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Large-scale lognormality in turbulence modeled by the Ornstein-Uhlenbeck process
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Lognormality was found experimentally for coarse-grained squared turbulence velocity and velocity increment
when the coarsening scale is comparable to the correlation scale of the velocity [Mouri et al., Phys. Fluids 21,
065107 (2009)]. We investigate this large-scale lognormality by using a simple stochastic process with correlation,
the Ornstein-Uhlenbeck (OU) process. It is shown that the OU process has a similar large-scale lognormality,

which is studied numerically and analytically.
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I. INTRODUCTION

The lognormal distribution appears in a wide range of natu-
ral and social phenomena (see, e.g., [1]). In fluid turbulence, it
is well known that the distribution is an important consequence
of Kolmogorov’s 1962 theory for modeling fluctuations of
the energy cascade rate across scales [2]. In this theory, we
have a very clear picture why the lognormal distribution
was the first candidate for the cascade fluctuations in his
refined phenomenology. Namely, the energy cascade at a high
Reynolds number can be modeled as a multiplicative process
consisting of a large number of independently and identically
distributed random variables. This large number is important
for the central limit theorem to be applicable to the logarithm
of the multiplicand.

There is a different example of lognormally distributed
variables in turbulence. Laboratory experiments of turbulent
boundary layers in the 1980s suggest that spanwise sepa-
rations between the low-speed streaks follow a lognormal
distribution [3,4]. In this case, the underlying mechanism of
the lognormally distributed streaks is not as clear as in the
Kolmogorov 1962 phenomenology because a multiplicative
structure for the streaks is not found immediately.

In this paper we consider yet another lognormal example in
turbulence, which was recently found experimentally [5,6]. In
Ref. [6], it is observed that the coarse-grained squared velocity
and squared velocity increments over distance r,
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are lognormally distributed when the averaging scale R is
set to R ~ L,. Here L, is the correlation length, defined as
the integral scale of the velocity correlation function (u(x +
r)u(x)), and the velocity u can be either a longitudinal or a
transverse velocity component. Since the lognormal property
holds when R is comparable to the large-scale L, this property
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is called “large-scale lognormality.” For the asymptotic regime
R > L,, as a usual result of the central limit theorem, the
distribution of the coarse-grained quantities becomes closer
and closer to a normal (Gaussian) distribution. Note that large-
scale lognormality, which we consider here, concerns the range
of the coarse-graining scale R ~ L,, which is different from
the final Gaussian state in R > L,,.

Large-scale lognormality was observed in the experiments
on grid turbulence, turbulent boundary layers, and turbulent
jets, suggesting its universality [6]. But again, as in the case of
the streaks in the boundary layer turbulence, why the coarse-
grained turbulence data are lognormally distributed is not clear.
Our final goal is to understand the mechanism that makes
them so.

As the first step toward this goal, we address the following
question: Is large-scale lognormality a general property of
correlated random variables, not restricted to large-scale
fluctuations of turbulence? The previous results [6] lead us to
recognize that this balance between R and L is most important
for lognormality. In order to answer the question, we use
the Ornstein-Uhlenbeck (OU) process as the simplest way to
generate correlated random variables with correlation length
L and check whether or not coarse-grained quantities like
Egs. (1) and (2) follow lognormal distributions in the range
R/L ~ 1. Our numerical results suggest that the answer to
this question is yes. Then we study, by analytical calculations
of moments, further details on how the OU data become close
to the lognormal variables.

We believe that this simple approach using the stochastic
process has some value since reproducing the large-scale
lognormality by direct numerical simulations of the Navier-
Stokes equations can be computationally quite expensive. It
requires a very large domain size compared with the correlation
length.

In statistics, taking the logarithm of a positive random
variable is known as a common way of symmetrizing trans-
formation, which makes the skewness of the transformed
variable closer to O [7]. In this language, the large-scale
lognormality suggests that, even with the correlation, the log
transformation can already produce near-Gaussian behavior
successfully when the averaging scale R is of the order of
the correlation scale L. The present study can be interpreted
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as a model study on how the log transformation begins to
work for the correlated random variable upon changing the
coarse-graining scale.

