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Abstract—We have been developing monolithic active pixel
sensors with 0.2 µm Silicon-On-Insulator (SOI) CMOS technol-
ogy, called SOIPIX, for high-speed wide-band X-ray imaging
spectroscopy on future astronomical satellites. In this work, we
investigate a revised chip (XRPIX1b) for soft X-rays used in
frontside illumination. The Al Kα line at 1.5 keV is successfully
detected and energy resolution of 188 eV (FWHM) is achieved
from a single pixel at this energy. The responsivity is improved
to 6 µV/electron and the readout noise is 18 electrons rms.
Data from 3×3 pixels irradiated with 6.4 keV (Fe Kα) X-rays
demonstrates that the circuitry crosstalk between adjacent pixels
is less than 0.5%.

Index Terms—active pixel sensor (APS), Silicon-On-Insulator
(SOI), CMOS, Multi-point correlated sampling, soft X-ray,
frontside illumination, crosstalk, charge splitting.

I. INTRODUCTION

ACTIVE pixel sensors (APSs; [1]–[5]) are being de-
veloped as the leading candidate for X-ray imaging

spectroscopy in future astronomical satellite missions. At
the moment, X-ray charge-coupled devices (CCDs; [6]–[8])
are the standard in the field. However, APSs have many
advantages over CCDs, such as direct access to a given pixel,
faster readout, higher count rate capability, better radiation
hardness, and lower power consumption. APSs for commercial
imaging applications have experienced explosive growth in
recent years. Substantial progress also has been made for
X-ray APSs. For instance, some authors reported that they
achieved responsivity above 3 µV/electron [4][5], readout
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noise below 10 electrons [2][3], and depletion depth above
100 microns [5][9]. On the other hand, unlike X-ray CCDs,
APSs are usually subject to issues such as crosstalk and gain
non-uniformity. These effects, which are especially important
for devices at soft X-rays below 2 keV, have not previously
been evaluated for APSs.

With the goal of creating a high-speed wide-band X-ray
imaging sensor with spectroscopic capabilities that can replace
CCDs, we are developing a novel monolithic APS using the
Silicon-on-Insulator (SOI) CMOS technology, i.e., SOIPIX
[10][11]. In a previous paper [5], we described the design of
the prototype, XRPIX1, and reported results from it. XRPIX1
has successfully detected hard X-rays in the range from 8 keV
to 60 keV with good linearity between energy and pulse height
withresponsivity (i.e., output gain) of 3.56 µV/electron. A
depletion depth of 150 µm was achieved at a detector bias
of 100 V using the Czochralski type wafer. Even deeper full
depletion of 260 µm was reported [9] with the high-resistivity
(FZ-type) wafer.

The readout noise of XRPIX1 was 120–130 electrons rms
[5] in the full-frame readout mode, dominated by the reset
noise at the sense node, with some contributions from white
and 1/f noises. The high noise level limited further investiga-
tions of other parameters of the device. Increasing the gain is
a direct way to obtain a higher signal-to-noise ratio.

This paper reports the X-ray results for an improved chip
(XRPIX1b) in a frontside illumination configuration. XR-
PIX1b design was revised to improve the sense-node gain
(section II, V). We applied a multiple sampling method de-
scribed in [4] to further reduce the readout noise (section IV),
which allows us to measure the soft X-ray response and the
circuitry crosstalk (section V). Relevant results on backside-
illuminated SOI pixel sensor with a different implementation
(the same basic technology was used) were recently described
in [12].

The uncertainties given throughout this paper are statistical
only and correspond to the 90% confidence level (1.64 sigma)
range unless noted otherwise.

II. DEVICE DESCRIPTION

XRPIX1b was fabricated with 0.2 µm SOI CMOS process
by Lapis Semiconductor Ltd. Figure 1 shows the design of
the sensor. The format and pixel circuitry are the same as
those of XRPIX1. The chip consists of 32 × 32 pixels with
a size of 30.6 µm square. Each pixel contains a SOI-CMOS
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circuit capable of analog correlated-double-sampling readout
and trigger detection (see Fig. 1(b) ). Details of the CMOS
process and the full circuit operation are described in [5]. The
sensor layer used in this work is n-type silicon (Czochralski
type) with resistivity of ρ∼ 700 Ω cm. The wafer was the same
type as XRPIX1, but manufactured in a different run. It was
thinned down to 100 µm from the backside. The back surface
of the device after thinning was treated by CMP (chemical
mechanical polish) in order to prevent leakage currents when
the depletion layer reaches the back surface. The property of
the CMP treatment is described in [9].
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Fig. 1. Design of SOIPIX prototype XRPIX1b. (a) schematic cross-section
view (not to scale). BPW represents the buried p-well. (b) readout circuitry
of one pixel. The trigger part, which is not operated in this work, is shown
in the grey solid lines.

