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Abstract—We measure and investigate the relationship between
well potential perturbation and MCUs (Multiple Cell Upsets)
by neutron irradiation. Area-efficient cell-based perturbation
detectors are placed adjacent to FFs (Flip-Flops). They can
measure duration time of perturbation with 5 µm spatial
resolution at two voltage levels. The measurement results by
neutron irradiation on a 65-nm bulk CMOS show that 95%
of MCUs occur simultaneously with well-potential perturbation,
while there is very weak relationship between SEUs (Single Event
Upsets) and the perturbation.

Index Terms—Multiple Cell Upset, soft-error, neutron irradi-
ation, sensor, parasitic bipolar effect.

I. Introduction

As a result of process scaling, MCU is becoming one of
the most significant issues for LSI (Large Scale Integration)
reliability since it can flip several stored values on SRAMs
(Static Random Access Memories) and cannot be recovered
by ECC (Error Correction Code) [1]. In a 65-nm process,
MCUs are observed in FFs and increase soft-error rates of
radiation-hardened FFs such as multiple modular redundancy
[2], [3]. SEMTs (Single Event Multiple Transients) are also
reported by neutron and heavy-ion experiments [4], [5]. In
a future advanced process, it is impossible to improve soft-
error resilience of flip-flops without considering such multiple
errors.

The parasitic bipolar effect is considered as a source of
multiple errors. It is caused by well-potential perturbation
due to a particle hit [6], [7]. Since well-potential perturbation
is strongly affected by well-contact density [8], MCU rates
also depend on the distance from well-contacts [9], the angle
of particle [10], [11] and back bias [6]. Ref. [12] also
shows parasitic bipolar effect increases widths of SET (Single
Event Transient) pulses. Parasitic bipolar and well-potential
perturbation are significant phenomena that cause single and
multiple errors. For estimating soft error rate from circuit-level
simulations and improving soft-error resilience, it is necessary
to measure well-potential perturbation caused by a particle hit
and evaluate relationship between well-potential perturbation
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and soft errors. However, no one shows measurement results
of well-potential perturbation caused by a particle hit. Only
simulation results are reported in [7], [8], [11].

In this paper, we show actual measurement results of
well-potential perturbation by neutron irradiation using well-
potential perturbation detectors based on [13]. We also
show the relationship between well-potential perturbations and
MCU occurrences on FFs. Test structures are fabricated in a
65-nm bulk CMOS process and they can measure duration
time of perturbation with 5 µm spatial resolution at two volt-
age levels. Accelerated tests were carried out by the spallation
neutron beam at RCNP (Research Center for Nuclear Physics,
Osaka University).

This paper is organized as follows. Section II explains the
test circuit structure in detail. Section III shows our neutron-
beam experimental setups in RCNP, followed by Section IV
which discusses experimental results. Section V concludes this
paper.

II. Test Circuit Structure
Fig. 1 shows unit circuits of the well-potential perturbation

detector [13]. They consist of AND / OR chains and two
time-to-digital converters (TDCs) based on the ring oscillator
[14]. An input port of each logic gate is connected to the P-
well or N-well through an inverter. If a particle hit on a chip
and well-potential is elevated over the threshold voltage, the
inverter is flipped until well-potential goes back to less than
the threshold voltage. Therefore, well-potential perturbation
is converted to a rectangular pulse by the inverter and it
propagates through the logic chain. Finally, the TDC detects
well-potential perturbation and measures its duration. The
measurable voltage level of the proposed circuit is determined
by the threshold voltage of the inverter, which can be easily
changed by skewing transistor sizes of inverters.

Fig. 2 shows a block diagram of the fabricated test circuit.
The purposes of this test circuit are as follows.

• To measure the relationship between well-potential per-
turbation and MCUs on FFs.

• To reveal that SEU on FFs can be detected by measuring
well-potential perturbation. If SEU is strongly correlated,
it can be detected by proposed circuit and built-in current
sensors [15].

• To obtain the characteristics of well-potential perturbation
caused by a neutron strike such as dependence of the
well-contact distance.
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Fig. 1. Well-Potential perturbation detector composed
of AND chain, OR chain and two T-to-D converters.
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Fig. 2. Block diagram of measurement circuit with detector and shift register.

As shown in Fig. 2, FF arrays and two types of detectors
are implemented every 5 µm. FFs arrays are composed of a
60×100-bit shift register. Fig. 3 shows the schematic diagram
of the implemented FF. Tap-cell arrays are inserted into every
50 µm. The tap-cell is constructed by N-well and P-well
contacts and it stabilizes well-potential. There are 10 columns
of FF arrays and detectors between two tap-cell columns. The
threshold voltages of detectors are 0.4 V and 0.6 V. The latter
threshold voltage, 0.6 V is equal to the threshold voltage value
above which the current flows to PN diode between well and
drain regions. We assume that if an MCU is caused by the
parasitic bipolar effect, the proposed circuit detects 0.6 V
perturbation of well-potential whenever an MCU occurs on
FFs. The 0.4 V perturbation detector is fabricated to detect
SEUs and also to duplicate perturbation detector and remove
wrong detections by an SEU on 0.6 V perturbation detector.

