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Abstract

This paper shows a potential pitfall of the exponential tilting (ET) estimator
under misspecification. We show that the pseudo-true value of the ET esti-
mator is not identified if the true distribution is not absolutely continuous
with respect to the probability measures implied by the moment restriction
model. This result implies that the ET estimator cannot be consistent for the
pseudo-true value if the moment generating function of the moment function
is unbounded.
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1. Introduction

There have been numerous studies on inference of misspecified parametric
models. This is partially because of viewpoint that most econometric models
are only approximations to reality and thus intrinsically misspecified. The
use of the Kullback-Leibler information criterion (KLIC) enables us to make
a reasonable inference even for misspecified models. For instance, White
(1982) shows that the maximum likelihood estimator is

√
n-consistent for
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the pseudo-true value, which minimizes the KLIC from the model to the true
distribution. Vuong (1989) proposes a testing procedure for comparing two
potentially misspecified models. Sin and White (1996) discuss the properties
of the information criteria for selecting misspecified models.

Recently, there has also been a growing interest in inference of misspec-
ified moment restriction models. Hall and Inoue (2003) have studied the
large sample properties of the generalized method of moments estimator
(Hansen (1982)) under misspecification. Kitamura (2001) provides a Vuong-
type test by using the exponential tilting (ET) estimator (Kitamura and
Stutzer (1997), Imbens et al. (1998)). Chen et al. (2007) propose a nonpara-
metric likelihood ratio test for choosing between parametric and moment
restriction models on the basis of the empirical likelihood (EL) estimator
(Qin and Lawless (1994)). The EL and ET estimators are well-suited for
analyzing misspecified moment restriction models because their pseudo-true
values are naturally defined through the KLIC minimization problem.

This paper shows a potential pitfall of the ET estimator under misspec-
ification. Schennach (2007) shows that the EL estimator ceases to be

√
n-

consistent for any parameter value if the moment function is unbounded. The
proof of the theorem suggests that the ET estimator suffers from the same
problem if the moment generating function (MGF) of the moment function
is unbounded. Although Schennach (2007) claims that her theorem does not
prevent the EL estimator from being a consistent estimator for the pseudo-
true value, she leaves an open question: what is the pseudo-true value? We
show that the pseudo-true value of the ET estimator is not identified if the
MGF is unbounded. Thus, the ET estimator cannot even be consistent for
the pseudo-true value. The main problem is that if the model is misspecified,
then the set of probability measures implied by the model may not have a
common support with the true distribution. If this is the case, then the ET
estimator no longer solves the sample counterpart of the KLIC minimization
problem.

2. Duality theorem and ET estimator

Let x1, . . . , xn be an i.i.d. sequence of random vectors from an unknown
distribution µ with support X ⊂ Rdx . The model we consider takes the form

Eµ[g(xi, θ0)] =

∫
g(x, θ0)dµ = 0, (1)
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where g : X ×Θ → Rl is a known function up to the parameter θ0 ∈ Θ ⊂ Rp.
We assume l > p .

Model (1) implies a nonparametric set of probability measures. Let M
be the set of all probability measures on Rdx , and let Pθ = {P ∈ M :∫
g(x, θ)dP = 0}. Then, we define P = ∪θ∈ΘPθ, which is the set of all

probability measures compatible with moment restriction. We call P the
moment restriction model. The model P is correctly specified if µ ∈ P , and
misspecified otherwise.

The KLIC or I-divergence from P to µ is defined asD(P∥µ) = infP∈P D(P∥µ),
where

D(P∥µ) =

{ ∫
log

(
dP
dµ

)
dP if P ≪ µ

∞ otherwise.

The KLIC defines a pseudo-distance between the model and the true distri-
bution. If there exists P ∗ ∈ P such that D(P ∗∥µ) = D(P∥µ), then P ∗ is
called the I-projection; see, for example, Csiszár (1975). The I-projection is
the closest measure to µ among P .

The KLIC is typically obtained in two steps. First, for fixed θ, we solve

D(Pθ∥µ) = inf
P

∫
log

(
dP

dµ

)
dP s.t.

∫
g(x, θ)dP = 0 and

∫
dP = 1. (2)

The primal problem (2) has the following dual problem:

D∗(Pθ∥µ) = max
λ∈Rl

[
− log

(∫
exp (λ′g(x, θ)) dµ

)]
. (3)

The Fenchel duality theorem (see, e.g., Borwein and Lewis (1991) and Kita-
mura (2007)) implies that D(Pθ∥µ) = D∗(Pθ∥µ). Hence, we get

D(P∥µ) = inf
θ∈Θ

max
λ∈Rl

[
− log

(∫
exp(λ′g(x, θ))dµ

)]
. (4)

We define the pseudo-true value (θ∗, λ∗) as the value of the parameter that
attains the minimum of KLIC:

(θ∗, λ∗) = argmax
θ∈Θ

argmin
λ∈Rl

[∫
exp (λ′g(x, θ)) dµ

]
. (5)
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The µ-density of the I-projection is obtained by

dP ∗

dµ
=

exp(λ∗′g(x, θ∗))∫
exp(λ∗′g(x, θ∗))dµ

. (6)