XRPX1b is different from XRPIX1 in size of the buried
p+ well (BPW; see Fig. 1(a)). BPW is a lightly p-type doped
region surrounding the central sense-node, which is necessary
as an electrical shield to suppress the back-gate effect under
a high detector bias (see details of this technology in [11]).
Results from [5] indicate that the sense-node capacitance of
XRPIX1 is mainly due to the BPW-BPW coupling between ad-
jacent pixels. In an attempt to increase the sense-node gain, we
reduced the BPW area by 45% from XRPIX1 (21 µm square)
to XRPIX1b (14 µm square), which is expected to decrease
the capacitance approximately by the same percentage. With
a TCD (technology computer aided design) simulation [10],
we confirmed that this BPW size is sufficient to keep the
transistors functional under a detector bias up to 100 V.

III. EXPERIMENTAL SETUP

The XRPIX1b chip was packaged and mounted on a dedi-
cated readout board [11][5]. The experiments were performed
in a vacuum chamber in which the chip was cooled to −50◦C
through a thermal contact between the chip package and liquid
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Fig. 2. Timing diagram of the multi-sampling readout mode.

nitrogen. The temperature was the same as the experiments of
XRPIX1 reported in [5]. The incident X-rays were generated
by an electron impact source with the targets of aluminum
(Al) and iron (Fe) under the generator bias of 6 kV and 10 kV,
respectively. We also used a CCD [8] to confirm the output
spectrum, which contained the characteristic X-rays of the
target materials and the bremsstrahlung continuum. Detector
bias (V Det; Fig. 1) of 100V was applied to the XRPIX1b. At
this voltage, the sensor layer is expected to be fully depleted
with a 100 µm thickness according to the previous results [5].
In this work, the chip was illuminated from the circuit side,
or in frontside illumination.

IV. DATA ACQUISITION AND ANALYSIS

In order to reduce readout noise, we read out the analog
signal from one pixel multiple times, using a technique similar
to the one described in [4]. The trigger function was not used
in this work. The timing diagram is shown in Fig. 2. Prior to
readout, the pixel photodiode is reset (PD RST and CDS RST
are turned on and off). So-called kT/C noise (or reset noise)
is generated in this phase. Reset is followed by an integration
time when the pixel awaits an X-ray hit. During integration,
the analog output is digitized consecutively 1024 times, and
the results are recorded in a computer as a single frame. Time
intervals between digital samples are 2 µs (Al data). The
digitization is performed by an ADC on the readout board;
one analog digital unit (ADU) is 1V/12 bit = 244 µV.

Figure 3 shows a typical waveform for a frame in which an
X-ray photon is observed. A clear jump in pulse height (PH)
corresponds to the moment when an X-ray photon is detected.
The X-ray energy can be measured as the difference between
signal levels before and after the jump. One can see noticeable
scatter of the signals (≤ 5 ADU) on either side of the X-
ray jump. This is caused by the readout noise. Since all the
samples within one frame are obtained without resetting the
sense node, the kT/C noise should be absent here. Therefore,
the readout noise is a superposition of the white noise and
the 1/f noise in the transistors, the ADC quantization noise,
and external noises from peripheral IC chips on the readout
board. The quantitative decomposition of the readout noise can
be found in [5]. We also notice a systematic signal level rise
with time (see Fig. 3). This is probably due to dark current,
which is about ∼ 102 electrons /ms /pixel at −50◦C.
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Fig. 3. Waveform of an X-ray event by 400 consecutive samples. The
sampling frequency is 500 kHz. One ADU is 244 µV. The best-fit linear
function for the data points before and after the X-ray jump is shown in the
blue and red solid lines, respectively.

In order to properly estimate the X-ray PH and the readout
noise, we apply the following method (one can call it multi-
point correlated sampling) to each frame of data:

1) Scan the consecutive data points for a threshold (e.g.,
2 sigma of the noise level) to detect the time of the
X-ray jump. If no jump is detected, the jump time is
assumed to be at the middle of the frame. This is for
noise estimation purposes.

