Title
Intertwining operator and C_2-cofiniteness of modules

(Research into Vertex Operator Algebras, Finite Groups and Combinatorics)

Author(s)
Miyamoto, Masahiko

Citation
数理解析研究所講究録 2011, 1756: 101-105

Issue Date
2011-08

URL
http://hdl.handle.net/2433/171289

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
Intertwining operator and C_2-cofiniteness of modules

Masahiko Miyamoto *
Institute of Mathematics,
University of Tsukuba,
Tsukuba, 305 Japan

Abstract

Let V be a vertex operator algebra and T a V-module. We show that if there are C_2-cofinite V-modules U and W and a surjective (logarithmic) intertwining operator \mathcal{Y} of type $(U \ T \ W)$, then T is also C_2-cofinite. So, when V is simple and $V' \cong V$, then if one of V-modules is C_2-cofinite, then so is V.

1 Introduction

A vertex algebra was introduced by axiomatizing the concept of a Chiral algebra in conformal field theory by Borcherds [1]. It is a triple $(V, Y, 1)$ satisfying the several axioms, where V is a graded vector space $V = \oplus_{i \in \mathbb{Z}} V_i$ over the complex number field \mathbb{C}, $Y(v, z) = \sum_{m \in \mathbb{Z}} v_m z^{-m-1} \in \text{End}(V)[[z, z^{-1}]]$ denotes a vertex operator of $v \in V$ on V, $1 \in V_0$ is a specified element called the vacuum. When V has another specified element $\omega \in V_2$ and V has a lower bound of weights and all homogeneous subspaces are of finite dimensional, then we call V a vertex operator algebra. We set $Y(\omega, z) = \sum_{n \in \mathbb{Z}} L(n) z^{-n-1}$.

For a VOA V-module W, we define $C_2(W) = \{v_{-2}u \mid v, u \in V, \text{wt}(v) \geq 1\}$. When $C_2(W)$ has a finite co-dimension in W, W is called to be C_2-cofinite. A concept of C_2-cofiniteness is originally introduced by Zhu [8] as a technical assumption to prove a modular invariance property of the space of the trace functions on modules. However, we are now recognizing the real meaning and the importance of C_2-cofiniteness. For example, V is C_2-cofinite if and only if all V-modules are \mathbb{N}-gradable. (See [2] and [7] for the proof.) We will use this fact frequently in this paper.

Our main result in this paper is the following:

Theorem 1 Let U be a vertex operator algebra of CFT-type. Let A, B, C be simple \mathbb{N}-graded U-modules and \mathcal{I} a surjective (formal power series) intertwining operator of type $(A \ C \ B)$. If both of A and B are C_h-cofinite as U-modules for $h = 1, 2$, then so is C.

e-mail: miyamoto@math.tsukuba.ac.jp Supported by the Grants-in-Aids for Scientific Research, No. 22340002, The Ministry of Education, Science and Culture, Japan.
2 Preliminary

From the axiom of VOAs, for \(v \in V_r \) and \(u \in V_n \), we have \(v_m u \in V_{r - m - 1 + n} \). Hence there is an integer \(N \) such that \(v_u u = 0 \) for any \(s > N \). This property is called a truncation property. In this paper, we will say that \(v \) is truncated at \(u \) to simplify the terminology.

Set \(V^* = \text{Hom}(V, \mathbb{C}) \) and define a pairing \(\langle \cdot, \cdot \rangle \) on \(V^* \times V \) by \(\langle \xi, v \rangle = \xi(v) \) for \(\xi \in V^* \) and \(v \in V \). For \(T \subseteq V \), Annh\((T) \) denotes an annihilator of \(T \), that is, Annh\((T) = \{ \xi \in V^* \mid \langle \xi, t \rangle = 0 \text{ for all } t \in T \} \). For \(v \in V \) and \(m \in \mathbb{Z} \), an action \(v_m^* \) on \(V^* \) is defined by

