<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>On estimating multivariate discrete probabilities by pooled incomplete samples and related topics (Statistical Information in Inference and Its Related Topics)</td>
</tr>
<tr>
<td>作者</td>
<td>布能英一郎</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 2011年1758号 184-194</td>
</tr>
<tr>
<td>発行日</td>
<td>2011-08</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/171311</td>
</tr>
<tr>
<td>資料種類</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>テキストバージョン</td>
<td>publisher</td>
</tr>
<tr>
<td>仮元データ</td>
<td>京都大学</td>
</tr>
</tbody>
</table>
On estimating multivariate discrete probabilities by pooled incomplete samples and related topics

関東学院大学 経済学部 布能 英一郎

1. Introduction

Proposition 1.1 k, m は $m < k$ なる自然数。確率変数 X, Y は互いに独立で

$$
X = (X_1, \cdots, X_m, \cdots, X_k) \sim \text{Multinomial}(N_1; p_0, \cdots, p_m, \cdots, p_k), \\
Y = (Y_1, \cdots, Y_m) \sim \text{Multinomial}(N_2; \frac{p_0}{\sum_{j=0}^{m} p_j}, \frac{p_1}{\sum_{j=0}^{m} p_j}, \cdots, \frac{p_m}{\sum_{j=0}^{m} p_j})
$$

とする。この状況下で、Asano(1965) は p_i の MLE が

$$
\hat{p}_i = \begin{cases}
\frac{x_i + y_i}{N_1 (1 + \frac{N_2}{\sum_{j=0}^{m} x_j})}, & \text{if } i \leq m, \\
\frac{x_i}{N_1}, & \text{if } i > m
\end{cases}
$$

であることを示し、更に、\hat{p}_i に関する諸性質を研究した。これと同様な現象は、他の分布の下でもいくつか生じている。

Proposition 1.2 確率変数 X, Y は互いに独立で

$$
X = (X_1, \cdots, X_m, \cdots, X_k) \sim \text{NegativeMultinomial}(r_1; p_1, \cdots, p_m, \cdots, p_k), \\
Y = (Y_1, \cdots, Y_m) \sim \text{NegativeMultinomial}(r_2; \frac{(1-p_0)p_1}{\sum_{j=1}^{m} p_j}, \cdots, \frac{(1-p_0)p_m}{\sum_{j=1}^{m} p_j})
$$

ならば

$$
\hat{p}_i = \begin{cases}
\frac{T_x + T_y}{T_x + T_y + r_1 + r_2} \frac{x_i + y_i}{T_y (1 + \frac{T_y}{\sum_{j=1}^{m} x_j})}, & 1 \leq i \leq m, \\
\frac{T_x + T_y}{T_x + T_y + r_1 + r_2} \frac{x_i}{T_x}, & i > m.
\end{cases}
$$

但し、$T_x = \sum_{j=1}^{k} x_j, \ T_y = \sum_{j=1}^{m} y_j.$

Proposition 1.3 $X_1, \cdots, X_m, \cdots, X_k, Y_1, \cdots, Y_m$ はすべて独立で、

$$
X_i \sim \text{Poisson}(\lambda_i), \ Y_i \sim \text{Poisson}(\frac{\lambda_i}{\lambda_1 + \cdots + \lambda_m + \cdots + \lambda_k})
$$
と仮定。このとき、\(\lambda_i \) のMLE \(\hat{\lambda}_i \) は

\[
\hat{\lambda}_i = \begin{cases}
\frac{T_x + T_y}{2} \frac{x_i + y_i}{T_x \left(1 + \frac{T_y}{\sum_{j=1}^{m} x_j}\right)} & \text{if } i \leq m, \\
\frac{T_x + T_y}{2} \frac{x_i}{T_x} & \text{if } i > m.
\end{cases}
\] (3)

Proposition 1.2, 1.3 にて、MLE が Asano の形と同じようになることを、次表で見るとわかりやすい。

<table>
<thead>
<tr>
<th>Proposition</th>
<th>(i \leq m) に対して</th>
<th>(i \geq m + 1) に対して</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposition 1.1 (多項分布)(Asano)</td>
<td>(\frac{x_i + y_i}{N_1 \left(1 + \frac{N_2}{\sum_{j=0}^{m} x_j}\right)})</td>
<td>(\frac{x_i}{N_1})</td>
</tr>
<tr>
<td>Proposition 1.2 (負の多項分布)</td>
<td>(\frac{T_x + T_y}{T_x + T_y + r_1 + r_2} \frac{x_i + y_i}{T_x \left(1 + \frac{T_y}{\sum_{j=1}^{m} x_j}\right)})</td>
<td>(\frac{T_x + T_y}{T_x + T_y + r_1 + r_2} \frac{x_i}{T_x})</td>
</tr>
<tr>
<td>Proposition 1.3 (ポアソン分布)</td>
<td>(\frac{1}{2} \frac{T_x + T_y}{T_x \left(1 + \frac{T_y}{\sum_{j=1}^{m} x_j}\right)})</td>
<td>(\frac{T_x + T_y}{2} \frac{x_i}{T_x})</td>
</tr>
</tbody>
</table>