2) Fit the data points before and after the jump time with
two linear functions (see Fig. 3).

3) Compute the PH as the difference of the signal values
before and after the the jump time (Fig.3) from the best-
fit parameters of the linear functions.

4) Make a histogram of the resulting PH, which is the
spectrum of the incoming X-ray events. The non-X-ray
events produce a gaussian peak around zero whose width
corresponds to the readout noise.

This method has two merits. Firstly, we can take into account
the PH increase due to dark current since we use linear
functions to reproduce the slope. Secondly, the fitting process
for multiple data points on each side of the jump is equivalent
to averaging the PH values, which acts as a low-pass filter
reducing the readout noise. We are also able to read out 3×3
pixels and obtain 9 waveforms simultaneously in the same way
as described above. The sampling frequency (data points) for
each waveform is more limited because we use one ADC to
convert the analog signals of 9 pixels sequentially instead of
focusing on one pixel.

V. EXPERIMENT RESULTS

A. Soft X-ray Response and Gain

Figure 4 shows X-ray spectra obtained from a single pixel
with Al and Fe targets. The sampling frequency for each data
point in the waveform is 500 kHz. The characteristic X-ray

lines of Al Kα (1.49 keV), Fe Kα (6.4 keV), and Fe Kβ
(7.0 keV) are well resolved. In the Fe spectra (Fig.4(b)), the
silicon-absorption edge at 1.8 keV due to the frontside circuit
layer is observed. The low-energy shoulder at ∼0.7 keV is
probably due to partial charge collection. The high-energy tails
above the main peaks (e.g., 2–5 keV in Fig. 4(a)) are from
bremsstrahlung by impact electrons.
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Fig. 4. X-ray spectra of the Al (a) and Fe (b) primary sources with the chip
in frontside illumination. Each spectra has an exposure of 400 s.

The energy (keV) - PH (ADU) dependence (Fig. 5) shows
good linearity in soft X-ray regime. The output gain (respon-
sivity) is calibrated to be 6.0 µV/electron (best-fit value),
which is an improvement over the previous chip (XRPIX1)
by a factor of 1.7. Since the gain is inversely proportional
to the sense-node capacitance, this improvement is roughly
consistent with the expectation from the smaller capacitance
by cutting half of the BPW area (c.f., section-II; [5]).

The energy resolution (full width at half maximum; FWHM)
is 188±5 eV at 1.49 keV (Al Kα) and 275±10 eV at 6.40
keV (Fe Kα). The readout noise of the Al and Fe data are 18
and 22 electrons rms, respectively. The observed FWHM of
the Al line is close to the prediction from the readout noise
and the fano noise, i.e.,

√
182 + (1490/3.65 × 0.12)× 2.35×

3.65 eV/electron = 166 eV, assuming a fano factor of 0.12
in silicon. The difference between the prediction and the
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measurement could be due to charge collection inefficiency
although this is still under investigation.

The readout noise (∼20 electrons rms) is substantially
improved over previous work (129 electrons rms; [5]) by a
factor of ∼6. This improvementis comprised of the increase
of the gain (factor of ∼2) and the effect of multi-point
correlated sampling (factor of ∼3). Still, the energy resolution
is effectively limited by the readout noise. Following is a
strategy to achieve the fano limit (<10 electrons). According
to TCAD simulations [10], we can further reduce the BPW
area by ∼50% (14 to 10 µm square) to increase the gain
(i.e., signal/noise ratio) without serious back-gate effects. An
optimization of the low-pass filter to reduce white noises
(section IV) is necessary. A ∆-Σ ADC for reduction of white
noise using the same SOI process is described in [13].

B. Circuitry Crosstalk

In order to measure the circuitry crosstalk between adjacent
pixels, we followed the approach described in [4]. We use
6.4 keV X-rays (Fe Kα) as input signals. We acquire data
from 3×3 pixel island in a multi-sample method similar to our
single pixel multi-sample readout (section IV). The sampling
frequency for each data point in the waveform is 110 kHz.
The readout noise is 48 electrons rms.

We first check the non-uniformity of the distribution of the
6.4 keV line centers (ADU) in all of the tested 3×3 pixels. The
gain dispersion is measured to be 0.8 % (standard deviation).
The non-uniformity is consistent with the result of XRPIX1
[9] and is 2–3 times smaller in comparison with the other
APSs (e.g., [2]).