This paper is organized as follows. In Sec. II, we present
numerical data on the OU process reproducing the large-
scale lognormality. We then, in Sec. III, provide analytical
calculations of moments of the OU process to study how they
are close to those of the lognormal distribution. We provide a
summary and discussion in Sec. IV.

II. NUMERICAL EXPERIMENT ON THE
ORNSTEIN-UHLENBECK PROCESS

We begin here by listing the basic properties of the OU
process (see, e.g., [8] and also [9] in the context of turbulence
modeling). The process is described by the Langevin equation

dx@ 1
=T X(t) + V2E(1), 3)

where the Langevin noise £(¢) is Gaussian white noise having
the ensemble-averaged mean and variance

@) =0, (EMET)) =81 —1). “4)

The linear addition of the Gaussian uncorrelated noise &(¢)
causes the solution X(¢) to Eq. (3) to be a Gaussian random
variable. However, the first term on the right-hand side brings
temporal correlation. Namely, by writing the initial position
as xg, X(t) is characterized as a correlated-in-time Gaussian
random variable with the mean and variance

(X (1)) = xpe /T, )

([X(1) = (X)) = kT (1 — /T, 6)
The correlation function can be calculated analytically as
([X(0) = (XUNI[X(t + 5) — (X(t + 5)])
= ([X(1) — (X@))e VT, (7
Therefore the integral scale of the OU process is given as
/“’ (X)) = (X)X (@ +5) — (X +5)])
0 ([X(®) — (X®))1%)

If the large-scale lognormality observed in turbulence [6]
is a property of correlated random variables, it is then likely
that the following coarse-grained data on the OU process,

ds =T,. (8)
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are lognormally distributed when the averaging scale R is in
the similar range, suchas 1 < R/ T, < 100. Equations (9) and
(10) correspond to the turbulence quantities, Egs. (1) and (2),
respectively.

We now check whether or not the random variables, (9)
and (10), follow lognormal distributions by doing numerical
simulation of the OU process, (3). We use the numerical
method called the exact updating formula of the OU process
proposed in Ref. [10] with the parameters xo = 0.0, 7, = 1.0,
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FIG. 1. (Color online) Probability density functions (PDFs) of
(@) X2 [Eq. (9)] and (b) its logarithm In X%. Random variables
are normalized to have zero mean and unit standard deviation. The
averaging scales here are R = 10007, 1007,, 107,, T;, and T, /10,
which correspond to the curves from top to bottom. The PDFs are
shifted vertically by being multiplied by the factor 0.25 for clarity.
The solid curve denotes the Gaussian distribution.

k = 0.50, and At = 1.0 x 1073, The integrals in Eqs. (9) and
(10) are numerically calculated as

Ng/2
Xpt) =~ Y, X)), (11
R j=—Nrs2
Ng/2 5
SXPpt) =~ Y [X(sj +1x,) = X0y ], (12)
Ne .

where Ny = R/At,N, = r/At,andt; = kAt.Figures 1 and 2
show probability density functions (PDFs) of X% and §X7 .
with or without taking the logarithm for various averaging
scales R. The number of samples for the R = 10007}, case is
1.34 x 10% (for smaller R cases, the number is much larger).
For the largest values of R = 10007, shown here, the PDFs
are close to Gaussian distributions as a consequence of the

(-w/c

FIG. 2. (Color online) Same as Fig. 1 but for the squared
increment (a) §X7 , [Eq. (10)] and (b) its logarithm In X7 ;. Here
r = T;/100. The averaging scales are R = 10007, 1007, 107,
Ty, and T; /10, which correspond to the curves from top to bottom.
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FIG. 3. (Color online) Skewness (a) of Xz and (b) of §X}
(r = T, /100); flatness (c) of X% and (d) of §X?2, with or without
the logarithm. They are plotted versus the averaging scale R.
Horizontal lines correspond to the skewness and the flatness of the
Gaussian distributions. Thick curves are asymptotic expressions of
the moments of Xfe and SXiR, Egs. (25), (26) and Egs. (28), (29).
Dashed curves correspond to the exact moment expressions (not
involving any asymptotic argument).

central limit theorem. As we decrease the averaging scale R
to the correlation scale T}, the distributions of X % and § X rz ®
deviate from the Gaussian distribution. In contrast, the lég
variables In X3 and In X , remain nearly Gaussian as shown

in Figs. 1(b) and 2(b). Hence X7 and 8 X} ; are lognormally
distributed in this range of R. This behavior is similar to
the turbulence data analyzed in Ref. [6]. In addition, for the
squared increments § X f r With various r < Tp, qualitatively
the same results are obtained.