このように、MLE が Asano の形と同じようになる例が、多項分布以外にもある。しかしながら、どのような場合に、MLE が Asano が示した形と同じになるのか？について、はっきりした見解を見出せていなかった。これが本研究に着手した動機である。

2. パラメーター変換によって MLE を求める

Proposition 1.1, 1.2, 1.3 いずれの場合においても、MLE を以下のようなパラメーター変換によって求めるのが容易である。

Proposition 1.1 (Asano) の場合 \(u_i = \frac{p_i}{\sum_{j=0}^{m} p_j}, \quad (i \leq m), \quad t_0 = \sum_{j=0}^{m} p_j, \quad t_i = p_i, \quad (i > m) \)

なるパラメーター変換を用いる。逆変換が \(p_i = t_0 u_i, \quad (i \leq m) \) ゆえ

\[
L \propto t_0^{x_0 + \cdots + x_m} t_{m+1}^{y_0 + x_0} \cdots u_m^{x_m}
\]

である。よって \(t_0 = \frac{\sum_{j=0}^{m} x_j}{N_1}, \quad t_j = \frac{x_j}{N_1}, \quad (j > m), \quad u_i = \frac{x_i + y_i}{\sum_{j=0}^{m} (x_j + y_j)} \)。これより直ちに (1) を得る。

Proposition 1.2 の場合 \(p_0 = 1 - (p_1 + \cdots + p_k) \) と定める。そして、パラメーター変換

\[
t = p_0, \quad v = \frac{p_1 + \cdots + p_m}{p_1 + \cdots + p_m + p_{m+1} + \cdots + p_k}, \quad \xi_i = \frac{p_i}{p_1 + \cdots + p_m}, \quad (i = 1, 2, \ldots, m) \\
\eta_j = \frac{p_j}{p_{m+1} + \cdots + p_k}, \quad (j = m + 1, \ldots, k)
\]
を用いる。逆変換が $p_0 = t, p_i = (1-t)u_i (i \leq m), p_i = (1-t)(1-v)\eta_i (i > m)$ であるから $L \propto t^{r_1+r_2}(1-t)^{T_x+T_y}\xi_1^{x_1+y_1}\xi_{m+1}^{x_{m+1}}\cdots\xi_k^{x_k}$. これより

$$
\hat{t} = \frac{r_1 + r_2}{T_x + T_y + r_1 + r_2}, \hat{v} = \frac{\sum_{j=1}^{m} x_j}{T_x}, \hat{\xi}_i = \frac{x_i + y_i}{\sum_{j=1}^{m} (x_j + y_j)}, (i \leq m),
$$

$$
\hat{\eta}_i = \frac{x_i}{\sum_{j=m+1}^{k} x_j}, (i > m)
$$

を得る。$\hat{p}_0 = \hat{t}, \hat{p}_i = (1-\hat{t})\hat{v}\hat{\xi}_i, (i \leq m), \hat{p}_i = (1-\hat{t})(1-\hat{v})\hat{\eta}_i, (i > m)$ に代入することで (2) が得られる。

Proposition 1.3 の場合 便宜的に

$$
\xi_i = (\lambda_1 + \cdots + \lambda_m + \cdots + \lambda_k) \frac{\lambda_i}{\lambda_1 + \cdots + \lambda_m}
$$

と置くと、$X_i \sim \text{Poisson}(\lambda_i), Y_j \sim \text{Poisson}(\xi_j)$ である。変数変換

$$
s = \lambda_1 + \cdots + \lambda_m + \lambda_{m+1} + \cdots + \lambda_k, \quad t_0 = \frac{\lambda_1 + \cdots + \lambda_m}{\lambda_1 + \cdots + \lambda_m + \cdots + \lambda_k},
$$

$$
u_i = \frac{\lambda_i}{\lambda_1 + \cdots + \lambda_m}, (i = 1, 2, \ldots, m), \quad \eta_i = \frac{\lambda_j}{\lambda_{m+1} + \cdots + \lambda_k}, (j = m + 1, \ldots, k)
$$

を用いると、逆変換が $\lambda_i = s t_0 u_i, (i \leq m), \lambda_i = s(1-t_0) t_i, (i > m), \xi_i = \hat{s} t_i$ であるから

$$
L \propto s^{\sum_{i=1}^{m} x_i + \sum_{i=m+1}^{k} x_i} \exp(-2s)u_1^{x_1+y_1} \cdots u_m^{x_m+y_m} t_0^{x_0} (1-t_0)^{\sum_{i=m+1}^{k} x_i} (1-t_0)^{x_{m+1}} \cdots t_k^{x_k}.
$$

