated at $x$ , and we denote by

$F’(x)=(f_{i(k_{1})j(k_{2})}(x))$
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$=[f_{n(m)1(1)}(x).\cdot\cdot f_{n(m)1(m)}(x)f_{1(m)1(1)(x).,...\cdot\cdot f_{1(m)1(m)(x)}}f_{n(1)1(1)(x).,.f_{n(1)1(.m)(x)}}f_{1(1)1(1)(x).,..\cdot..\cdot.\cdot\cdot.f_{1(1)1(m)}(x)}:.::$

$::$

:

$..\cdot.\cdot..\cdot$

$::$

:

$f_{n(m)n(1)}(x).\cdot f_{n(m)n(m)}(x)f_{1(m)n(1)(x).,...\cdot.\cdot.\cdot.\cdot f_{1(m)n.(m)(x)}}f_{n(1)n(1)(x).,.f_{n(1)n(m)(x)}}f_{1(1)n(1)(x).,...\cdot.\cdot..\cdot.\cdot f_{1(1)n(.m)}(x)}::.:::.:]$ ,

the $nm\cross nm$ matrix over $\{0,1\}$ defined by

$f_{i(k_{1})j(k_{2})}(x)=\{01ifif\frac{\overline{f_{\iota’}}}{f_{i}}(k_{1})(x)=(k_{1})(x)\neq(k_{1})(\tilde{x}^{j(k_{2})})\frac{\overline{f_{i}}}{f_{i}}(k_{1})(\tilde{x}^{i(k_{2})}l)$

$(i,j=1, \ldots, n;k_{1}, k_{2}=1, \ldots,m)$

The order $\leq$
” in $\{0,1\}$ is given by $0\leq 0\leq 1\leq 1$ . $Ob\dot{w}ously$, this

structure $(\{0,1\}, +, \cdot, -, 0,1)$ is the two-element boolean algebra. Let $F$ :
$\{0,1\}^{n}arrow\{0,1\}^{n}$. Then $\# At(\{0,1\})=1$ . By the definitions of the maps

$\varphi$ and $\eta$ , we obtain

$\overline{F}=(\overline{f}_{1(1)},\overline{f}_{2(1)}, \ldots,\overline{f}_{n(1)})=(f_{1}, \ldots, f_{n})=F$.

Note also that $\dot{d}_{j}^{\sim(1)}=-x_{j}$ , and then $\tilde{x}^{j(1)}=(x_{1}, \ldots, -x_{j}, \ldots,x_{n})=\dot{d}^{\sim}$,
which is the jth neighbor of $x$ in $\{0,1\}^{n}[3]$ , so that now the Jacobian matrix
is the Robert’s $n\cross n$ discrete derivative [3]. Hence, if $\# At(X_{i})=1$ for all
$i=1,$ $\ldots,$

$n$ , then our theorem is equivalent to Theorem 1.1.

Throughout this paper, a boolean matrix is meant to be a matrix over
$\{0,1\}$ . Here the discrete Jacobian matrices are the boolean matrices. Boolean
matrix multiplication and addition are the same as in the case of complex
matrices but the concemed products of entries are boolean. A non-zero ele
ment $u\in\{0,1\}^{n}$ is called the (boolean) eigenvector of a boolean matrix $M$

if there exists an $\lambda$ in $\{0,1\}$ such that $Mu=\lambda u;\lambda$ is caUed the (boolean)
eigenvalue associated with eigenvector. For any boolean matrix $M$, the sym-
bol $\sigma(M)$ denotes the (boolean) spectrum of $M$, it is the set of all eigenvalues
of $M$, so that $\sigma(M)\subset\{0,1\}$ . The (boolean) spectml radius of $M$, which is
denoted by $\rho(M)$ , is defined to be the largest eigenvalue of $M$ .
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The main result is the following theorem.