The approach to the lognormal distribution can be observed
more quantitatively by looking at how the skewnesses and flat-
nesses of the log variables In X% and In§ X} , change as func-
tions of R [the skewness S(z) and flatness F(z) of a random
variable z are defined as S(z) = ((z — (2))*)/[V(2)*%, F(z) =
((z = (z)*/[V(2)]?, where V(z) is the variance ((z — (z))*)].
In Fig. 3, it is shown that the moments of the variables with
logarithm In X% and In§X?  already approach, around R =
T; , the values of the Gaussian distributions (S, F)=(0,3),
whereas the moments of the variables without logarithms are
still different from them. This is consistent with the behavior
shown in Figs. 1 and 2.

For the increments § sz - the skewness and the flatness can
depend on the difference r.Indeed a clear r dependence is seen
in Fig. 4. However, the fast convergence to the Gaussian of the
In8X?2, around R ~ L is not affected by this dependence. In
fact, these graphs of the different r values can be collapsed to
one curve by normalizing R with a different correlation scale
from T, as we show at the end of the next section.

In summary, we observe that the large-scale lognormality
holds also for the OU process as in the turbulence case
[6]. Further details on the behavior of the skewness and
flatness of the OU process are studied analytically in the next
section.
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FIG. 4. (Color online) (a) Skewness and (b) flatness of the incre-
ments §X? , and In8X} , for three values of r: r = Ty /10, T, /50,
and 7 /100.

III. ANALYTICAL EXPRESSIONS OF THE MOMENTS OF
THE ORNSTEIN-UHLENBECK PROCESS

The OU process is amenable to analytical calculation in
many ways. However, it is difficult to determine analytically
the PDFs of the quantities of our interest, Egs. (9) and (10), or
all their moments, since they involve integrations. Instead we
calculate the low-order moments, namely, the skewness and the
flatness of X (z‘)%e and 6 X (t)f - For them, full analytic results
are obtained but we presentyonly the asymptotic expressions
of them for R/L > 1 since they are sufficient for our purpose.

Then we compare them with the expressions of the
skewness and flatness of the lognormal distribution with mean
E and variance V:

Sin = /P + p), 13)

Fin =3+ p(16 + 150 + 6p> + p3), (14)

where p = V/E?. As we have seen, the PDFs of the variables
X (t)%e and 6 X (t)i g become close to the lognormal distribu-
tions for R/ T, ~ 1. We study this behavior by comparing the
skewness and flatness of X(¢)% and §X()* . with Sy and
Fin. However, as we shall see below, it turns out that small
corrections exist, which may be hard to detect in numerical
calculations in the previous section.

In our analytical calculation of the moments, we first put
the formal solution of the Langevin equation, (3),

t
X(t) = e/ Tixg + / e T2k (s)ds,  (15)
0

into the coarse-grained variables, Eqs.(9) and (10). For the
correlation or the variance, we take suitable powers of them
and take the ensemble average with respect to the Langevin
noise by using Eq. (4), so that we can reduce their calculations
into multiple integrals of certain exponential functions. For
the skewness and the flatness, we use more compact integral
representations proposed in Ref. [11], which are explained in
the Appendix. To calculate the resultant integrals we use a
symbolic computation software, Maple. The integrated result
still contains dependence on time ¢. For example, the mean of
X(t)% reads

T,
(X)) =«Tw [1 Ly LD T'} . (16)
Remember that this time # is much larger than the correlation
time 7; to be consistent with the simulations in Sec. II.
We hence regard e~'/Tt = (. From now on, we drop the
dependency on 7 of all the moments of X(1)3 and 8X(1);
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calculated here. This does not affect our study since the OU
process becomes steady for r > T;.