これより,

$$
\hat{t}_0 = \frac{\sum_{j=1}^{m} x_j}{\sum_{i=1}^{k} x_j} = \frac{\sum_{j=1}^{m} x_j}{T_x}, \quad \hat{t}_j = \frac{x_j}{\sum_{j=m+1}^{m} x_j}, (j = m + 1, m + 2, \ldots, k),
$$

$$
\hat{u}_i = \frac{x_i + y_i}{\sum_{i=1}^{m} (x_i + y_i)}, (i = 1, 2, \ldots, m), \quad \hat{s} = \frac{T_x + T_y}{2}
$$

が得られる。よって、$\hat{\lambda}_i = \hat{s} t_0 \hat{u}_i, (i \leq m), \hat{\lambda}_i = \hat{s}(1-\hat{t}_0) \hat{t}_i, (i > m)$ により、(3) が得られる。

3. Several extensions

本節では、Proposition 1.3 をいくつかの状況に拡張することを考察する。

Proposition 3.1 l, m, k は $l < m < k$ なる自然数。

$$
\xi_i = (\lambda_1 + \cdots + \lambda_l + \cdots + \lambda_m) \frac{\lambda_i}{\lambda_1 + \cdots + \lambda_l}, (i = 1, 2, \ldots, l)
$$

(4)
と定める。確率変数 \(X_1, \ldots, X_k, Y_1, \ldots, Y_l, Y_{m+1}, \ldots, Y_k \) は互いに独立で \(X_i \sim Poisson(\lambda_i) \) \(\quad (i=1, \ldots, k) \), \(Y_i \sim Poisson(\xi_i) \) \(\quad (i=1, \ldots, l) \), \(Y_i \sim Poisson(\lambda_i) \) \(\quad (i=m+1, \ldots, k) \), ならば、\(\lambda_i \) の MLE \(\hat{\lambda}_i \) は

\[
\hat{\lambda}_i = \begin{cases}
\frac{T_x' + T_y'}{2} \frac{x_i + y_i}{T_x' (1 + \frac{T_y'}{\sum_{i=1}^{l} x_i})} & \text{if } i \leq l, \\
\frac{T_x' + T_y'}{2} \frac{x_i}{T_x'} & \text{if } l < i \leq m, \\
\frac{1}{2} \frac{\sum_{i=m+1}^{k} x_i + y_i}{\sum_{i=m+1}^{k} x_i} & \text{if } i > m
\end{cases}
\]

である。但し \(T_x' = \sum_{i=1}^{m} x_i \), \(T_y' = \sum_{i=1}^{l} y_i \).

これは、パラメータ変換

\[
s = \lambda_1 + \ldots + \lambda_m + \lambda_{m+1} + \ldots + \lambda_s, \quad t = \frac{\lambda_1 + \ldots + \lambda_m}{\lambda_1 + \ldots + \lambda_m + \ldots + \lambda_k},
\]

\[
u = \frac{\lambda_1 + \ldots + \lambda_l}{\lambda_1 + \ldots + \lambda_l}, \quad \theta_i = \frac{\lambda_i}{\lambda_1 + \ldots + \lambda_l}, \quad (i = 1, 2, \ldots, l),
\]

\[
u_i = \frac{\lambda_{l+1} + \ldots + \lambda_m}{\lambda_{l+1} + \ldots + \lambda_m}, \quad (j = l+1, \ldots, m),
\]

\[
u_i = \frac{\lambda_{m+1} + \ldots + \lambda_k}{\lambda_{m+1} + \ldots + \lambda_k}, \quad (j = m+1, \ldots, k)
\]

を用いれば容易に求められる。

Proposition 3.2 \(l < m < k \) および \(\xi_i \) は、Proposition 2.1 と同じ。\(X_1, \ldots, X_k, Y_1, \ldots, Y_l \)および \(Y_{*} \) は互いに独立で、\(X_i \sim Poisson(\lambda_i) \), \(\forall i = 1, \ldots, k \), \(Y_i \sim Poisson(\xi_i) \), \(\forall i = 1, \ldots, l \), \(Y_{*} \sim Poisson(\sum_{i=m+1}^{k} \lambda_i) \), とする。このとき \(\lambda_i \) の MLE は

\[
\hat{\lambda}_i = \begin{cases}
\frac{T_x' + T_y'}{2} \frac{x_i + y_i}{T_x' (1 + \frac{T_y'}{\sum_{i=1}^{l} x_i})} & \text{if } i \leq l, \\
\frac{T_x' + T_y'}{2} \frac{x_i}{T_x'} & \text{if } l < i \leq m, \\
\frac{1}{2} \frac{\sum_{i=m+1}^{k} x_i + y_{*}}{\sum_{i=m+1}^{k} x_i} & \text{if } i > m
\end{cases}
\]