The ET estimator (θ̂, λ̂) solves the sample analogue of (5):

max
θ∈Θ

min
λ∈Rl

[
1

n

n∑
i=1

exp (λ′g(xi, θ))

]
. (7)

Christoffersen et al. (2001) show that the ET estimator is
√
n-consistent for

the pseudo-true value under certain regularity conditions.
Schennach (2007) shows that the EL estimator is not

√
n-consistent for

any value of θ ∈ Θ if ∥g(x, θ)∥ is unbounded for all θ ∈ Θ. The key problem
is described as follows: The population dual problem of the EL estimator
is given by minθ∈Θ maxλ∈Rl Eµ[log(1 − λ′g(xi, θ))]. However, if ∥g(x, θ)∥ is
unbounded, then Eµ[log(1− λ′g(xi, θ))] is ill-defined for λ ̸= 0, which makes
the behavior of the EL estimator unusual. The proof of her theorem also
suggests that the ET estimator suffers from the same problem if the MGF of
the moment function is unbounded, that is, Eµ[exp(λ

′g(xi, θ))] is unbounded
for all θ ∈ Θ and λ ̸= 0. If Eµ[exp(λ

′g(xi, θ))] is unbounded, then the only

possible value of λ is zero, which forces λ̂
p→ 0. Then, we can show that the

ET estimator cannot be
√
n-consistent for any θ ∈ Θ in a similar fashion as

in the proof of Schennach (2007).
We explain this phenomenon from an identification point of view. Schen-

nach (2007) proves the result under the assumption that the pseudo-true
value exists. On the other hand, we show that the pseudo-true value of the
ET estimator is not identified. The above argument suggests that zero is a
candidate for the pseudo-true value of λ. However, λ∗ = 0 and (6) imply
that the model is correctly specified (P ∗ = µ). Thus, λ∗ must be non-zero.
As we will see in the next section, the problem resides in the fact that Pθ and
µ do not have a common support. Then, the equivalence between (2) and
(3) does not hold anymore. The ET estimator no longer solves the sample
counterpart of the KLIC minimization problem. Thus, the ET estimator is
not even consistent for the pseudo-true value.

3. Main result

The existence of the I-projection is a subtle problem. A sufficient con-
dition for the existence is that P is variation-closed (Csiszár (1975)). For
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instance, if supθ∈Θ,x∈X ∥g(x, θ)∥ < ∞, then the I-projection exists. Even
when the I-projection does not exist, the generalized I-projection (Csiszár
(1984)) exists under a fairly weak assumption. The generalized I-projection
is defined as follows:

Definition 3.1. If each sequence {Pj} in P satisfying D(Pj∥µ) → D(P∥µ)
converges P ∗ in variation, then P ∗ is called the generalized I-projection.

Intuitively speaking, the generalized I-projection is the closest measure
to µ in the closure of P . If P ∗ ∈ P , then it coincides with the I-projection.

Before stating the main result, we introduce the following notations. For
fixed θ, let Ck

θ =
{
x ∈ Rdx : ∥g(x, θ)∥ ≤ k

}
. We define

P0
θ =

∪
k∈N

{
P ∈ M :

∫
Ck
θ

g(x, θ)dP = 0 and P (Ck
θ ) = 1

}
,

which is a subset of Pθ. Note that ∥g(x, θ)∥ is bounded on the support of
P ∈ P0

θ . In addition, let Cθ be the smallest linear subspace of Rdx with the
property that P (Cθ) = 1 for all P ∈ Pθ with P ≪ µ. Let P ∗

θ denote the
generalized I-projection of µ onto Pθ. The following theorem is a simple
application of Csiszár (1984).

Theorem 3.1. If there exists P ∈ Pθ such that P ≪ µ, then D(Pθ∥µ) =
D(P0

θ∥µ) < ∞. Also, P ∗
θ exists and has the µ-density of the form

dP ∗
θ

dµ
=

{
exp {D(Pθ∥µ) + γ′g(x, θ)} if x ∈ Cθ
0 otherwise

for some γ ∈ Rl. Moreover, we obtain

D(Pθ∥µ) = max
λ∈Rl

[
− log

(∫
exp (λ′g(x, θ)) dµ

)]
if and only if there exists P ∈ Pθ such that P is mutually absolutely contin-
uous with respect to µ.

The proof is omitted since it is clearly understood from Csiszár (1984).
The theorem states that if there is no P ∈ P such that P is mutually

absolutely continuous with respect to µ, then (4) does not hold. Although
the theorem does not necessarily prevent the existence of the pseudo-true
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value of the ET estimator, the pseudo-true value is not identified by (5).
The saddle point problem (7) is not the dual problem for the sample coun-
terpart of the KLIC minimization problem. This problem will occur if the
moment restriction is satisfied only by the probability measures under which
the moment function is bounded, while the moment function is unbounded
under the true distribution. The condition that the MGF is unbounded is a
sufficient condition for this phenomenon. We conjecture that a similar result
also holds for the EL estimator.
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