<table>
<thead>
<tr>
<th>Title</th>
<th>A generalisation of Turyn's construction of self-dual codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nebe, Gabriele</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2011), 1756: 51-59</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2011-08</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/171294</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
A generalisation of Turyn’s construction of self-dual codes.

Gabriele Nebe

Lehrstuhl D für Mathematik, RWTH Aachen University
52056 Aachen, Germany
nebe@math.rwth-aachen.de

ABSTRACT. In [17] Turyn constructed the famous binary Golay code of length 24 from the extended Hamming code of length 8 (see also [10, Theorem 18.7.12]). The present note interprets this construction as a sum of tensor products of codes and uses it to construct certain new extremal (or at least very good) self-dual codes (for example an extremal doubly-even binary code of length 80). The lattice counterpart of this construction has been described by Quebbemann [13]. It was used recently to construct an extremal even unimodular lattice in dimension 72 ([12]).

1 Introduction.

A linear code is a subspace C of \mathbb{F}_q^n, where \mathbb{F}_q denotes the field with q elements. The vector space \mathbb{F}_q^n is equipped with the standard inner product $(x, y) := \sum_{i=1}^{n} x_i y_i$. We call this the standard Euclidean inner product to distinguish it from the Hermitian inner product $h(x, y) := \sum_{i=1}^{n} x_i \overline{y}_i$ where $x \mapsto \overline{x} = x^r$ is the field automorphism of \mathbb{F}_q of order 2 and $q = r^2$. For $C \leq \mathbb{F}_q^n$ the dual code is

$$C^\perp := \{ x \in \mathbb{F}_q^n \mid (x, c) = 0 \text{ for all } c \in C \}.$$

Analogously the hermitian dual code C^\perp,h is the orthogonal space with respect to h. The code C is called (hermitian) self-orthogonal if $C \subseteq C^\perp,h$ and (hermitian) self-dual if $C = C^\perp,h$.

For $x \in \mathbb{F}_q^n$ the weight of x is $wt(x) := |\{ i \mid x_i \neq 0 \}|$ the number of non-zero entries in x. The error correcting properties of a code C are measured by the minimum weight $d(C) := \min\{wt(c) \mid 0 \neq c \in C \}$. A code C is called m-divisible, if the weight of any codeword is a multiple of m. For $q = 2, 3$ the square of any non-zero element in \mathbb{F}_q is 1 and hence any self-orthogonal code in \mathbb{F}_q^n is q-divisible. Similarly $x\overline{x} = 1$ for any $0 \neq x \in \mathbb{F}_4$ so any hermitian self-orthogonal code in \mathbb{F}_4^n is 2-divisible. The Gleason-Pierce theorem shows that there are essentially four interesting families of self-dual m-divisible linear codes over finite fields: The self-dual binary codes (Type I codes) with $m = 2$, the self-dual ternary codes (Type III codes) with $m = 3$, the hermitian self-dual quaternary codes (Type IV codes) with $m = 2$ and the doubly-even self-dual binary codes (Type II codes) with $m = 4$.

Invariant theory of finite complex matrix groups gives the following bounds on the minimum weight of Type T codes of length n:

\[
d(C) \leq \begin{cases}
2 + 2\lfloor\frac{n}{8}\rfloor & \text{if } T = I \\
4 + 4\lfloor\frac{n}{24}\rfloor & \text{if } T = II \\
3 + 3\lfloor\frac{n}{12}\rfloor & \text{if } T = III \\
2 + 2\lfloor\frac{n}{6}\rfloor & \text{if } T = IV
\end{cases}
\]

Using the notion of the shadow of a code, Rains [14] improved the bound for Type I codes

\[
d(C) \leq 4 + 4\lfloor\frac{n}{24}\rfloor + a
\]

where \(a = 2\) if \(n \equiv 22 \pmod{24}\) and \(0\) otherwise. Self-dual codes that achieve these bounds are called extremal. The monograph [11] gives a framework to define the notion of a Type of a self-dual code in much more generality and shows how to apply invariant theory to find upper bounds on the minimum weight of codes of a given Type.