We now list the expressions of the moments. Here we write
A = R/ Ty for brevity. For X %, the mean, variance, skewness,
and flatness are, respectively,

E(X%) =«Ty, (17)

(KT 2A + A2 (e 22 = 1), (18)

V(x3) =

S(X3) = 12W, Ple™ — 14+ A + 1)1, (19)

F(X%) =3+ 6W, [e** + 287" —29
+16A%72A +40Ae7 22 +20A],  (20)

where Wy = 2A~! + A=2(e™* — 1). For the coarse-grained
increment 8X7 ., by writing r/T, = A, we give the results
in the leading order of A~!' = (R/T.)™" to avoid lengthy
expressions:

E(8X} ) =2cT e (" — 1), (2D

16—2)» [362)\‘

QkTL)*A~ — 400 + De* + 21 + 17,

(22)

V(X7 ) =

S(8X25) = 3A 72w, 2 [10e™
+ 2(41% + 6. + 3)

— 5(A% 4 31 + 3)e*
— @B 43r+ D], (23)

F(8X}g) =3+ A ¥ W 2[525¢% — (561° + 3362
+ 840X + 840)e** + (22413 + 672)% + 8401
+420)e* — (21613 + 43212 + 3604
+120)e* + (6413 4+ 9612 + 604 + 15)], (24)

where W, = A~'e 2 [3e?* —4(A + 1)e* + 21 + 1]. Note
that we obtain analytic expressions of S and F, which are
shown as the dashed curves in Fig. 3.

With these asymptotic expressions, we next rewrite the
skewness S and flatness F' as functions of the variance over the
squared mean p = V/E? to compare them with the lognormal
ones Spn and Fin.

For X%, in the limits of A = R/ T, — oo, we have

S(Xk) =0+ /p(3 = 107), (25)
F(X3) =3+ p(15+ 2p — 2p?), (26)
where
2 2
_ V(XR)2 ~ 2T <£> ) 27
E(xg) R AR

The asymptotic expressions, Eqs. (25) and (26), agree with
data shown in Fig. 3 for R > +/107}.
For the velocity increments (SXi g» We have p = V/E 2=

A1[3e? — 4L + 1)e* + 21 + 1]/(e* — 1)*>. By taking the

limit of A = r/T; — 0, we obtain the expressions
S(8X7g) =0+ /p x %, (28)
F(8X7p) =3 +px B2, (29)
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where
_VOXi) 44
T EGx,) AR

Equations (28) and (29) agree with the data shown in Fig. 3 for
R > 1073/2T; (covering all data points), thanks to the small
value r = 107277.

We now compare the analytic expressions of the OU
quantities Eqs. (25), (26) and Egs. (28), (29) with the
lognormal ones, Eqgs. (13) and (14). We can observe the
following. (i) Indeed as R — oo(p — 0), S and F' of both X% 2
and §X? 7 tend to the values of Gaussian distribution, § = O
and F = 3. Before reaching this state, we see an approach to
the lognormal distribution. (ii) The subleading terms of S and
F have the same powers of p as S_y and F1n, which is in favor
of the large-scale lognormality of the OU process. However,
the constant in the subleading term is slightly different from
those of the lognormal distribution. In this sense, the coarse-
grained quantities X5 2 and §X? 7 g Of the OU process become
nearly lognormally dlstrlbuted when R/T; is large, but not
exactly so.