である。

これも、Proposition 3.1 と同じ変数変換で求められる。

Proposition 3.3 \(l < m < k \) は、Proposition 2.1 と同じ。\(\{X_i\}_{i=1,\ldots,k} \) および \(\{Y_i\}_{i=1,\ldots,l} \) は互いに独立で \(X_i \sim Poisson(\lambda_i) \), \(Y_i \sim Poisson(\xi_i) \), ここで

\[
\xi_i = (\lambda_1 + \ldots + \lambda_i + \ldots + \lambda_m) \frac{\lambda_i}{\lambda_1 + \ldots + \lambda_i}, \quad i = 1, 2, \ldots, l.
\]
このとき、λ_i の MLE は

$$
\hat{\lambda}_i = \begin{cases}
 \frac{T_x' + T_y}{2} \frac{x_i + y_i}{T_x' (1 + \frac{T_y}{\sum_{i=1}^{l} x_i})}, & \text{if } i \leq l, \\
 \frac{T_x' + T_y}{2} \frac{x_i}{T_x'}, & \text{if } l < i \leq m, \\
 x_i, & \text{if } i > m
\end{cases}
$$

(8)

である。

Proposition 3.1 で用いたパラメータ変換を用いると、

$$
L \propto s^{T_x + T_y (\sum_{i=1}^{l} x_i)} + T_y (1-t) \sum_{i=m+1}^{k} u \sum_{i=m+1}^{k} x_i \sum_{i=l+1}^{m} (1-u) \sum_{i=l+1}^{m} x_i \\
\prod_{i=1}^{l} \theta_i^{x_i+y_i} \prod_{i=l+1}^{m} \theta_i^{x_i} \prod_{i=m+1}^{k} w_i^{x_i} \times \exp(-s(1+t)).
$$

これより直ちに

$$
\hat{\theta}_i = \frac{x_i + y_i}{\sum_{i=1}^{l} (x_i + y_i)}, \quad \hat{\theta}_i = \frac{x_i}{\sum_{i=l+1}^{m} x_i}, \quad \hat{\psi}_i = \frac{x_i}{\sum_{i=m+1}^{k} x_i},
$$

を得る。s および t の MLE を、対数尤度

$$
\log L = C + (T_x + T_y) \log s + (\sum_{i=1}^{m} x_i + T_y) \log t + (\sum_{i=m+1}^{k} x_i) \log (1-t) - s(1+t)
$$

より求めてみる。尤度方程式は

$$
0 = \frac{\partial L}{\partial s} = \frac{T_x + T_y}{s} - (1+t), \quad 0 = \frac{\partial L}{\partial t} = \sum_{i=1}^{m} x_i + T_y - \sum_{i=m+1}^{k} x_i - s
$$

(9) (10)

であるから、(9) より $s = \frac{T_x + T_y}{1+t}$ を得る。これを (10) に代入することで

$$
0 = \frac{\sum_{i=1}^{m} x_i + T_y}{t} - \frac{\sum_{i=m+1}^{k} x_i}{1-t} - \frac{T_x + T_y}{1+t}
$$

(11)

が得られる。この式は

$$
0 = (- \sum_{i=1}^{m} x_i - T_y - \sum_{i=m+1}^{k} x_i + T_x + T_y) t^2 - (\sum_{i=m+1}^{k} x_i + T_x + T_y) t + \sum_{i=1}^{m} x_i + T_y
$$

$$
= (\sum_{i=m+1}^{k} x_i + T_x + T_y) t + \sum_{i=1}^{m} x_i + T_y
$$

188
と同値なので、\(\hat{t} = \frac{\sum_{i=1}^{m} x_i + T_y}{\sum_{i=m+1}^{k} x_i + T_x + T_y} \) が得られる。これより

\[
\hat{s} = \frac{T_x + T_y}{1 + \hat{t}} = \frac{T_x + T_y}{1 + \frac{\sum_{i=1}^{m} x_i + T_y}{\sum_{i=m+1}^{k} x_i + T_x + T_y}} = \frac{(T_x + T_y)(\sum_{i=m+1}^{k} x_i + T_x + T_y)}{T_x + T_y + \sum_{i=m+1}^{k} x_i + \sum_{i=1}^{m} x_i + T_y}
\]

\[
= \frac{T_x + T_y + \sum_{i=m+1}^{k} x_i}{2}
\]