Motivated by the article [13] and the construction of extremal 80-dimensional even unimodular lattices in [2] a generalisation of a construction used by Turyn to construct the Golay code of length 24 from the Hamming code of length 8 is given in this paper. The new codes discovered in this paper are an extremal Type II code of length 80 (at least 15 such codes have been known before) and 5 Euclidean self-dual codes in \(F_4^{36}\) with minimum weight 11. All computations are done with MAGMA [4].

2 A construction for self-dual codes.

Theorem 2.1. Let \(C = C^\perp, D = D^\perp \leq F_q^n\) and \(X \leq F_q^m\) such that \(X \cap X^\perp = \{0\}\). Then

\[
\mathcal{T} := \mathcal{T}(C, D, X) := C \otimes X + D \otimes X^\perp \leq F_q^{nm} = F_q^n \otimes F_q^m
\]

is a self-dual code.

If \(q = 2\) and \(C\) and \(D\) are doubly-even, then \(\mathcal{T}\) is also doubly-even.

Proof. Let \(c, c' \in C\), \(d, d' \in D\), \(x, x' \in X\) and \(y, y' \in X^\perp\). Then

\[
(c \otimes x, c' \otimes x') = 0 \quad \text{since } C \subseteq C^\perp \\
(d \otimes y, d' \otimes y') = 0 \quad \text{since } D \subseteq D^\perp \\
(c \otimes x, d \otimes y) = 0 \quad \text{since } x \in X, y \in X^\perp
\]

so \(\mathcal{T} \subseteq \mathcal{T}^\perp\). Moreover

\[
\dim(\mathcal{T}) = \dim(C \otimes X) + \dim(D \otimes X^\perp) - \dim(C \otimes X \cap D \otimes X^\perp) = nm/2 - 0
\]

since \(X \cap X^\perp = \{0\}\). This implies that \(\mathcal{T}\) is self-dual.

If \(C\) and \(D\) are doubly-even, then the weights of all generators of \(\mathcal{T}\) are multiples of 4 and so also \(\mathcal{T}\) is doubly-even. \(\square\)
Remark 2.2. A similar result holds for hermitian self-dual codes: Let $C = C^{\perp,h}, D = D^{\perp,h} \leq \mathbb{F}_q^n$ and $X \leq \mathbb{F}_q^m$ such that $X \cap X^{\perp,h} = \{0\}$. Then

$$T_h := T_h(C, D, X) := C \otimes X + D \otimes X^{\perp,h} \leq \mathbb{F}_q^{nm} = \mathbb{F}_q^n \otimes \mathbb{F}_q^m$$

is a hermitian self-dual code.

Remark 2.3. Clearly $X + X^{\perp} = \mathbb{F}_q^m$ has minimum weight 1 and therefore $d(T(C, D, X)) \leq d(C \cap D)$. For $q = 2$, any self-dual code contains the all-one vector 1, so the maximum possible minimum weight for binary codes is $d(T(C, D, X)) \leq d(C \cap D) \leq d(\langle 1 \rangle) = n$.

Example 2.4. (binary codes)

1) Turyn's construction of the Golay-code ([17], see [10, Theorem 18.7.12]).
Let $C \cong D \cong h_8 = h_8^{\perp} \leq \mathbb{F}_2^8$ both to be equivalent to the extended Hamming code h_8 of length 8, the unique doubly-even binary self-dual code of length 8. Up to the action of S_8 there is a unique such pair satisfying $C \cap D = \langle 1 \rangle$. Let $X = \langle (1, 1, 1) \rangle$.

Then $T(C, D, X)$ is a doubly-even self-dual code of length 24. From the explicit description

$$T(C, D, X) = \{(c + d_1, c + d_2, c + d_3) \mid c \in C, d_i \in D, d_1 + d_2 + d_3 \in C \cap D = \langle 1 \rangle\}$$

one easily sees that the minimum weight of $T(C, D, X)$ is ≥ 8, so $T(C, D, X)$ is equivalent to the Golay code: Any non-zero word $w \in T(C, D, X)$ has either

1) 1 non-zero component: Then up to permutation w is of the form $(d, 0, 0)$ with $d = 1 \in \mathbb{F}_2^8$ and has weight 8.