In this test circuit, duration time of well-potential perturba-
tions is measured with 5 µm spatial resolution at two voltage
levels, 0.4 V and 0.6 V. In order to remove the parasitic bipolar
effect on the chains caused by well-potential perturbation, they
are placed on wells isolated from the measured ones.

III. Experimental Setup
Fig. 4 shows a test chip micrograph fabricated in a 65-

nm bulk CMOS process. It is implemented by tapless stan-
dard cells [16] on a twin-well (dual-well) structure. In order
to measure neutron-induced well-potential perturbation and
MCU rates on FFs, a 6,000 (60 × 100) bit shift register is
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Fig. 3. Schematic diagram of implemented FF.

implemented and its total area is 0.5 × 0.6 mm2 on a 2 × 4
mm2 die.

Accelerated tests were carried out at RCNP (Research
Center for Nuclear Physics, Osaka University). Fig. 5 shows
the neutron beam spectrum compared with the terrestrial
neutron spectrum at the ground level of Tokyo. The average
acceleration factor is 3.8 × 108. In order to increase error
counts, we measured 28 chips at the same time using stacked
DUT (Device Under Test) boards. An engineering LSI tester
is used to control DUTs and collect shifted error data. During
irradiation, stored values of the shift register are initialized to
“ALL0” and clock signal is fixed to “1” to keep master latches
on FFs in the hold state. Stored values are retrieved every 5
minutes.
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Fig. 5. Neutron spectrum at RCNP.

IV. Experimental Results and Discussions

In this section, we show measurement results of well-
potential perturbation and soft errors on FFs. To show mea-
surement results shortly, we use these abbreviations as shown
in Table I.

A. Relationship between Well-Potential Perturbations and
Soft-Error on FFs

Table II shows the total number of SEUs, MCUs and WPPs.
MCUvertical shows the number of flips on 2 bit FFs between
vertically-contacted cells, whose master latches are separated
by 0.7 µm. MCUhorizontal shows the number of flips on 2 bit
FFs between horizontally-contacted cells,whose master latches
are separated by 5 µm. The rates of WPPs are about 1 – 4x
bigger than the SEU rate on FFs. It is because well-potential
perturbation may happen without SEUs when a particle hits
on the circuit blocks which do not cause an SEU such as clock
buffers or slave latches in the transparent state.

Fig. 6 shows the relationship between well-potential per-
turbation and soft-errors on FFs. The relationship between

TABLE I
LIST OF ABBREVIATION.

Abbreviation Meaning
WPP well-potential perturbation
WPP[P, 0.4 V] P-well-potential perturbation over 0.4 V
WPP[P, 0.6 V] P-well-potential perturbation over 0.6 V
WPP[N, 0.4 V] N-well-potential perturbation over 0.4 V
WPP[N, 0.6 V] N-well-potential perturbation over 0.6 V

TABLE II
THE TOTAL NUMBER OF WPPS, SEUS AND MCUS ON FFS.

Count
SEU 455
MCUvertical 33
MCUhorizontal 4
WPP[P, 0.4 V] 1514
WPP[P, 0.6 V] 709
WPP[N, 0.4 V] 1633
WPP[N, 0.6 V] 565

TABLE III
AVERAGE DURATION TIME OF WPPS WHEN SOFT-ERROR ON FF OCCURS

WITH WPP.

Average duration time of WPP
[P, 0.4 V] [P, 0.6 V] [N, 0.4 V] [N, 0.6 V]

No error 530 ps 350 ps 670 ps 460 ps
SEU 930 ps 750 ps 920 ps 880 ps
MCUvertical 1070 ps 800 ps 1030 ps 920 ps
MCUhorizontal 1450 ps 1200 ps 1400 ps 1220 ps

WPPs and MCUs are very strong and 95% (35 / 37) of
MCUs occur with WPP[P, 0.6 V]. However, no MCU occurs
with WPP[P, 0.4 V] but without WPP[P, 0.6 V] as shown
in Fig. 6. Therefore, MCUs occur on FFs when the voltage
level of P-well-potential perturbation is under 0.4 V or over
0.6 V. We conclude that all MCUs are not caused by the
identical mechanism. All MCUs except for two are caused
by the parasitic bipolar effect and two MCUs are caused by
different mechanisms such as charge sharing or successive
hits by one ion [3]. In the fabricated technology, the parasitic
bipolar effect is a critical issue for soft-error resilience on
redundant flip-flops.

As shown in Fig. 6 and our previous work [13], WPP is
weakly overlapped with SEUs on FFs. The WPP detector or
bulk built-in current sensor cannot detect all SEU on FFs.
However, it can be used as an error detector for redundant
FFs because WPP is almost overlapped with MCUs on FFs.
The proposed detector and a roll-back function increase soft-
error resilience of a radiation-hard system using redundant FFs
by 20 times since 95% (35 / 37) of MCUs can be detected by
the proposed detector.