Theorem 2.1. Given a finite boolean algebra $(A, +, \cdot, -, 0,1)$ with At$(A)=$
$\{a_{1}, \ldots, a_{m}\}$ . Let $X$ be the product of $n$ finite boolean algebras with $X_{i}=A$

$(i=1, \ldots,n)$ . If a map $F$ from $X$ to itself is such that $\rho(F’(x)))=0$ for all
$x\in X$ , then it has a unique fixed point.

Theorem 2.1 can be viewed as a discrete version of the Jacobian con-
jecture in boolean algebra. The aim of this note is to prove it.

3. Iteration graph
Define maps $h$ : $Xarrow[P(At(A))]^{n}$ and $g$ : $[P (At (A))]^{n}arrow\{0,1\}^{nm}$

by

$h(x)=h(x_{1}, \ldots, x_{n})$

$=(\varphi(x_{1}), \ldots, \varphi(x_{n}))$ ,

and

$g(D)=g(D_{1}, \ldots, D_{n})$

$=(\eta(D_{1}), \ldots, \eta(D_{n}))$

In this section, we state one result we have studied[7, 11].

Lemma 3.1. Given a finite boolean algebra $(A, +, \cdot, -, 0,1)$ with At$(A)=$
$\{a_{1}, \ldots, a_{m}\}$ . Let $X$ be the product of $n$ finite boolean algebras with $X_{i}=$

$A(i=1, \ldots, n)$ . For a map $F$ ffom $X$ to itself, there is a map $\hat{F}$ from
$\{0,1\}^{nm}$ to itself and two isomorphisms $h$ : $Xarrow[P(At(A))]^{n}$ and $g$ :
$[P (At (A))]^{n}arrow\{0,1\}^{nm}$ such that

$F(x)=(gh)^{-1}\hat{F}gh(x)$ for all $x\in X$ .
Recall that the iteration gmph for a map $F$ is the digraph consisting

of vertices which are elements of $X$ and the following directed arcs: for all $x$

in $X$ , a directed arc connects $x$ to $F(x)$ . Since $goh$ is an isomorphism, the
iteration graphs for $F$ and $\hat{F}$ have the same pattem. Particularly, if there is
a unique fixed point in the iteration graphs for $\hat{F}$ then there is also a unique
fixed point in the iteration graphs for $F$ . Let $c\in\{0,1\}^{nm}$ be the unique
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fixed point in the iteration graphs for $\hat{F}$ . Put $\xi=(gh)^{-1}(c)$ . Then $\xi\in X$ ,
the product of $n$ finite boolean algebras and we have

$\hat{F}(c)=c$

$\Rightarrow ghF(gh)^{-1}(c)=c$

$\Rightarrow F(gh)^{-1}(c)=(gh)^{-1}(c)$

$\Rightarrow F(\xi)=\xi$ .
Since $(gh)^{-1}$ is an isomorphism, $\xi$ is the unique fixed point in the iteration
graphs for $F$ .

Lemma 3.2. The iteration graphs for $F$ and $\hat{F}$ have the same pattem.

4. Proof of Theorem 2.1
Given a finite boolean algebra $(A, +, \cdot, -, 0,1)$ with At$(A)=\{a_{1}, \ldots, a_{m}\}$ .

Let $X$ be the product of $n$ finite boolean algebras with $X_{i}=A(i=1, \ldots, n)$ .
For a map $F$ from $X$ to itself is such that $\rho(F’(x))=0$ for all $x\in X$ .
By Lemma 3.1, there is a map $\hat{F}$ : $\{0,1\}^{nm}arrow\{0,1\}^{nm}$ and two isomor-
phisms $h:Xarrow[P(At(A))]^{n}$ and $g:[P (At (A))]^{n}arrow\{0,1\}^{nm}$ such that
$F(x)=(gh)^{-1}\hat{F}gh(x)$ for all $x\in X$ .

