TITLE:
Side-chain motion of components in wood samples partially non-crystallized using NaOH–water solution

AUTHOR(S):
Tanimoto, Takashi; Nakano, Takato

CITATION:

ISSUE DATE:
2013-04

URL:
http://hdl.handle.net/2433/171238

RIGHT:
© 2012 Elsevier B.V.; この論文は出版社版ではありません。引用の際には出版社版をご確認ご利用ください。; This is not the published version. Please cite only the published version.
Short title: Side-chain motion of partially non-crystallized wood

Title: Side-chain motion of components in wood samples partially non-crystallized using NaOH-water solution

Authors: Takashi Tanimoto¹ and Takato Nakano²*

Author affiliations:

1: ASAHI WOODTECH COMPANY, Chuoh-ku, Osaka, 541-0054, Japan

2: Laboratory of Biomaterials Design, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kita-Shirakawa, Kyoto, 606-8502 Japan

*: corresponding author

Laboratory of Biomaterials Design, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kita-Shirakawa, Kyoto, 606-8502 Japan

Tel.:+81-75-753-6234

E-mail address: tnakano@kais.kyoto-u.ac.jp
Abstract

Wood samples (*Picea jezoensis* Carr.) were treated with solutions of aqueous NaOH (0–0.20 concentration fraction) and each treated samples evaluated by dynamic mechanical analyses (DMA). NaOH treatment was shown to affect the interactions between microfibrils and the surrounding matrix and, in particular, the dynamics of methylol groups in the microfibrils. The former is not dependent on the degree of crystallization but rather on the eluviation of the matrix. The latter depends on the degree of crystallization. Alkali treatment induces changes in the polymer domains as a result of matrix eluviation. This decreases the dynamics of methylol groups at NaOH concentrations less than 0.11. On the other hand, alkali treatment causes non-crystallization at concentrations greater than 0.11, which quantitatively increases the flexibility of methylol groups. Crystallinity decreased, and main-chain dynamics increased, following treatment with highly concentrated NaOH solutions. The dynamics of lignin also increased due to weakened interactions with microfibrils due to non-crystallization.

Keywords Side-chain, NaOH treatment, Viscoelasticity, Microfibril, Crystallinity
1. Introduction

Native cellulose can be transformed into other crystalline forms via NaOH-water treatment [1-6]. In plant cell walls such as wood, native cellulose is mostly found as microfibrils of cellulose aggregate with high crystallinity, which contains two crystalline forms, Iα and Iβ. Recently, the dissolution mechanism of cellulose with NaOH treatment has been reported based on results by various methods. Roy et al. [7] proposed a mechanism for lower temperatures. Cai et al. [8-10] applied the method of Navard et al. [11] to the NaOH/urea system. Additionally, the alkali treatment is applied to various composites in practice and their physical properties are examined [12-15].

This paper discusses the molecular dynamics, especially side-chain motion, of wood components in wood cells that have been non-crystallized by alkali treatment. Nakano [16] reported that wood contracts drastically along its longitudinal axis and demonstrated that this contraction is due to an entropic elastic force caused by the non-crystallization of cellulose microfibrils [17]. Anisotropic dimensional changes have been reported during alkali treatment [18]. Nakano [19] examined this anisotropy based on model analysis.

Changes in dynamics of wood sample during non-crystallization were reported in an analysis of the NaOH concentration ([NaOH]) dependence on stress relaxation [20]. The relaxation modulus and relaxation rate of them were divided into three concentration ranges: less than [NaOH] = 0.10, between 0.11 and 0.14, and greater than 0.15. Changes in relaxation dynamics were due to increases in molecular chain mobility in non-crystallized regions along the longitudinal axis of
microfibrils in wood and to lignin swelling as a result of NaOH treatment. That is, the dependence
of crystallinity on the relaxation time was related to molecular chain rearrangements required time
in this region.

This study focuses on changes in non-crystallized cellulose chain dynamics and on the
concentration (crystallization) dependence of dynamic viscoelastic behavior, especially side-chain
motion. The domains of the cellulose chain and the interactions between cellulose and other wood
components are discussed.