So far we have focused on how the moments vary as a
function of R/T,, where R is normalized by the correlation
scale T, of the OU process. We close this section with a
digression by pointing out another normalization scale of the
problem. This is indicated by the above analytic results. For
X%, let us go back to the definition, Eq. (9). The integral scale
of the integrand of Eq. (9) is

(30)

(X Jo X2 = (X)X +5) — (X)]ds _ T,
([X2() — (XH)1?) 2
(3D

For 6 X rz - the integral scale of its integrand defined similarly
is calculated as
25 A
‘E(Ssz) _1 3e 4+ De* +21 + 1 ~ r (32)
4(e* — 1)? 3

for small A =r/T;. Note that the p variables defined in
Egs. (27) and (30) contain the corresponding integral scales of
the integrands (31) and (32), namely, p = 47/R for both X% 2
and X . Hence it implies that suitable normalization scales
of R for collapsing the moment data plotted in Figs. 3 and 4
are, respectively, the integral scales T(X?) and 7(§X?2) of the
integrands. Indeed this normalization yields a better collapse
as shown in Fig. 5 for both X and § X} , with different r. This
suggests that, when we look into a coarse-grained quantity

15 H SX; r(r=T/100) ® 7 . SXZA(r=1/100) »
- In8XZ x(r=T;/100) ~ . InSXZ x(r=T7;/100) v
@ - g
1
“ . SXER(r=Ti/10) ® w5 (fX,/(l 7/10) o
In8X (r=Ty/ I()) v InSX2 (r=Ty/ 10) »
0.5 o X} o 4 o )(,( [
o InXg v o InXg v
0 ML TIPPN 3 M aas s
vvvvv v
v e N
10 10° 100 1¢ 10° 10° 10° 10° 107 10° 10" 10° 10° 10* 10° 10°
RiT R/t

FIG. 5. (Color online) (a) Collapsed skewness and (b) flatness of
X% and X} ; as functions of R normalized with 7(X?) and 7(§X7})
defined in (31) and (32).
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over scale R of a function fz(y) = (1/R) fyy+R f()dy of a
correlated fluctuation y, the correlation scale (integral scale)
of f(y)in certain cases can be a better characteristic scale than
the correlation scale of the fluctuation y itself. We believe that
this is the case not only for the OU process but also for a general
fluctuation with a correlation. However, this normalization
blurs the fact that the large-scale lognormality of the OU
process occurs at R/ T;, ~ 1. This kind of normalization will
be reported elsewhere.

IV. SUMMARY AND DISCUSSION

This study was motivated by the large-scale lognormality of
turbulence that was recently observed experimentally in grid,
boundary-layer, and jet turbulences [6]. In this lognormality,
the correlation scale plays a pivotal role. Namely, when the
averaging scale to the correlation scale is of order unity, the
averaged squared velocity and velocity increments become
lognormally distributed fluctuations. We anticipated here that
this large-scale lognormality is a property of correlated random
variables in general.

To test this idea, we took the OU process as the sim-
plest means to generate correlated random variables. Our
numerical simulation indicates that the OU process also
exhibits large-scale lognormality for about the same range of
R/L as observed in turbulence. Then, to further investigate
the approach to the lognormal distribution, we calculated
analytically the skewness and flatness of the coarse-grained
quantities of the OU process. The first subleading term of
the asymptotic expressions for large R/L of the moments
revealed that indeed the moments behave nearly as those of
the lognormal distribution. However, there is small deviation
from the lognormal distribution.

Now we speculate on the behavior of the moments that are
higher than fourth order. The analytical calculation of them for
coarse-grained OU variables becomes so complicated that we
did not try even with Maple. For the lognormal variable xy,
the moments can be written with p, the ratio of the variance to
the squared mean, as

g _ N — o)
BNV )1
q
4 q Lk(k— -
=p zg(k)@ww D=7, (33)

where ({) is the binomial coefficients. By expanding
Eq. (33) with p, the moment can be written as
(q)
Hi
_{0+s(q),02 +5Ppr 4 4 ,o%Q(H)

(g: odd),

-4 p294=2 (g: even).

(34)
Here the terms of the negative powers of p are shown
to vanish and siq), 1(‘]), ... are suitable coefficients, which
can be written with the binomial coefficients. The p° terms
in Eq. (34), namely, 0 and (¢ — D!!=(g —1)(g —3)---
5-3 -1, correspond to the values of the Gaussian distribution.
We speculate that, for the coarse-grained quantities of the
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OU variable, their higher-order moments have an expression
similar to Eq. (34). As we saw in the previous section, the
behavior for small p (corresponding to R/T; being larger
than unity) is relevant for the large-scale lognormality. Their
first term should coincide with that of Eq. (34) because of the
usual central limit theorem. It is tempting to speculate also that
the second term has the same power of p but the value of the
the coefficient, s(q) or l(q), is different. We have no idea by
how much they dlffer.