が得られ、あとは MLE の不変性によって (8) が求められる。

Proposition 3.4 \(\{X_i\}_{i=1, \cdots, k} \) および \(\{Y_i\}_{i=1, \cdots, m} \) \((m < k)\) は互いに独立で、\(X_i \sim \text{Poisson}(\lambda_i) \), \((i = 1, \cdots, k)\), \(Y_i \sim \text{Poisson}(\xi_i) \), \((i = 1, \cdots, l)\), \(Y_i \sim \text{Poisson}(\eta_i) \), \((i = l+1, \cdots, m)\) と仮定する。ここで

\[
\xi_i = (\lambda_1 + \cdots + \lambda_l) \frac{\lambda_i}{\lambda_1 + \cdots + \lambda_l}, \quad (i = 1, 2, \cdots, l),
\]

\[
\eta_i = (\lambda_{m+1} + \cdots + \lambda_k) \frac{\lambda_i}{\lambda_{l+1} + \cdots + \lambda_m}, \quad (i = l+1, l+2, \cdots, m).
\]

そうすると、\(\lambda_i \) の MLE は

\[
\frac{T_x' + T_y'}{2} \frac{x_i + y_i}{T_x'(1 + \frac{T_y'}{\sum_{i=1}^{l} x_i})}, \quad (i \leq l),
\]

\[
\frac{T_x' + T_y'}{2} \frac{x_i + y_i}{T_x'(1 + \frac{\sum_{i=l+1}^{m} y_i}{\sum_{i=l+1}^{m} x_i})}, \quad (l < i \leq m),
\]

\[
\{1 + \frac{\sum_{i=l+1}^{m} y_i}{\sum_{i=m+1}^{k} x_i}\} \frac{x_i}{2}, \quad (i > m)
\]

である。なお、\(T_y' = \sum_{i=l+1}^{m} y_i \).

これも、Proposition 3.1 と同じ変数変換で求められる。

4. Related multinomial models

前章の結果は、多項分布の場合においてもほぼ同様に成り立つ。つまり、Prop. 1.3 の拡張として Prop 3.1 から Prop 3.4 を得たのであるが、ほぼ同様に Prop 1.1 を拡張することがで

Proposition 4.1 \(l, k, m \) は \(m < k \) なる自然数。確率変数 \(X, Y \) は互いに独立で

\[
X = (X_0, \cdots, X_l, \cdots, X_m, \cdots, X_k) \sim \text{Multinomial}(N_1; p_0, \cdots, p_k),
\]

\[
Y = (Y_0, \cdots, Y_l, Y_{m+1}, \cdots, Y_k)
\]

\sim \text{Multinomial}(N_2; \sum_{j=0}^{m} p_j \frac{p_0}{\sum_{j=0}^{l} p_j}, \cdots, \sum_{j=0}^{m} p_j \frac{p_i}{\sum_{j=0}^{l} p_j}, p_{m+1}, \cdots, p_k),
\]
とするとき，\(\hat{p}_i(x, y) \)は

\[
\hat{p}_i(x, y) = \begin{cases}
\frac{N'_i + N'_2}{N_1 + N_2} \frac{x_i + y_i}{N'_1 \left(1 + \frac{N'_2}{\sum_{i=0}^{l} x_i}\right)}, & \text{if } i \leq l, \\
\frac{N'_i + N'_2}{N_1 + N_2} \frac{x_i}{N'_1}, & \text{if } l < i \leq m, \\
x_i + y_i, & \text{if } i > m
\end{cases}
\]

である。但し，\(N'_1 = \sum_{i=0}^{m} x_i, \quad N'_2 = \sum_{i=0}^{l} y_i \)。

Proposition 4.2 1, k, m は \(m < k \) なる自然数。確率変数 \(X, Y \) は互いに独立で

\[\begin{align*}
X &= (X_0, \cdots, X_l, \cdots, X_m, \cdots, X_k) \sim \text{Multinomial}(N_1; p_0, \cdots, p_k), \\
Y &= (Y_0, \cdots, Y_l, Y_{l+1}, \cdots, Y_m) \sim \text{Multinomial}(N_2; \sum_{j=0}^{m} p_{j} \frac{\sum_{j=0}^{l} p_j}{\sum_{j=0}^{l} p_j}, \cdots, \sum_{j=m+1}^{k} p_{j} \frac{\sum_{j=l+1}^{m} p_j}{\sum_{j=l+1}^{m} p_j})
\end{align*}\]

ならば，\(\hat{p}_i(x, y) \)は

\[
\hat{p}_i(x, y) = \begin{cases}
\frac{N'_i + N'_2}{N_1 + N_2} \frac{x_i + y_i}{N'_1 \left(1 + \frac{N'_2}{\sum_{i=0}^{l} x_i}\right)}, & \text{if } i \leq l, \\
\frac{N'_i + N'_2}{N_1 + N_2} \frac{x_i}{N'_1}, & \text{if } l < i \leq m, \\
\frac{\sum_{i=m+1}^{k} x_i + y_i}{N_1 + N_2} \frac{x_i}{\sum_{i=m+1}^{k} x_i}, & \text{if } i > m
\end{cases}
\]