\[
\langle (\sum_{m \in \mathbb{Z}} v_m z^{-m-1}) \xi, w \rangle = \langle \xi, Y(e^{L(1)z}(-z^{-2})^{L(0)}v, z^{-1})w \rangle
\]

for \(w \in V \) and \(\xi \in \text{Hom}(V, \mathbb{C}) \), where \(Y^*(v, z) = \sum_{m \in \mathbb{Z}} v_m^* z^{-m-1} \) is called an adjoint operator of \(v \). An important fact is that \((\oplus_{m \in \mathbb{Z}} \text{Hom}(V_m, \mathbb{C}), Y^*)\) becomes a \(V \)-module as they proved in [3]. This module is called a restricted dual of \(V \) and denoted by \(V' \). In particular, \(Y^*(\cdot, z) \) satisfy the Borcherds identity:

\[
\sum_{i=0}^{\infty} \binom{m}{i} (u_{r+i}^* u_{n-i}^* \xi)_{m+n-i} = \sum_{i=0}^{\infty} (-1)^{i} \binom{r}{i} \{ u_{r+m-i}^* v_{n+i}^* \xi - (-1)^r v_{r+n-i}^* u_{m+i}^* \xi \} \quad (2.1)
\]

for any \(m, n, r \in \mathbb{Z} \), \(v, u \in V, \xi \in V' \). We note \(V' = \oplus_{n \in \mathbb{Z}} V_n \) and \(V^* = \prod_{n \in \mathbb{Z}} V_n \). Therefore we can express \(\xi \in V^* \) by \(\prod_n \xi_n \) with \(\xi_n \in \text{Hom}(V_n, \mathbb{C}) \). We call that \(\xi \in V^* \) is "\(L(0) \)-free" if \(\dim \mathbb{C}[L(0)] \xi = \infty \), that is, \(\xi_m \neq 0 \) for infinitely many \(m \). We note that any \(N \)-gradable module does not contain any \(L(0) \)-free elements.

Let go back to (2.1). If \(\xi \in \text{Hom}(V, \mathbb{C}) \), then all terms in (2.1) have the same weight \(\text{wt}(a) + \text{wt}(b) - r - m - n - 2 + t \) and so the Borcherds' identity is also well-defined on \(V^* \), as Li has pointed out in [5]. However, \(V^* \) is not a \(V \)-module because of failure of truncation properties. In order to find a \(V \)-module in \(V^* \), we will start our arguments from one point \(\xi \) in \(V^* \).

Lemma 2 If \(u \) and \(v \) are truncated at \(\xi \), then \(v_m u \) is also truncated at \(\xi \) for any \(m \). In particular, if all elements in \(\Omega \) of \(V \) are truncated at \(\xi \) and \(\langle \Omega \rangle_{VA} = V \), then all elements in \(V \) are truncated at \(\xi \), where \(\langle \Omega \rangle_{VA} \) denotes a vertex subalgebra generated by \(\Omega \).

[Proof] By the assumption, there is an integer \(N \) such that \(u_n \xi = v_n \xi = u_n v = 0 \) for \(n \geq N \). We assert that for \(s \in \mathbb{N} \) and \(n \geq 2N + s \), we have \((u_{N-s} v)_{n} \xi = 0 \). Suppose false and let \(s \) be a minimal counterexample. Substituting \(r = N - s \), \(n = N + s + p \), \(m = N + q \) in (2.1) with \(p, q \geq 0 \), we have

\[
\text{[LeftSide]} = \sum_{i=0}^{\infty} \binom{N+s}{i} (u_{N-s+i} v)_{2N+q+s+p-i} \xi = \sum_{i=0}^{\infty} \binom{N+s}{i} (u_{N-(s-i)} v)_{2N+s-i+p+q} \xi
\]

by the minimality of \(s \). On the other hand, we have:

\[
\text{[RightSide]} = \sum_{i=0}^{\infty} (-1)^i \binom{N-s}{i} (u_{2N-s+i} v)_{2N+s+p-i} \xi - (-1)^{N-s} v_{2N-s+p-i} u_{N+q+i} \xi = 0,
\]
which contradicts the choice of s.