Let $F’(x)=(f_{i(k_{1})j(k_{2})}(x)),$ $(i,j=1, \ldots, n;k_{1}, k_{2}=1, \ldots,m)$ , be the
discrete Jacobian matrix of $F$ evaluated at $x$ in $X$ . For the map

$\hat{F}=(\hat{f}_{1(1)}, \ldots,\hat{f}_{1(m)},\hat{f}_{2(1)}, \ldots,\hat{f}_{2(m)}, \ldots,\hat{f}_{n(1)}, \ldots,\hat{f}_{n(m)})$,

the discrete Jacobian matrix of $\hat{F}$ evaluated at $y$ in $\{0,1\}^{nm}$ is the $nm\cross nm$

matrix $\hat{F}’(x)=(\hat{f}_{i(k_{1})j(k_{2})}(x))$ over $\{0,1\}$ defined by

$\hat{f}_{i(k_{1})j(k_{2})}(y)=\{\begin{array}{ll}0 if \hat{f}_{\dot{*}(k_{1})}(y)=\hat{f}_{i(k_{1})}(\dot{\psi}^{\sim(k_{2})}),1 otherwise.\end{array}$

$(i,j=1, \ldots, n;k_{1}, k_{2}=1, \ldots,m)$ , where

$\dot{\oint}^{\sim(k_{2})}=(y_{1(1)}, \ldots, y_{1(m)}, \ldots, -y_{j(k_{2})}, \ldots, y_{n(1)}, \ldots, y_{n(m)})$
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is the $j(k_{2})th$ neighbor of $y$ . Given $x\in X$ , for any $i,j=1,$ $\ldots,$
$n;k_{1},$ $k_{2}=$

$1,$
$\ldots,$ $m$ , we have

$f_{i(k_{1})j(k_{Q})}(x)=0$

$\Leftrightarrow\overline{f_{i(k_{1})}}(x)=\overline{f_{i(k_{1})}}(\mathscr{S}^{(k_{2})})$

$\Leftrightarrow[\eta(\varphi(f_{i}(x)))]_{k_{1}}=[\eta(\varphi(f_{i}(\tilde{x}^{j(k_{2})})))]_{k_{1}}$

$\Leftrightarrow\hat{f_{i(k_{1})}}(g(h(x)))=\hat{f_{i(k_{1})}}(g(h(\tilde{x}^{j(k_{2})})))$

$\Leftrightarrow\hat{f}_{i(k_{1})}(y)=\hat{f}_{i(k_{1})}(\tilde{y}^{j(k_{2})})$ where $y=g(h(x))\in\{0,1\}^{nm}$

$\Leftrightarrow\hat{f_{i(k_{1})j(k_{2})}}(y)=0$.

So that, for $x\in X$ and $y=g(h(x)),$ $F’(x)=\hat{F}’(y)$ . Since $goh$ is an
isomorphism and $\rho(F’(x))=0$ for all $x\in X$ , we obtain $\rho(\hat{F}’(y))=0$ for
all $y\in\{0,1\}^{nm}$ . Combining Theorems 1.1 and 3.2, we obtain that $F$ has a
unique fixed point. This completes the proof of Theorem 2.1.

5. Examples
If $F$ is a map from $X$ the product of $n$ finite boolean algebras to it-

self.We denoted by $B(F)=(b_{i(k_{1})j(k_{2})})$ the incidence matnix of $F(see[1l,p.1137])$ .
It is the $nm\cross nm$ matrix over $\{0,1\}$ defined by

$b_{i(k_{1})j(k_{2})}=\{\begin{array}{ll}0 if \overline{f_{i(k_{1})}}(x)=\overline{f_{i(k_{1})}}(\tilde{x}^{j(k_{2})}) for all x\in X,1 otherwise.\end{array}$

$(i,j=1, \ldots, n;k_{1}, k_{2}=1, \ldots, m)$

Then $B(F)= \sup_{x\in X}\{F’(x)\}$ , hence if all the boolean eigenvalues of the
incidence matrix of this map are zero then all the boolean eigenvalues of the
discrete Jacobian matrix of this map evaluated at each element of $X$ are zero.
But not vice versa (see[ll,Example 1]).
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