2. Experimental

2.1. Materials and NaOH treatment

Wood specimens of 70 (L) × 7.5 (R) × 2 (T) mm were cut from Yezo spruce (Picea jezoensis Carr): L,
R, and T are longitudinal, radial, and tangential directions of wood, respectively. The samples were
oven-dried at 70°C under vacuum with P$_2$O$_5$ overnight. They were then soaked in aqueous NaOH
with various concentrations ([NaOH] = 0 to 0.20) for 30 min and stored at room temperature for 2
days. The samples were then washed in distilled water for 2 weeks. Washed samples were flash
frozen in liquid N$_2$ and freeze-dried under vacuum for 1 day. The weight and dimensions of the dried
samples were measured prior to dynamic mechanical analyses (DMA) and X-ray diffraction
measurements.
2.2. Dynamic mechanical analyses and X-ray diffraction measurements

DMA measurements were acquired in dried air with a dynamic mechanical analyzer DMA50 (METRAVIB). In the chamber of DMA, dried air was flowed before measurement. The moisture content of the samples was confirmed to be negligible small for each measurement. The measurement was performed with 5 μm of tensile forced oscillation over a 40 mm span from −150 to 200°C at 1 Hz. The programmed heating rate was 3°C/min.

Crystallinity measurements were performed with an X-ray diffractometer RINT-UltimaIV (Rigaku). Diffractograms were obtained for the LR-plane at room temperature over a range of 5–35°. The measurements were performed at 40 kV and 40 mA at a scan rate of 2°/min. The relative crystallinity of the samples was calculated as the ratio between the area of the crystalline contribution and the total area in the range of 10–28°.

3. Results and Discussion

3.1. Relative crystallinity and dimensional changes

Figures 1 and 2 shows the changes in dimension along the longitudinal direction of wood sample and relative crystallinity observed during NaOH treatment. Wood sample length characteristically decreased with increasing in NaOH concentration. The relative crystallinity was nearly constant for less than [NaOH] = 0.10 but started to decrease at 0.11. Crystallinity decreased drastically between
[NaOH] = 0.11 and 0.13 and slightly for concentrations greater than 0.14. The concentration dependence of dimensional changes along the longitudinal direction of each sample were similar to that of the crystallinity change. This indicates that the dimensional changes were due to non-crystallization with NaOH treatment. Figure 2 suggests a linear relationship between both of these variables for concentrations greater than 0.11. These changes during NaOH treatment are consistent with our previous reports and indicate satisfactorily non-crystallization.

3.2. Changes in molecular dynamics of non-crystallized wood

Figure 3(b) shows the variation of tanδ as a function of temperature for treatments with [NaOH]=0 and 0.20. Three characteristic relaxations were identified in the untreated ([NaOH] = 0) sample. These relaxations were labeled α, β, and γ in the order of decreasing temperature. The β relaxation was obscured in the fully dried samples. The α dispersion was attributed to micro-Brownian motion of the cell wall polymers in the non-crystallized regions, the β dispersion was attributed to the motion of the absorbed water itself or the segmental motions associated with it, and the γ dispersion was attributed to the motion of methylol groups according to a previous study [21], [22]. These three relaxations of the untreated sample were identified at roughly the same temperatures for a sample treated with [NaOH] = 0.20. Therefore, the relaxations in the sample that had been treated with [NaOH] = 0.20 were attributed to the same causes as those in the untreated sample. However, their intensities and temperatures of tanδ have the characteristic concentration dependence of NaOH.
solution.

The temperature dependence of tanδ in the untreated sample was generally similar to that of the treated wood studied by other researchers and cellulose filaments [23]. However, tanδ intensity of both the α and γ relaxations in samples that had been treated with NaOH 0.20 were much higher than those of the untreated sample.

The cause of the β relaxation has been discussed in several independent studies. Obataya et al. [22] assigned this relaxation to the absorbed water itself. Montés et al. [24] acquired DMA data on amorphous cellulose and other polysaccharides and reported that the β relaxation had a moisture dependence. In the current study, the β relaxation was indistinct in fully dried samples, which confirms a relationship to absorbed water but not to the absorbed water itself. The α and γ relaxations, which were observed in the current study, are discussed below.

Figure 4 shows detailed profiles of tanδ of γ relaxation and exhibits characteristic changes in peak location and intensity during NaOH treatment. Figures 5(a) and (b) shows the peak intensity and location of tanδ for γ relaxation during NaOH treatments. Its dependence on NaOH concentration can be divided into three distinct ranges. Tanδ was nearly constant for NaOH concentrations between [NaOH] = 0.00 and 0.10, then increased considerably between 0.10 and 0.14, and maintained a nearly constant value at NaOH concentrations greater than 0.15. The peak shifted to a higher temperature range in the region below [NaOH] = 0.10 and remained constant above [NaOH] = 0.11.
Side-chain relaxation generally depends on the dynamics of localized regions of molecular chains. Nakano [21] and Nakano et al. [25, 26] performed DMA on chemically modified wood, introducing various lengths of acyl groups, and reported that the dispersions assigned to side-chain motion depended on both the interactions between the side chains and the free volume created by the introduction of the acyl groups into wood substance. In the previous report, it was demonstrated that side-chain dispersion depends characteristically on the number of methylene group carbon. This result agrees with similar results obtained with PMMA [27]. While side-chain dynamics increases with increasing side-chain length for short side chains, it decreases in motion due to self-entanglement occurred for chain lengths more than 5 or 6 carbon atoms. Additionally, as for wood sample introduced dissociative side chains, the side-chain motion changes drastically by cross-linking with a metal ion [28, 29]. Considering these results in the previous work, changes in the intensity and location of the γ relaxation in the current study, which is due to the motion of side chains, also reflect changes in the methylol group domains during NaOH treatment.