Since $v_n u_m \xi = u_m v_n \xi + \sum_{i=0}^{\infty} \binom{i}{i}(v_i u)_{n+m-i} \xi$, the above lemma also implies:

Lemma 3 If v and u are truncated at ξ, then v is truncated at $u_m \xi$ for any m. In particular, if all elements of V are truncated at ξ, then $<v_1^m, \ldots, v_n^m \xi | u^i \in V, m_i \in \mathbb{Z} >_C$ is a V-module.

As Buhl has shown in [2], if V is C_2-cofinite, then all V-modules are N-gradable and so there are no $L(0)$-free elements at which all elements in V are truncated. Namely, we have proved the following, which we will frequently use.

Lemma 4 Let V be a C_2-cofinite vertex operator algebra and $\xi \in V^*$. If $\Omega \subseteq V$ generates V as a vertex subalgebra and all elements of Ω are truncated on ξ, then ξ is not $L(0)$-free.

For $A, B \subseteq V$, we will often use the notation $A_{[m]}B$ to denote a subspace spanned by $\{a_m b | a \in A, b \in B\}$. We note that if A is a $\mathbb{C}[L(-1)]$-module, then $A_{(-2)}B \subseteq A_{(-2)}B$ for $m \in \mathbb{N}$ since $(L(-1)\alpha - m)b = ma_{-m-1}b$ for $a \in A$ and $b \in B$. Not only V, we use this notation for a pair (U, W) of a VOA U and its module W. For example, we set $C_2(W) = U_{(-2)}W$, where $U^+ = \bigoplus_{k=1}^{\infty} U_k$. We also set $C_1(W) = U_{(-1)}W$. We say that W is C_2-cofinite as a U-module if dim $W/C_{h}(W) < \infty$ for $h = 1, 2$. We note any VOA U is C_1-cofinite as a U-module and so this definition is not equal to the ordinary C_1-cofiniteness.

We start the proof of Theorem 1. Namely, we will prove:

Theorem 1 Let U be a vertex operator algebra of CFT-type. Let A, B, C be simple \mathbb{N}-graded U-modules and I a surjective (formal power series) intertwining operator of type $(A \overset{C}{\leftarrow} B)$. If both of A and B are C_h-cofinite as U-modules for $h = 1, 2$, then so is C.

We note that if U is of CFT-type and an \mathbb{N}-graded U-module $A = \bigoplus_{k=0}^{\infty} A_{r+k}$ is C_1-cofinite, then dim $A_{r+k} < \infty$ for any k since $A_{r+k} \cap C_1(A) = \sum_{s=1}^{k-1} (U_s)_{-1} A_{r+k-s}$ has a finite codimension in A_{r+k}.

In the remainder part of this section, we assume the hypotheses of Theorem 1. Since A and B are C_h-cofinite, there are finite dimensional subspaces $F^1 \subseteq A$ and $F^2 \subseteq B$ such that $A = U_{-h}^+ A + F^1$ and $B = U_{-h}^+ B + F^2$. Let c_A and c_B be conformal weights of A and B, respectively. We may assume that there is an integer N such that $F^1 = \bigoplus_{k=0}^{N} A_{c_A + k}$ and $F^2 = \bigoplus_{k=0}^{N} B_{c_B + k}$. Fix bases $\{p^i \mid i \in I\}$ of F^1 and $\{q^j \mid j \in J\}$ of F^2. In order to prove Theorem 1, we prove the following lemma by applying an idea in [4] to $(C/U_{-h})^* C'$.