2) 2 non-zero components: Then w is equivalent to $(d_1, d_2, 0)$ with non-zero $d_1, d_2 \in D \cong h_8$ and has weight $\geq d(h_8) + d(h_8) = 4 + 4 = 8$.

3) 3 non-zero components: Since all components of w lie in $C + D = \langle 1 \rangle^{\perp}$ they all have even weight, so $wt(w) \geq 2 + 2 + 2 = 6$. The code T is doubly-even, so the weight of w is a multiple of 4, therefore $wt(w) \geq 8$.

2) Let $X \leq \mathbb{F}_2^{10}$ be the code with generator matrix

$$\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{pmatrix}$$

(see [1]). Then X is equivalent to its dual code, $X \cap X^{\perp} = \langle 1 \rangle$ and the minimum weight of X (and of X^{\perp}) is 4. Let C and D be as in 1) and put

$$T := X \otimes C + X^{\perp} \otimes D \leq \mathbb{F}_2^{8u}.$$
Then \mathcal{T} is self-orthogonal of dimension
\[
\dim(X \otimes C) + \dim(X^\perp \otimes D) - \dim((X \otimes C) \cap (X^\perp \otimes D)) = 20 + 20 - 1 = 39.
\]
The three codes T_1, T_2, T_3 with $T \subseteq T_i \subseteq T^\perp$ are all self-dual, two of them are doubly-even and one of these doubly-even self-dual codes has minimum weight 16, hence is an extremal doubly-even code of length 80. Its automorphism group is isomorphic to $PSL_2(7) \times S_6 : 2$, which can be seen as follows:

Let S be stabiliser of D in $\text{Aut}(C)$. Then $S \cong PSL_2(7)$.

The two codes X and X^\perp are the only A-invariant subspaces of \mathbb{F}_2^{10} which have dimension 5, therefore they are interchanged by the normalizer of A in S_{10}, which contains A of index 2.

One therefore gets an obvious action of

\[
H := \langle A \otimes S, \sigma \otimes \tau \rangle \cong PSL_2(7) \times S_6 : 2
\]
on T. Since the three self-dual codes T_1, T_2, T_3 are not equivalent, the automorphism group of T also stabilizes all codes T_i. With MAGMA one checks that $\text{Aut}(T_1) = H$.

To the author's knowledge this code is not described before in the literature.

Example 2.5. Ternary codes:

Let $C \leq \mathbb{F}_3^{12}$ be the linear ternary self-dual code with generator matrix

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 2 & 2 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 2 & 2 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 2 & 1 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 2 & 2 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 1 & 0
\end{pmatrix}
\]

Then C is equivalent to the ternary Golay code of length 12. Let $h \in S_{12}$ be the permutation $(1, 4, 6, 12, 3, 9, 8)(2, 11, 7, 10)$ and let $D = h(C)$. Then $C \cap D$ is of dimension 1 and minimum weight 12.

Choose $X = \langle (1, 1) \rangle \leq \mathbb{F}_3^{2}$. Then $T(C, D, X)$ is a self-dual code of minimum weight 9.

The extremal ternary codes of length 24 are classified in [8]. There are two such codes, one of them is the extended quadratic residue code, the other one is equivalent to $T(C, D, X)$.

