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Abstract
There are trials to attack on improved algebraic surface cryptosystem (ASC07) such as rational point

attack by Voloch and substitution of series solution by Iwami, but they are not effective because a certain
polynomial have too many candidates and cannot be determined uniquely in the realistic calculation. In
this paper, we try to improve these attacks. The idea is that performing monomial reduction increases
the number of the system of equations and it decreases the number of candidates of a certain polynomial.
It can be reduced to the combinatorial optimization problem by lattice basis reduction. Unfortunately,
after further investigation, it was found that we couldn’t improve these attacks by the suggested algorithm
because ASC07 has some conditional equations w.r. $t$ . degrees in the public key and encryption step, and
the restrictions prevent the suggested algorithm from increasing the number of the system of equations and
decreasing the the number of candidates of a certain polynomial. However, we can say that the suggested
algorithm in this paper would be useful if there weren’t such a degree ristriction in ASC07. 1)

1 Introduction
An improved algebraic surface cryptosystem (ASC07) [6] is a public key cryptosystem whose original

version is an algebraic surface cryptosystem (ASC04) $[1]$ (See section 2). Ivanov and Voloch suggested
the guideline of substitution attack briefly on ASC07 in [7], but the practical algorithm was not given.
So, strategy of Voloch $s$ rational point attack introduced in [6] is in section 3.1. After that the author
suggested substitution of series solution attack in [9](See section 3.2), but it is no different than one
obtained in Voloch $s$ rational point attack in the sense that a certain polynomial have too many candidates
and cannot be determined uniquely in the realistic calculation (See section 3.3).

In this paper, we try to improve these attacks. In the presentation, the author talked that performing
monomial reduction increases the number of the system of equations and it decreases the number of
candidates of a certain polynomial. It can be reduced to the combinatorial optimization problem by
lattice basis reduction.

Unfortunately, after further investigation, the author realized that some conditional equations w.r. $t$ .
degrees in the public key and encryption step of ASC07 were missing. These restrictions prevent the
suggested algorithm from increasing the number of the system of equations and decreasing the the number
of candidates of a certain polynomial, therefore we cannot improve them.

However, we can say that the suggested algorithm in this paper would be useful if there weren’t such
a degree ristriction in ASC07 (See section 4).
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2 Improved Algebraic Surface Cryptosystem (ASC07)

[Key generation of ASC07]

1. Secret key
$D$ : $(x, y, t)=(u_{x}(t), u_{y}(t), t)$ : a section of $X$

2. Public key

(a) $X(x, y, t)=0$ : a defining equation of a surface $X$ with fibration.

(b) $m(x, y, t)= \sum_{(i,j)\in\Lambda_{m}}m_{ij}(t)x^{i}y^{j}$ :form of a plaintext polynomial, $m_{ij}(t)$ is unknown except for its
degree.

(c) $f(x, y, t)= \sum_{(i,j)\in\Lambda_{j}}f_{ij}(t)x^{i}y^{j}$ :form of a divisor polynomial. $f_{ij}(t)$ is unknown except for its
degree.

Here $\Lambda_{A}$ denotes the set of exponents of nonzero $x^{i}y^{j}$ terms in $A(x, y, t)$ . $m(x, y, t)$ and $f(x, y, t)$ are
chosen so as to satisfying $\Lambda_{m}\subset\Lambda_{f}\Lambda_{X}$ where $\Lambda_{A}\Lambda_{B}=\{(i_{a}+i_{b},j_{a}+j_{b})|(i_{a},j_{a})\in\Lambda_{A}, (i_{b},j_{b})\in\Lambda_{B}\}$ .
The decryption process requires that these keys satisfy the following condition:
$\deg_{x}X(x, y, t)<\deg_{x}m(x, y, t)<\deg_{x}f(x, y, t)$ ,