と書ける。

Proposition 4.3 1, k, m は \(m < k \) なる自然数。確率変数 \(X, Y \) は互いに独立で

\[\begin{align*}
X &= (X_0, \cdots, X_l, \cdots, X_m, \cdots, X_k) \sim \text{Multinomial}(N_1; p_0, \cdots, p_k), \\
Y &= (Y_0, \cdots, Y_l, Y_{l+1}, \cdots, Y_m) \sim \text{Multinomial}(N_2; \sum_{j=0}^{m} p_{j} \frac{\sum_{j=0}^{l} p_j}{\sum_{j=0}^{l} p_j}, \cdots, \sum_{j=m+1}^{k} p_{j} \frac{\sum_{j=l+1}^{m} p_j}{\sum_{j=l+1}^{m} p_j})
\end{align*}\]
ならば、p_i は

$$\hat{p}_i(x, y) = \begin{cases} \frac{N'_1 + N'_2}{N_1 + N_2} \frac{x_i + y_i}{N'_1 \left(1 + \frac{N'_2}{\sum_{i=0}^{l} x_i}\right)}, & \text{if } i \leq l, \\ \frac{N'_1 + N'_2}{N_1 + N_2} \frac{x_i + y_i}{N'_1 \left(1 + \frac{\sum_{i=l+1}^{m} y_i}{\sum_{i=m+1}^{k} x_i}\right)}, & \text{if } l < i \leq m, \\ \left\{1 + \frac{\sum_{i=m+1}^{i} y_i}{\sum_{i=m+1}^{k} x_i}\right\} \frac{x_i}{N_1 + N_2}, & \text{if } i > m. \end{cases} \tag{14}$$

である。但し、$N'_1 = \sum_{i=0}^{m} x_i, \ N'_2 = \sum_{i=0}^{l} y_i$。

Proposition 4.1, 4.2 および 4.3 いずれも、パラメータ変数変換

$$t = p_0 + \cdots + p_m, \ u = \frac{p_0 + \cdots + p_l}{p_0 + \cdots + p_m}, \ \theta_i = \frac{p_i}{p_0 + \cdots + p_m} \quad (i \leq l),$$

$$v_i = \frac{p_i}{p_{l+1} + \cdots + p_m} \quad (l < i \leq m), \ w_i = \frac{p_i}{p_{m+1} + \cdots + p_k} \quad (m < i).$$

を用いれば容易。

5. パラメータが樹木構造でない場合

Proposition 1.1 ～ 1.3 は、パラメータが樹木構造で書かれている。これに対して、Proposition 2.1 ～ 2.5 は、パラメータが「完全に樹木構造」とは言えないもの、MLE が exact に求められたものである。そこで、パラメータが樹木構造でないために MLE が exact には求められないが、EM アルゴリズムを用いて MLE が求められるようなモデルについて議論する。

Problem 《X_i》$i=1, \ldots, k$, 《Y_i》$i=1, \ldots, m$, 《Z_i》$i=l, \ldots, k$, および 《W_i》$i=l, \ldots, l, m+1, \ldots, k$ は、互いに独立で、$X_i \sim Poisson(\lambda_i), \ Y_i \sim Poisson(\mu_i), \ Z_i \sim Poisson(\eta_i), \ W_i \sim Poisson(\xi_i)$ とする。但し、

$$\mu_i = (\lambda_1 + \cdots + \lambda_m) \frac{\lambda_i}{\lambda_1 + \cdots + \lambda_l} \quad i = 1, \ldots, l,$$

$$\eta_i = (\lambda_l + \cdots + \lambda_k) \frac{\lambda_i}{\lambda_{l+1} + \cdots + \lambda_m} \quad i = l + 1, \ldots, m,$$

$$\xi_i = (\lambda_1 + \cdots + \lambda_l + \lambda_{m+1} + \cdots + \lambda_k) \frac{\lambda_i}{\lambda_{m+1} + \cdots + \lambda_k} \quad i = m + 1, \ldots, k.$$