Single-pixel events are selected in the following way. We
focus on the center pixel and select the events whose PH
is located in the right half of the 6.4 keV gaussian at 3
sigma level (6.4–6.9 keV). These events should have the
holes produced by one 6.4 keV photon fully collected in the

center pixel (see [4] for more explanation). We plot averaged
waveforms for the 3×3 pixels to investigate the crosstalk. As
shown in Fig. 6, no substantial PH variance in the adjacent
pixels is observed at the moment when the center pixel detects
a 6.4 keV photon, which suggests small crosstalk between the
adjacent pixels.
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Fig. 6. Averaged waveform of 3×3 pixels for the single-pixel 6.4 keV X-ray
events. The vertical dashed lines in each panel indicated the time when an
X-ray photon is detected in the center pixel.

For more quantitative estimation, we compute changes in
PH of the surrounding 8 pixels at the time of a X-ray jump
in the center pixel in the same way as we calculate the X-ray
PH of a single pixel (see section IV). The results are shown
in Fig.7. The positions of the PH peaks (best-fit value with
gaussian function) around zero are equivalent to the crosstalk.
The crosstalk in adjacent pixels is in the range 0.2–0.5%, in
the opposite direction with respect to the signal at the center
pixel. It can be seen as a small dip in the middle of each graph
in Fig.6.

Usually crosstalk is problematic when reconstructing PH,
i.e., adding signals from adjacent pixels [9] for charge splitting
events (section V-C). In the case of XRPIX1b, the measured
crosstalk of the 6.4 keV signal corresponds to 0.1–0.25 ADU
or 4–10 electrons (holes), which is negligible at the present
noise level. It is worth noting that the observed crosstalk is
quite small compared with other APSs (e.g., [4]).

C. Charge Splitting Event

A charge splitting event occurs if holes produced by an X-
ray photon are collected by more than one pixel. The center
pixel containing the largest amount of charge has the highest
PH among the adjacent pixels. In general, probability of charge
splitting depends on the pixel size, the charge-cloud size when
it reaches the sense node, and the location of the photon
interaction in the pixel.
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Using the 3×3 pixel data with the Al and Fe targets, we
measure fractions of each event type: single-pixel, double-
pixel, and the other multi-pixel events for each X-ray energy.
The event selection (c.f., [5]) is performed with an event
threshold of 4 sigma and a split threshold of 2 sigma sig-
nificance with respect to the noise level (48 electrons rms).
According to the results in section III-B, the effect of crosstalk
is negligible in this measurement. The results are shown in
table I.

TABLE I
CHARGE SPLITTING EVENT RATIO

Event type Event ratio (Al, 1.5 keV) Event ratio (Fe, 6.4 keV)
Single pixel 87.4 ± 1.6% 80.6± 1.2%
Doule pixel 7.4 ± 0.3% 13.4± 0.4%
Others 5.2 ± 0.3% 6.0 ± 0.3%

We found that most X-ray events are confined to one pixel
rather than split between multiple pixels; the single-pixel event
fractions are 87% and 80% for the Al and the Fe data,
respectively. This is not surprising considering the small size
of the initial charge cloud (100–300 nm at these energies; e.g.,
[14]) relative to the pixel size of 30 µm. The Fe (6.4 keV) data
contain more charge splitting events than the Al (1.5 keV)
data. The X-rays with higher energy are absorbed deeper in
the silicon bulk due to longer attenuation length in silicon,
and because of thermal diffusion that results in larger charge
cloud size when reaching the sense node.

With a thicker depletion layer (>100 µm) or in backside
illumination, more multi-pixel events are expected because
more photons are absorbed near the back surface, i.e., far
from the sense node. Enlarging the pixel size is a direct way
to achieve a high single-pixel fraction. According to results
shown in table I, a double-size pixel, which is manufacturable,
should have single-pixel fraction of ∼95% at 6 keV.

VI. CONCLUSIONS

We investigated the characterizations of a revised SOIPIX
chip (XRPIX1b) in the frontside illuminated configuration
using X-rays from 1.49 to 7.0 keV. We found that the respon-
sivity is improved to 6 µV/electron. The energy resolution is
188 eV (FWHM) at 1.5 keV, in a readout noise of 18 electron
rms. The gain non-uniformity among pixels is 0.8 % (standard
deviation). The circuit crosstalk in adjacent pixels is less than
0.5 %. More than 80% of the X-ray events are those collected
in one pixel.
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