$\deg_{y}X(x, y, t)<\deg_{y}m(x, y, t)<\deg_{y}f(x, y, t)$ ,
$\deg_{t}X(x, y, t)<\deg_{t}m(x, y, t)<\deg_{t}f(x, y, t)$ ,

and
$(\deg_{x}m(x, y, t), \deg_{y}m(x, y, t), \deg_{t}m(x, y, t))\in\Gamma_{m}$ ,
$(\deg_{x}f(x, y, t), \deg_{y}f(x, y, t), \deg_{t}f(x, y, t))\in\Gamma_{f}$ ,
where $\Gamma_{m}=\{(i,j, k)\in N^{3}|c_{ijk}\neq 0\}$ denotes the set of exponents of nonzero $x^{i}y^{j}t^{k}$ terms in $m(x, y, t)$ ,

so that $m(x, y, t)=\Sigma_{(i,j,k)\in\Gamma_{m}}c_{njk}x^{i}y^{j}t^{k}$ .

[Encryption of ASC07]
Let $m$ be a plain text, and divide $m$ into small blocks as $m=m_{00}||\cdots||m_{xj}||\cdots||m_{IJ}$ where $\forall(i,j)\in$

$\Lambda_{m},$ $|m_{ij}|\leq(|p|-1)(\deg m_{ij}(t)+1)$ . Further, write $\ell_{ij}$ $:=\deg m_{ij}(t)$ and divide $m_{ij}$ into $P_{ij}+1$ blocks
each of which is of $(|p|-1)$ bits: $m_{ij}=m_{ij0}||m_{ij1}||\cdots||m_{ijp_{:j}}$ .

1. Embed $m$ into a plain text polynomial as $m(x, y, t)= \sum_{(i,j)\in\Lambda_{m}}m_{ij}(t)x^{i}y^{j}$ where $m_{ij}(t)$ is given as
$m_{ij}(t)= \sum_{k=0}^{\deg m_{ij(t)}}m_{ijk}t^{k}$

2. Choose a random divisor polynomial $f(x, y, t)$ in accordance with the condition of $f(x, y, t)$ .

3. Choose a random polynomials $r_{1}(x, y, t)$ and $r_{2}(x, y, t)$ that have the same form as $f(x, y, t)$ ; i.e. they

have $\Lambda_{r}=\Lambda_{f}$ and $\deg r_{ij}(t)=\deg f_{ij}(t)$ for $(i,j)\in\Lambda_{f}$ as polynomials in $x$ and $y$ over $k[t]$ .

4. Choose a random polynomials $s_{0}(x, y, t)$ and $s_{1}(x, y, t)$ that have the same form as $X(x,y, t)$ ; i.e. they

have $\Lambda_{\epsilon}=\Lambda_{X}$ and $\deg s_{ij}(t)=degq_{j}(t)$ for $(i,j)\in\Lambda_{X}$ ss polynomials in $x$ and $y$ over $k[t]$ .

5. Construct the cipher polynomials by
$F_{1}(x, y, t)=m(x, y, t)+f(x, y, t)s_{1}(x, y, t)+X(x, y, t)r_{1}(x, y, t)$,
$F_{2}(x, y, t)=m(x, y, t)+f(x, y, t)s_{2}(x, y, t)+X(x, y, t)r_{2}(x, y, t)$.

[Decryption of ASC07] The section $D:(u_{x}(t), u_{y}(t), t)$ satisfies $X(u_{x}(t), u_{y}(t), t)=0$ as they are on
$X(x, y, t)$ .
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1. Substitute $D$ into $F_{i}$ ; $h_{i}(t)=F_{i}(u_{x}(t), u_{y}(t), t)=m(u_{x}(t), u_{y}(t), t)+f(u_{x}(t), u_{y}(t), t)s_{i}(u_{x}(t), u_{y}(t), t)$

2. Compute $h_{1}(t)-h_{2}(t)=f(u_{x}(t), u_{y}(t), t)\{s_{1}(u_{x}(t), u_{y}(t), t)-s_{2}(u_{x}(t), u_{y}(t), t)\}$ .

3. Factorize $h_{1}(t)-h_{2}(t)$ .

4. Find the factor $f(u_{x}(t), u_{y}(t), t)$ as a polynomial of the degree calculated from the form of $f(x, y, t)$

initially.