The α dispersion in wood is assigned to micro-Brownian motion in non-crystalline regions of wood components [30], which is influenced by environmental condition. For example, the α dispersion shifts to lower temperatures with increasing moisture content and shows a clear peak below 100°C at high moisture content [31, 32]. The moisture dependence on peak location roughly corresponds with that of the glass transition temperature (Tg) of isolated lignin [32-34]. The α dispersion in the current study appeared as a shoulder. Thus, as the NaOH concentration
dependence on the α peak location cannot be addressed here, the intensity of $\tan\delta$ at 200°C, which is used as $\tan\delta(200°C)$, is discussed in the following discussion. Figure 6 shows the relationship between α intensity and NaOH concentration. $\tan\delta(200°C)$ was nearly constant for concentrations less than NaOH 0.10 and increased at concentrations greater than 0.11. This result clearly corresponds to that shown in Figure 1.

3.3. Changes in storage modulus

Figure 3(a) shows the variation in relative storage modulus, normalized to –120°C. The storage modulus was nearly constant for NaOH concentrations less than $[\text{NaOH}] = 0.10$ and showed a characteristic decrease at concentrations greater than 0.11. Changes in storage modulus at greater than $[\text{NaOH}] = 0.11$ were composed of two processes. The first process caused a slight decrease between –120 and –70°C; the other process resulted in a drastic decrease above 100°C. The former and latter correspond to changes in the γ dispersion, as shown in Figure 4 and in the α dispersion shown in Figure 3(b), respectively.

Figure 7 shows the concentration dependence on relative modulus at –70, 100, and 200°C. At all temperatures, the relative modulus decreased drastically at concentration 0.10. The decrease at –70°C was less than that at the other two temperatures. However, a clear decrease was observed at concentrations greater than 0.11. The observed decrease in relative modulus was more clear at 200°C than at 100°C at greater than $[\text{NaOH}] = 0.11$. This effect might be due to a glass transition in
dry lignin in this temperature region [35]. While the relative modulus at −70°C is nearly constant at
less than [NaOH] = 0.10, and then decreased at greater than [NaOH] = 0.10. This difference in
temperature dependence of the storage modulus agrees with the concentration dependencies of tanδ
of the α and γ dispersions.

3.4. Crystallinity dependence on γ and α dispersions

The aforementioned characteristic concentration dependence on the γ dispersion is due to a change
in methylol group domains, according to viscoelasticity measurements of chemically modified wood
[21, 25, 26]. This concentration dependence may be discussed in terms of relative crystallinity.

Figures 8(a) and (b) show the dependence of crystallinity on the tanδ intensity and the peak position
of the γ dispersion, respectively. The tanδ increased slightly with near constant crystallinity at less
than [NaOH] = 0.11. The trend then leveled off after a drastic increase with a decrease in
crystallinity at greater than [NaOH] = 0.11 (Figure 8(a)). The peak corresponding to the γ
dispersion shifted to higher temperatures with increasing NaOH concentration for samples with
constant crystallinity at less than [NaOH] = 0.11, while it did not shift with a decrease in
crystallinity at higher concentration (Figure 8(b)).

The data of the γ dispersion in Figures 8(a) and (b) imply a change in the methylol domains
during NaOH treatment. An initial change of tanδ with almost constant crystallinity is not due to
change in the microfibrils themselves, because the shift in peak position occurred with no changes
in crystallinity. NaOH treatment induces two changes in wood. The first is a structural change of cellulose, the main ingredient in wood, known as mercerization. The second is the eluviation of wood components. NaOH treatment eluviate hemicellulose and some lignin [36-38]. Therefore, it may be inferred that a change occurring at constant crystallinity is due to this eluviation. An average weight loss of approximately 6% was observed in samples treated with NaOH at the concentrations used in this study.

Furthermore, it may be inferred that the methylol domains experienced restricted flexibility as they approached each other as a result of hemicellulose eluviation and the partial eluviation of lignin. This decreased flexibility, in turn, resulted in a peak shift to higher temperatures and a decrease in tan δ. This restriction effect is manifested in the concentration dependence of the relative modulus at ~70°C in Figure 6. Relative modulus did not decrease but constant at less than [NaOH] = 0.10 at this temperature, comparing with the other temperature.