Table III shows the average duration time of WPPs when
a soft error on FF occurs with WPP. When MCU occurs on
FFs, well-potential is perturbed for about 1000 ps at 0.4 V.
Especially in the case of horizontal MCU occurrence, it is
perturbed for 1,400 ps at 0.4 V and for 1,200 ps at 0.6 V.

B. Characterization of Well-Potential Perturbations

Here, we show measurement results of WPPs. Fig. 7 shows
an example of measurement results observing an MCU de-
tected by wide-spread WPPs. The test circuit can detect WPP
properly since WPP[P, 0.4 V] (WPP[N, 0.4 V]) always detect
longer WPP than WPP[P, 0.4 V] (WPP[N, 0.6 V]) and longest
durations of WPPs are detected at the same location, #4. Well-
potential is perturbed for 400 – 600 ps at 0.6 V.

Fig. 8 and 9 show the number of well-potential perturbations
by keeping clock signal to “1” during irradiation. X-axis
shows the number of the WPP detectors which detect WPP
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Fig. 6. Venn diagrams showing the relationship between WPPs and MCUs and SEUs. Values in parentheses show the total number of WPP.
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Fig. 8. Spatial range of P-well-potential perturbations.

simultaneously. It is equal to spatial range of WPP since the
WPP detectors are implemented every 5 µm as shown Fig. 2.
Comparing WPPs in P-well and in N-well, the number of
WPP[N, 0.4 V] is larger than that of WPP[P, 0.4 V]. This
is because the transistor width and drain area of pMOS are
larger than that of nMOS. However, the number of WPPs[N,
0.6 V] is smaller than those of WPPs[P, 0.6 V]. We assume that
electrons generated by a neutron strike in N-well are diffused

 0

 200

 400

 600

 800

 1  2  3  4  5  6  7  8  9  10

0.6 V
0.4 V

Spatial Range of Well Potential Perturbation

# 
of

 P
er

tu
rb

at
io

ns

277

140 118

26 3 1

652

367

268

171 131

43
1

Total :
0.4 V = 1633
0.6 V =   565

Fig. 9. Spatial range of N-well-potential perturbations.

Particle hit

[P, 0.4 V]

[P, 0.6 V] 

[N, 0.4 V]

[N, 0.6 V] 

224 211

133 253

245

179

712

693

Fig. 10. Venn diagram showing the relationship among WPPs.

more quickly and N-well-potential is not easily reduced since
the electron mobility is bigger than the hole mobility. The
spatial range of N-well-potential perturbations is wider than
that of P-well-potential perturbations. The difference of the
spatial ranges is also caused by the difference of N-well and
P-well structures. Our test chip is implemented with the twin-
well structure. The depth of N-well is much thinner than P-
well (P-substrate).

Fig. 10 shows relationship between P-well-potential and N-
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Fig. 12. The number of P-well-potential perturbation detected by three
adjacent detectors according to the distance from tap-cells.
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Fig. 13. The number of N-well-potential perturbation detected by one
detector according to the distance from tap-cells.
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Fig. 14. The number of N-well-potential perturbation detected by three
adjacent detectors according to the distance from tap-cells.

well-potential perturbations. About a half of WPPs[N, 0.4 V]
occurs simultaneously with WPP[P, 0.4 V]. We assume that it
is caused by the diffusion current flowing into a PN junction
between P-well and N-well.

Fig. 11–14 show the number of well-potential perturbations
detected by one or three adjacent detectors respectively ac-
cording to the distance from tap-cells. As shown in Fig. 13
and 14, the number of N-well-potential perturbations depends
on the distance from tap-cells. The number of WPP[N, 0.4
V] detected by #1, #9 and #10 detectors is smaller than that
detected by #2 – #8 detectors which are separated from tap-
cell by over 10 µm. In contrast, the number of P-well-potential
perturbations does not depend on the distance from tap-cells.
The #1 detector detects the maximum number of WPP[P, 0.4
V].

The number of P-well-potential perturbation is small de-
tected by the #10 detector which is nearest to tap-cells.
Therefore, even if tap-cells are inserted every 5 µm, MCU rate
on FFs is not reduced drastically. In order to reduce WPPs and
MCU rate on FFs, we should not fabricate a chip composed
of tapless standard cells. It must be composed of conventional
standard cells which have well-contacts under their power and
ground rails.

V. Conclusion

We show measurement results of well potential perturbation
caused by a particle hit from spallation neutron irradiation.
The implemented detectors can measure duration time of well-
potential perturbation with 5 µm spatial resolution at two
voltage levels, 0.4 V and 0.6 V. Experimental results by
neutron irradiation on a 65-nm bulk CMOS show that rate
of well-potential perturbation is 1 to 4 times bigger than the
SEU rate on FFs and perturbation durations of over 1,000 ps
are also measured. 95% of MCUs are detected simultaneously
with well potential perturbation. There is a very strong overlap
between well-potential perturbation and MCUs on FFs. To
reduce MCU rates on FFs or SEU rates on redundant FFs, a
chip must be composed of conventional standard cells which
have well-contacts under their power and ground rails.
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