Lemma 5 For $p \in A, q \in B$ and $\theta \in \text{Ann}(U_{(-h)}^+ C) \cap C'$,

$$F(\theta, p, q; z) := \langle \theta, I(p, z)q \rangle$$

is a linear combination of $\{F(\theta, p^i, q^j; z) \mid i \in I, j \in J\}$ with coefficients in $\mathbb{C}[z, z^{-1}]$ and we may choose these coefficients independently of the choice of θ.
[Proof] We will prove the assertion by the induction on the total weight $\text{wt}(p)+\text{wt}(q)$. If $\text{wt}(p) > N + c_B$, then $p = \sum_{k} u_k^h a^k$ for some $u_k^h \in U$ and $a^k \in A$. We note this expression does not depend on the choice of θ. So we may assume $p = u_{-h} a$ with $u \in U$ and $a \in A$. Then for $\theta \in \text{Annh}(U_{(-h)}^+)C$, we have:

$$\langle \theta, \mathcal{I}(p, z) q \rangle = \langle \theta, \mathcal{I}(u_{-h} a, z) q \rangle$$
$$= \langle \theta, Y^-(L(-1)^{h-1} u, z) \mathcal{I}(a, z) q + \mathcal{I}(a, z) Y^+(L(-1)^{h-1} u, z) q \rangle$$
$$= \langle \theta, \mathcal{I}(a, z) Y^+(L(-1)^{h-1} u, z) q \rangle,$$

where $Y^-(u, z) = \sum_{m \leq 0} v_m z^{-m-1}$ and $Y^+(u, z) = \sum_{m \geq 0} v_m z^{-m-1}$. This is a reduction on the sum of weights because $Y^+(L(-1)^{h-1} u, z) q$ is a sum of finite terms and all weights of the coefficients are less than $\text{wt}(u) + \text{wt}(q)$.

Similarly, if $\text{wt}(q) > N + c_B$, then we may assume $q = u_{-h} b$ with $u \in U$ and $b \in B$ and

$$\langle \theta, \mathcal{I}(p, z) q \rangle = \langle \theta, \mathcal{I}(p, z) u_{-h} b \rangle$$
$$= \langle \theta, u_{-h} \mathcal{I}(p, z) b \rangle + \sum_{i=0}^{\infty} (\begin{array}{c}-hi \\\\\\\\\\end{array}) z^{-h-i} \mathcal{I}(u_i p, z) b$$
$$= \sum_{i=0}^{\infty} (\begin{array}{c}-hi \\\\\\\\\\end{array}) z^{-h-i} \langle \theta, \mathcal{I}(u_i p, z) b \rangle.$$

Again, these process do not depend on the choice of θ and this is also a reduction on the weights because $\text{wt}(u_{-h} b) + \text{wt}(p)$ for $i \geq 0$. Therefore, $\langle \theta, \mathcal{I}(p, z) q \rangle$ is a linear combination of $\{ \langle \theta, \mathcal{I}(p^i, z) q^j \rangle | i \in I, j \in J \}$ with coefficients in $\mathbb{C}[z, z^{-1}]$. We note the coefficients do not depend on the choice of θ.

Now we are able to prove Theorem 1. By the proof of the above lemma,

$$\frac{d}{dz} F(\theta, p^s, q^t; z) = F(\theta, L(-1)p^s, q^t; z)$$

is a linear combination of $\{ F(\theta, p^i, q^j; z) | i \in I, j \in J \}$ with coefficients in $\mathbb{C}[z, z^{-1}]$ for any $s \in I, t \in J$ and all coefficients do not depend on the choice of θ. Therefore, there is a differential linear equation such that $F(\theta, p^i, q^j)$ are all its solutions for any $s \in I, t \in J$ and θ. Furthermore, since $\{ \mathcal{I}(p, z) q | p \in A, q \in B, z \in \mathbb{Z} \}$ spans C modulo $U_{(-h)}^+ C$ and $\langle \theta, Y(p, z) q \rangle$ are a linear sum of $\langle \theta, \mathcal{I}(p^i, z) q^j \rangle$, $\theta \in C' \cap \text{Annh}(U_{(-h)}^+ C) \rightarrow \prod_{i \in I, j \in J} \langle \theta, \mathcal{I}(p^i, z) q^j \rangle$ is injective. Therefore, we have $\dim C/U_{(-h)} C < \infty$. This completes the proof of Theorem 1.

References