The minimal crystallinity dependence of the tan δ peak position at greater than [NaOH] = 0.11 shown in Figure 8(b) indicates a negligible change in the flexibility of the methylol groups. Note, however, that tan δ increased with decreasing in crystallinity (Figure 8(a)), and the dispersion of the peak widened (Figure 4). This result strongly suggests an increase in the relative proportion of regions that contribute to the relaxation process. In other words, results of the γ dispersion shown in Figures 8(a) and (b) show that the relative number of methylol groups affecting relaxation increased due to an increase in amorphous domains. Nakano [21] pointed out that an increase in the amount
of side chains introduced during esterification caused an increase in the free volume. This increased
the flexibility of both the side chains themselves and the main chains. However, the effect was
smaller for shorter side chains. Additionally, effects due to hydrogen bonding with the hydroxyl
group can be expected with methylol groups. Therefore, contributions restricting flexibility were
larger at −70°C, comparing with the other temperatures 100 and 200 °C (Figure 7).

The tanδ at 100 and 200°C increase increased drastically between [NaOH] = 0 and 0.12 and
then gradually increased at greater than [NaOH] = 0.12. Considering that the α dispersion is
assigned to main-chain motion of lignin by which hemicellulose and cellulose microfibril surface are
bonded, Figure 9(a) suggests that the interaction between the both is weaken by the eluviation of
the matrix in wood with NaOH treatment.

The crystallinity dependence of the storage modulus shown in Figure 9(b) corresponds roughly
with that of tanδ in Figure 9(a). Figure 9(b) shows the dependence of the relative modulus on the
degree of crystallinity at 100 and 200°C. The relative modulus decreased drastically between
[NaOH] = 0.11 and 0.12, was nearly constant between 0.12 and 0.15, and then decreased again at
greater than [NaOH] = 0.15. This dependence is similar to that of the relaxation modulus, which
measures stress relaxation, in our previous study [20]. This is because a decrease in the storage
modulus at high concentrations is related to the main chain and not to the dynamics of the side
chains.
4. Conclusions

Changes in molecular dynamics in wood as the result of NaOH treatment were examined using DMA measurements. It was shown that NaOH treatment affects the interactions between microfibrils and the surrounding matrix and the dynamics of methylol groups in the microfibrils. The former is not dependent on the degree of crystallization but rather on the eluviation of the matrix. The latter depends on the degree of crystallization. Low-concentration NaOH treatment induces changes in the polymer domains through the eluviation of the matrix material. Conversely, at high alkali concentrations, the proportion of domains that are involved in methylol group dynamics increases quantitatively, indicating significant non-crystallization. In addition, main-chain dynamics in wood increased with decreasing crystallinity. The interactions between microfibrils and matrix are believed to be weakened by the swelling of matrix and the shrinkage of microfibrils, thereby increasing the flexibility of matrix.
References

Figure captions

Figure 1. Dimensional changes under wet condition along the longitudinal axis of wood samples Yezo spruce (*Picea jezoensis Carr.*) as a function of NaOH concentration.

Figure 2. Crystallinity and relative dimensional changes along the longitudinal axis (ΔL/L) of wood samples as a function of NaOH concentration.

Figure 3. The typical temperature dispersion of the relative dynamic modulus normalized to its value at –120°C (a) and tanδ (b) under dry condition for samples treated with various aqueous NaOH solutions.

Figure 4. The NaOH concentration dependence of tanδ assigned to methylol groups in wood for samples treated with NaOH treatment.

Figure 5. The NaOH concentration dependence of tanδ(γ) and temperature (Tγ) of the γ dispersion assigned to methylol groups.

Figure 6. Tanδ intensity at 200°C as a function of NaOH concentration.
Figure 7. The relative dynamic modulus at various temperatures normalized to its value at 120°C as a function of NaOH concentration.

Figure 8. The crystallinity dependence of the peak intensity and temperature of tanδ for methylol groups in wood.

Figure 9. The crystallinity dependence of the tanδ intensity at 200°C and the relative dynamic modulus at 100 and 200°C.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

(a)

\[\tan \delta(\gamma) \]

(b)

\[T(\gamma) \]
Figure 6
Figure 7

(a) T = -70℃

(b) T = 100℃

T = 200℃

E'(T)/E'(-120) vs. NaOH Conc.
Figure 8
Figure 9

(a) tan δ at 200℃

(b) E(T)/E(-120)

Crystallinity

NaOH = 0.00

T=100℃

T=200℃