Example 2.6. Euclidean self-dual quaternary codes:

Let $C \leq \mathbb{F}_4^{12}$ be the code with generator matrix

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 1 & \omega^2 & 1 & 1 & \omega & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & \omega & 0 & 1 & \omega^2 & \omega & \omega^2 \\
0 & 0 & 1 & 0 & 0 & 0 & \omega^2 & \omega & \omega^2 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & \omega & \omega^2 & \omega & \omega^2 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & \omega^2 & \omega & 1 & 0 & \omega^2 & \omega \\
0 & 0 & 0 & 0 & 0 & 1 & \omega^2 & 1 & 1 & \omega & 1 & 1
\end{pmatrix}
\]
Then C is a euclidean self-dual code equivalent to the extended quadratic residue code of length 12 over \mathbb{F}_4. Putting $D = \pi(C)$ for permutations $\pi \in S_{12}$ running through a right transversal of $\text{Aut}(C)$ in S_{12}, $X = \langle (1, \omega) \rangle \leq \mathbb{F}_4^2$ and $X^\perp = \langle (1, \omega + 1) \rangle$ one constructs 20 monomially inequivalent euclidean self-dual codes in \mathbb{F}_4^{24} with minimum weight 8.

Taking $X = \langle (1, 1, 1) \rangle$ one obtains five monomially inequivalent euclidean self-dual codes in \mathbb{F}_4^6 with minimum weight 11: T_1, T_2 (108 minimum words) and T_3, T_4 and T_5 (1188 minimum words each). These codes are not equivalent to the ones given in [3]. Permutations π_i yielding these codes T_i are

\[
\begin{align*}
\pi_1 &= (1, 10, 7, 2, 11, 8, 5)(3, 4, 12, 9) \\
\pi_2 &= (1, 10, 6, 4, 12, 9, 5)(2, 11, 8, 7) \\
\pi_3 &= (1, 3, 4, 5, 7, 8, 9, 11)(2, 10, 12) \\
\pi_4 &= (1, 6, 11)(2, 5, 8, 12, 4, 7, 10)(3, 9) \\
\pi_5 &= (1, 10, 2, 8)(3, 11, 12, 6)(4, 7, 5, 9)
\end{align*}
\]

The permutation groups are $S_3 \times A_5$ for T_i (i=1,2,3,4) and $S_3 \times PSL_2(11)$ for T_5.

3 An application to lattices.

In [13] Quebbemann describes a construction of integral lattices that is the lattice counterpart of the construction described in the last section. Here a lattice (L, Q) is an even positive definite lattice, i.e. a free \mathbb{Z}-module L equipped with a quadratic form $Q : L \rightarrow \mathbb{Z}$ such that the bilinear form

\[
(\cdot, \cdot) : L \times L \rightarrow \mathbb{Z}, (x, y) := Q(x + y) - Q(x) - Q(y)
\]

is positive definite on the real space $\mathbb{R} \otimes L$. The dual lattice

\[
L^\# := \{x \in \mathbb{R} \otimes L \mid (x, \ell) \in \mathbb{Z} \text{ for all } \ell \in L\}
\]

contains L and the finite abelian group $L^\# / L =: D(L, Q)$ is called the discriminant group.

L is called unimodular, if $L = L^\#$. Note that unimodular quadratic lattices are usually called even unimodular lattices. They correspond to regular positive definite integral quadratic forms.

The minimum of a lattice (L, Q) is

\[
\min(L, Q) := \min\{Q(\ell) \mid 0 \neq \ell \in L\}
\]

which is half of the usual minimum of the lattice.

The theory of modular forms allows to show that the minimum of a unimodular quadratic lattice of dimension n is always

\[
\min(L, Q) \leq \left\lfloor \frac{n}{24} \right\rfloor + 1.
\]

Lattices achieving this bound are called extremal.
For any prime p not dividing the order of $D(L, Q)$ the quadratic form Q induces a non-degenerate quadratic form

$$\overline{Q} : L/pL \to \mathbb{Z}/p\mathbb{Z}, \overline{Q}(\ell + pL) := Q(\ell) + p\mathbb{Z}.$$

From the theory of integral quadratic forms (see for instance [15]) it is well known that this quadratic space $(L/pL, \overline{Q})$ is hyperbolic, so there are maximal isotropic subspaces $A = A^\perp$ and $A' = (A')^\perp$ such that

$$L/pL = A \oplus A', \overline{Q}(A) = \overline{Q}(A') = \{0\}.$$

If M and N are the full preimages of A and A', then $L = M + N, pL = N \cap M$ and $(M, \frac{1}{p}Q)$ and $(N, \frac{1}{p}Q)$ are again integral lattices with the same discriminant group as L. The pair (M, N) is called a polarisation of L (for the prime p).