このとき、λ_i の MLE を求めたい。

$$s_1 = \sum_{i=1}^{l} \lambda_i, \ s_2 = \sum_{i=l+1}^{m} \lambda_i, \ s_3 = \sum_{i=m+1}^{k} \lambda_i, \ t_i = \frac{\lambda_i}{\sum_{i=1}^{l} \lambda_i} \quad (i \leq l)$$

$$u_i = \frac{\lambda_i}{\sum_{i=l+1}^{m} \lambda_i} \quad (l < i \leq m), \ v_i = \frac{\lambda_i}{\sum_{i=m+1}^{k} \lambda_i} \quad (i \geq m).$$
なるパラメータ変換を用いる。上記の逆変換は

\[\lambda_i = s_1 t_i, \quad (i \leq l), \quad \lambda_i = s_2 u_i, \quad (l < i \leq m), \quad \lambda_i = s_3 v_i, \quad (i \geq m), \]

\[\mu_i = (s_1 + s_2) t_i, \quad (i \leq l), \quad \eta_i = (s_2 + s_3) u_i, \quad (l < i \leq m), \quad \xi_i = (s_1 + s_3) v_i, \quad (i \geq m). \]

これを用いて

\[
L = \left(\prod_{i=1}^{k} \frac{x_i^{\lambda_i}}{\lambda_i!} \exp(-\lambda_i) \right) \left(\prod_{i=1}^{l} \frac{\mu_i^{y_i}}{y_i!} \exp(-\mu_i) \right) \left(\prod_{i=l+1}^{m} \frac{\eta_i^{z_i}}{z_i!} \exp(-\eta_i) \right) \left(\prod_{i=m+1}^{k} \frac{\xi_i^{w_i}}{w_i!} \exp(-\xi_i) \right)
\]

\[
\propto s_1 s_2 s_3 \prod_{i=1}^{l} x_i^{\lambda_i - \mu_i} \prod_{i=l+1}^{m} u_i^{\eta_i - \mu_i} \prod_{i=m+1}^{k} v_i^{\xi_i - \mu_i} \exp(-3(s_1 + s_2 + s_3)).
\]

これより直ちに

\[
\hat{t}_i = \frac{x_i + y_i}{\sum_{i=1}^{l}(x_i + y_i)}, \quad \hat{u}_i = \frac{x_i + z_i}{\sum_{i=l+1}^{m}(x_i + z_i)}, \quad \hat{v}_i = \frac{x_i + w_i}{\sum_{i=m+1}^{k}(x_i + w_i)}
\]

を得る。さて、\(\hat{s}_1, \hat{s}_2, \hat{s}_3 \) は、次のようにして求められる。

\[s = s_1 + s_2 + s_3, \quad \theta_i = \frac{s_i}{s_1 + s_2 + s_3} \]

と変数変換すると、\(s_1 = s\theta_1, \quad s_2 = s\theta_2, \quad s_3 = s\theta_3. \)

そして、表記の簡略化のため

\[T(x) = \sum_{i=1}^{k} x_i, \quad T(y) = \sum_{i=1}^{l} y_i, \quad T(z) = \sum_{i=l+1}^{m} z_i, \quad T(w) = \sum_{i=m+1}^{k} w_i \]

と定めると、

\[
L \propto (s\theta_1)^{\sum_{i=1}^{l} x_i} s^{\sum_{i=l+1}^{m} y_i} (s\theta_3)^{\sum_{i=m+1}^{k} z_i} (s\theta_1 + s\theta_2)^{T(y)} (s\theta_2 + s\theta_3)^{T(z)}
\]

\[
\times (s\theta_1 + s\theta_3)^{T(w)} \exp(-3s)
\]

\[
= s^{T(x)} \exp(-3s) \times (s\theta_1 + s\theta_2)^{T(y)} (s\theta_2 + s\theta_3)^{T(z)} (s\theta_1 + s\theta_3)^{T(w)}.
\]

これより

\[
\hat{s} = \frac{T(x) + T(y) + T(z) + T(w)}{3}.
\]

\[
L(\theta_1, \theta_2, \theta_3) \propto \theta_1^{\sum_{i=1}^{l} x_i} \theta_2^{\sum_{i=l+1}^{m} y_i} \theta_3^{\sum_{i=m+1}^{k} z_i} (s\theta_1 + s\theta_2)^{T(y)} (s\theta_2 + s\theta_3)^{T(z)} (s\theta_1 + s\theta_3)^{T(w)}
\]

であるから、\(\hat{\theta}_i, (i = 1, 2, 3) \) を EM アルゴリズムによって次のように求めることができる。最初に、初期値 \(\theta_i^{(0)} (i = 1, 2, 3) \) を

\[
\theta_1^{(0)} = \frac{\sum_{i=1}^{l} x_i + T(y)/2 + T(w)/2}{T_x + T_y + T_z + T_w}, \quad \theta_2^{(0)} = \frac{\sum_{i=l+1}^{m} x_i + T(y)/2 + T(z)/2}{T_x + T_y + T_z + T_w}, \quad \theta_3^{(0)} = \frac{\sum_{i=m+1}^{k} x_i + T(z)/2 + T(w)/2}{T_x + T_y + T_z + T_w}
\]