In relation to the real turbulence data, the OU process is
not a good representation as a whole since, for example, it
does not deviate from being Gaussian (intermittency effect)
and does not show equivalence of the energy cascade or the
energy dissipation rate. However, as long as we focus on the
large-scale fluctuations of turbulence where the single-point
velocity or the velocity increments are close to being Gaussian,
the OU process is a useful and analytically tractable model. In
this study we regarded that the correlation at the integral scale
is the most important aspect to be modeled by the OU process.

Here we have seen that the correlation plays an essential
role in the near-lognormal behavior of the coarse-grained
positive quantities, Eqs. (9) and (10). Roughly speaking,
this near-lognormality around the correlation scale may be
regarded as an intermediate state, or “a rule of thumb” before
the central limit theorem holds with much larger averaging
scale R. For the turbulence cases studied in [6], a similar
mechanism is likely at work. Other examples of lognormal
behavior involving a coarse-graining average include cosmo-
logical density fluctuations (see, e.g., [12]), which may have a
structure similar to that studied here.
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APPENDIX

Here we explain briefly how we calculate the moments
of the coarse-grained quantities. In particular, we use Rice’s
method, given in Sec. 3.9 of Ref. [11], to reduce the number
of multiple integrals. For illustration of the method, let us take
as an example the second-order moment of X %(t):

(x0T / L / L inmXm). (A

The idea of Rice’s method is to write the mo-
ment (X2(t;)X2(f;)) in terms of the correlation function
(X)X ()) = ¥(t, —t;) by noting that X(#;) and X(z,)
are multivariate Gaussian variables whose covariace ma-
trix is known completely. In principle, any moment of
X(t1), X(t2), ..., X(t,) can be expressed with ¥(t; — ;).
Specifically, with the correlation function for large #,

Y(r) =

(X(OX(t + 1)) = «Tpe TV, (A2)
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the variance and other central moments can be written as
follows:

5 pith +4
XG0P =5 [ an [ devo —m

4 R )
=— | (R—x)¥y " (x)dx
R2 /0
K2T?
= SR PR TR 1),
(A3)

+2 +% +4%
X0 - () =5 [ [ [ ar
X Yty — )Wty — )Y (13 — 1)

48 R
= Ffo dx(R — x)¥(R — x)

X/O dyy(x — y)¥(y), (A4)

(X2 — xn])
= 3((x%0) — (X3))°)’

48 [+ +2 t+2 +4£
+ — dn dt) dts dty
R* J,_x (R (R (R
2 2 2 2

X Yty — )Y (3 — t)Y (s — )Y (ts — 13)
= 3((Xk0 — (X3’

768 (R R
+ —4/ dx(R — x)/ dyy()v(x —y)
R* Jo 0

y
« / Az (x — DY (). (AS)
0
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Here we change variables in the integrals by using the
symmetry of ¥ to reduce the double integral to a single
integral (for details, see [11]). The integrals, (A4) and (AS),
are calculated analytically with the software Maple.

Concerning the increments, we write its correlation func-
tion for large ¢:

Vr(t) = (6, X (1 + 1)5, X (1))
— KTL[e—\TI/TL(z _ e—r/TL) _ e—lr—ltl\/TL] (A6)

Using the same argument as in the case of Xg(#), we can
express the central moments with the correlation ¥, as follows:

4 R—r
33200 = X2 0f) = s [ R =7 =)

x 2 (x)dx
([x; (1) — (8 X} (t))]3> __ B er dx(R —r — x)
& & (R—=r)* Jo
y /O Ay, (x — YW ) ().
(A7)
([6X2 50 = (5x2, 0)]')
= 3{[8X2 () — (8X2, )]'Y
768 R=r
+_(R_r)4/0 dx(R—r —x)
R—r y
x /O dyy, (Y)Y, (x — y)fO dz (x — 2, (2).
(A8)

The final forms, (A7) and (AS8), are calculated with Maple.
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