Theorem 3.1. ([13, Proposition]) Let $(L, Q), p, A, A'$ be as above and let $B \leq A^n$ be a subgroup of A^n. Put

$$B' := (A')^n \cap B^\perp = \{z = (z_1, \ldots, z_n) \in (A')^n \mid \sum_{i=1}^n (b_i, z_i) = 0 \text{ for all (}b_1, \ldots, b_n\text{) } \in B\}.$$

Then $C := B \oplus B' \leq (L/pL)^n$ satisfies $\overline{Q^n}(C) = \{0\}$ and $C = C^\perp$. The lattice

$$\Lambda := \Lambda(L, A, A', B) := \{\ell \in L^n \mid \overline{\ell} \in C\}$$

is integral with respect to $\tilde{Q} := \frac{1}{p}Q^n$ and satisfies $D(\Lambda, \tilde{Q}) \cong D(L, Q)^n$.

Of particular interest is the case where

$$B = \{(x, \ldots, x) \mid x \in A\}$$

is the diagonal subgroup of A^n. Then

$$B' = \{(z_1, \ldots, z_n) \mid z_i \in A' \text{ and } \sum z_i = 0\}$$

and $\Lambda(L, A, A', B)$ will be denoted by $\Lambda(L, A, A', n)$ or equivalently $\Lambda(L, M, N, n)$, where M, N are the full preimages of A, A' respectively.

Lemma 3.2. Let (N, M) be a polarisation of L modulo 2 and assume that $d = \min(L, Q) = \min(N, \frac{1}{2}Q) = \min(M, \frac{1}{2}Q)$. Then

$$\left\lceil \frac{3d}{2} \right\rceil \leq \min(\Lambda(L, M, N, 3), \tilde{Q}) \leq 2d.$$

Proof. The lattice $\Lambda := \Lambda(L, M, N, 3)$ has the following description

$$\Lambda = \{(m + n_1, m + n_2, m + n_3) \mid m \in M, n_1, n_2, n_3 \in N, n_1 + n_2 + n_3 \in 2L\}.$$

We write any element of Λ of Λ as $\lambda = (a, b, c)$ and distinguish according to the number of non-zero components:
1) One non-zero component: Then $\lambda = (a,0,0)$ with $a = 2\ell \in 2L$ so $\bar{Q}(\lambda) = \frac{1}{2}Q(2\ell) = 2Q(\ell) \geq 2d$.

2) Two non-zero components: Then $\lambda = (a,b,0)$ with $a, b \in N$ so $\bar{Q}(\lambda) = \frac{1}{2}Q(a) + \frac{1}{2}Q(b) \geq 2d$.

3) Three non-zero components: Then $\bar{Q}(\lambda) = \frac{1}{2}(Q(a) + Q(b) + Q(c)) \geq \frac{3}{2}d$.

\[\square\]

Examples for $p = 2$ and $n = 3$

1) Take $(L, Q) = E_8$ the unique (even) unimodular lattice of dimension 8. Then for $p = 2$, the quadratic space $L/2L$ has a unique polarisation $L/2L = A \oplus A'$ up to the action of the orthogonal group of L. By Lemma 3.2 the lattice $\Lambda(E_8, A, A', 3)$ is an even unimodular lattice of minimum 2, therefore isomorphic to the Leech lattice, the unique unimodular lattice of dimension 24 with minimum 2. This has been remarked independently in [16], [9], [13].