に選ぶ。各 \(k = 0, 1, \cdots \) に対して、\(T^{(k)}(y)[1], T^{(k)}(y)[2], T^{(k)}(z)[2], T^{(k)}(z)[3], T^{(k)}(w)[1], T^{(k)}(w)[3] \), (E-step) および \(\theta^{(k+1)}_1, \theta^{(k+1)}_2, \theta^{(k+1)}_3 \), (M-step) を次のように構築する。
E-step : 完全データの条件付期待値を計算するステップ

\[
T^{(k)}(y)[i] = E(T(y)[i] | T(y); \theta_1^{(k)}, \theta_2^{(k)}) = T(y) \frac{\theta_1^{(k)}}{\theta_1^{(k)} + \theta_2^{(k)}}, \quad i = 1, 2,
\]

\[
T^{(k)}(z)[i] = E(T(z)[i] | T(z); \theta_2^{(k)}, \theta_3^{(k)}) = T(z) \frac{\theta_2^{(k)}}{\theta_2^{(k)} + \theta_3^{(k)}}, \quad i = 2, 3,
\]

\[
T^{(k)}(w)[i] = E(T(w)[i] | T(w); \theta_1^{(k)}, \theta_3^{(k)}) = T(w) \frac{\theta_3^{(k)}}{\theta_1^{(k)} + \theta_3^{(k)}}, \quad i = 1, 3.
\]

M-step : 完全データ（の近似値）を使って、パラメータの値を更新するステップ。すなわち、データ \[\sum_{i=1}^{l}x_i + T^{(k)}(y)[1] + T^{(k)}(w)[1], \sum_{i=l+1}^{m}x_i + T^{(k)}(y)[2] + T^{(k)}(z)[2], \sum_{i=m+1}^{k}x_i + T^{(k)}(z)[3] + T^{(k)}(w)[3]\] が与えられたときの尤度を最大にする \[\theta_1^{(k+1)}, \theta_2^{(k+1)}, \theta_3^{(k+1)}\] の値は

\[
\theta_1^{(k+1)} = \frac{\sum_{i=1}^{l}x_i + T^{(k)}(y)[1] + T^{(k)}(w)[1]}{T(x) + T(y) + T(z) + T(w)},
\]

\[
\theta_2^{(k+1)} = \frac{\sum_{i=l+1}^{m}x_i + T^{(k)}(y)[2] + T^{(k)}(z)[2]}{T(x) + T(y) + T(z) + T(w)},
\]

\[
\theta_3^{(k+1)} = \frac{\sum_{i=m+1}^{k}x_i + T^{(k)}(z)[3] + T^{(k)}(w)[3]}{T(x) + T(y) + T(z) + T(w)}.
\]

である。各 \[i = 1, 2, 3\] に対して、EMアルゴリズムにより \[\lim_{k \to \infty} \theta_i^{(k)} = \hat{\theta}_i\] である。MLEのinvariance propertyにより、

\[
\hat{\lambda}_i = \hat{s}_1 \hat{\theta}_i \hat{t}_i \ (i \leq l), \quad \hat{\lambda}_i = \hat{s}_2 \hat{\theta}_i \hat{u}_i \ (l < i \leq m), \quad \hat{\lambda}_i = \hat{s}_3 \hat{\theta}_i \hat{v}_i \ (i > m).
\]

を得る。下記の表は、E-step, M-stepにおける観測された値および完全データと確率との対応を示したものである

<table>
<thead>
<tr>
<th>確率</th>
<th>観測された値</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta_1)</td>
<td>(\sum_{i=1}^{l}x_i)</td>
</tr>
<tr>
<td>(\theta_1 + \theta_2)</td>
<td>(T(y))</td>
</tr>
<tr>
<td>(\theta_2)</td>
<td>(\sum_{i=l+1}^{m}x_i)</td>
</tr>
<tr>
<td>(\theta_2 + \theta_3)</td>
<td>(T(z))</td>
</tr>
<tr>
<td>(\theta_3)</td>
<td>(\sum_{i=m+1}^{k}x_i)</td>
</tr>
<tr>
<td>(\theta_3 + \theta_1)</td>
<td>(T(w))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>セル確率</th>
<th>完全データ</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta_1)</td>
<td>(\sum_{i=1}^{l}x_i + T(y)[1] + T(w)[1])</td>
</tr>
<tr>
<td>(\theta_2)</td>
<td>(\sum_{i=l+1}^{m}x_i + T(y)[2] + T(z)[2])</td>
</tr>
<tr>
<td>(\theta_3)</td>
<td>(\sum_{i=m+1}^{k}x_i + T(z)[3] + T(w)[3])</td>
</tr>
</tbody>
</table>
Acknowledgements

本研究は、科学研究費基盤研究 (C) 課題番号 20500261 の研究成果の一部である。この科学研究費の援助を、記して感謝申し上げます。

References