2) Take $L = \Lambda_{24}$ to be the Leech lattice and take a polarization $L = M+N$, $M \cap N = 2L$ such that $(M, \frac{1}{2}Q) \cong (N, \frac{1}{2}Q) \cong \Lambda_{24}$. Bob Griess [7] remarked that $\Lambda(L, M, N, 3)$ is a 72-dimensional unimodular lattice of minimum 3 or 4 (this also follows from Lemma 3.2). In [6] the number of sublattices $M \leq \Lambda_{24}$ such that $(M, \frac{1}{2}Q) \cong \Lambda_{24}$ is computed. There are $5,163,643,468,800,000$ such sublattices, about $1/68107$ of all maximal isotropic subspaces. Each maximal isotropic subspace A has 2^{96} complements (the number of alternating 12×12 matrices over \mathbb{F}_2). Assuming that approximately $1/68107$ of these complements correspond to lattices that are similar to the Leech lattice, the number of pairs (M, N) such that $M + N = \Lambda_{24}$, $M \cap N = 2\Lambda_{24}$ and $(M, \frac{1}{2}Q) \cong (N, \frac{1}{2}Q) \cong \Lambda_{24}$ is about $5.6 \cdot 10^{30}$.

Dividing by the order of the Conway group, $\text{Aut}(\Lambda_{24})/\{\pm 1\}$, one gets a rough estimate of 10^{12} orbits of such polarisations of the Leech lattice. Presumably most of these orbits will give rise to lattices of minimum 3. In [12] I found one lattice $\Gamma := \Lambda(\Lambda_{24}, M, N, 3)$ to be an extremal unimodular lattice of dimension 72. Here the sublattices $M = \alpha\Lambda_{24}$ and $N = (\alpha + 1)\Lambda_{24}$ are obtained using a hermitian structure of the Leech lattice over the ring of integers $\mathbb{Z}[\alpha]$ in the imaginary quadratic number field of discriminant -7, where $\alpha^2 + \alpha + 2 = 0$. The Leech lattice has nine such Hermitian structures and one of them defines a polarisation giving rise to an extremal unimodular lattice. Γ can also be constructed as the tensor product of the Leech lattice with the unique unimodular $\mathbb{Z}[\alpha]$-lattice P_8 or dimension 3, $\Gamma = \Lambda_{24} \otimes_{\mathbb{Z}[\alpha]} P_8$. This construction allows to find the subgroup $\text{SL}_2(25) \times \text{PSL}_2(7) : 2$ of the automorphism group of Γ.

For more details on this lattice see my preprint [12].

The extremal 72-dimensional lattice Γ described above is constructed using a polarization (M, N) of Λ_{24} that is invariant under $\text{SL}_2(25)$. This group contains an element g of order 13, acting as a primitive 13th root of unity on $L/2L$ and it is interesting to investigate all g-invariant polarisations:
Remark 3.3. Take $L := \Lambda_{24}$ to be the Leech lattice and let $g \in \text{Aut}(L)$ be an element of order 13 (there is a unique conjugacy class of such elements). Then g acts fixed point free on $L/2L$ and hence there are $2^{12}+1$ subspaces of dimension 12 that are invariant under $\langle g \rangle$. The preimage M in L of 41 of these invariant subspaces is similar to the Leech lattice. The normalizer G in $\text{Aut}(L)$ of $\langle g \rangle$ acts on these lattices with orbits of length 36, 4, and 1. In total we obtain 31 representatives (M, N) of G-orbits on the ordered polarizations (M, N) of L modulo 2 such that

$$gN = N, gM = M, (M, \frac{1}{2}Q) \cong (N, \frac{1}{2}Q) \cong (L, Q) \cong \Lambda_{24}.$$

Only one such pair yields a lattice $L(M, N, 3)$ that has minimum 4. This lattice is necessarily isometric to Γ.

I did a similar computation for an element $g \in \text{Aut}(\Lambda_{24})$ acting as a primitive 21st root of 1. All 71 orbits of the normalizer on the ordered “good” polarisations (M, N) yield lattices $L(M, N, 3)$ that contain vectors of norm 3.

Example.
In [2] we used the code $X \leq F_{2}^{10}$ from example 2.4 2) to construct two 80-dimensional extremal unimodular lattices from the E_{8}-lattice.

References