5. $h_{1}(t)\equiv m(u_{x}(t), u_{y}(t), t)(mod f(u_{x}(t), u_{y}(t), t))$

6. Extract the coefficient $m_{ij}(t)$ from $m(x, y, t)$ by solving linear equations.
Let $m(x, y, t)= \sum_{(i,j,k)\in\Gamma_{m}}m_{ijk}x^{i}y^{j}t^{k}$ , where $m_{ijk}$ ’s are variables. Construct the linear equations by
comparing the coefficients of $t$ in $m(u_{x}(t), u_{y}(t), t)= \sum_{(i,j,k)\in\Gamma_{m}}m_{ijk}u_{x}(t)^{i}u_{y}(t)^{j}t^{k}$ . The left-hand
side is given in the step 5.

7. Extract $m$ form $m_{ij}(t)$ and authenticate the MAC of $m$ . We can make certain of the plaintext $m$ , if
MAC is authenticated, Otherwise, return step 4.

Note that the differences between ASC04 and ASC07 are as follows:

(1) Plain text and random polynomial are modified to be multivariate from $m(t)$ and $f(t)$ to $m(x, y, t)$

and $f(x, y,t)$ .

(2) To avoid reduction attack, the order is modified to be $X(x, y, t)\prec m(x, y, t)\prec f(x, y, t)$ i.e. it becomes
difficult to find $m(x, y, t)$ and $f(x, y, t)$ because they are reduced by $X(x, y, t)$ and lost their original
form.

(3) To decrypt ciphertexts, two cipher polynomials $F_{1}(x, y, t),$ $F_{2}(x, y, t)$ are given.

3 Strategy of Rational Point Attack and Substitution of Series
Solution Attack

3.1 Rational Point Attack (by Voloch)

The algorithm of attack on ASC07 by rational point attack is as follows.

Algorithm 1 (rational point attack by Voloch)
1. Let $F(x, y, t)=F_{1}(x, y, t)-F_{2}(x, y, t)$ i.e.

$F(x, y, t)=f(x, y, t)(s_{1}(x, y, t)-s_{2}(x, y, t))+X(x, y, t)(r_{1}(x, y, t)-r_{2}(x, y, t))$ .

2. Let $g(x, y,t)=f(x, y, t)(s_{1}(x, y, t)-s_{2}(x, y, t))$ and write $g(x, y, t)=\Sigma_{(i,j)\in\Gamma_{g}}g_{ijk}x^{i}y^{j}t^{k}$ where $\Gamma_{g}=$

$\{(i,j, k)\in N^{3}|g_{ijk}\neq 0\}$ denotes the se$t$ of exponents of nonzero $x^{i}y^{j}t^{k}$ terms in $g(x, y, t)$ .

3. Find a large number of rational points $(x\ell, y_{l}, t_{l})$ on $X(x, y, t)=0$ and substitute them into $F(x, y, t)$

to obtain a system of $lin$ear equations in $g_{ijk}\in F_{p}:g(x_{l}, y_{\ell}, t_{1})=F(x\ell, y\ell, t_{l})(\ell=1, \cdots, n)$ .

4. Solve this system for $g_{ijk}$ and fac$torg(x, y, t)$ to find $f(x, y, t)$ .
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$F(x,y,t)=f(x,y,tXs_{1}(x,y,t)-s_{2}(x,y,t))+X(x,y,t)(r_{1}(x,y,t)-r_{2}(x,y,t))$

Figure 1: Voloch $s$ rational point attack

5. Finally, substltute rational points of $X(x, y, t)=0$ lnto

$F_{1}(x, y, t)=m(x, y, t)+f(x, y, t)s_{1}(x, y, t)+X(x, y, t)r_{1}(x, y, t)$

to construct a system of linear equations in the coefficien$ts$ of $m(x, y, t)$ and $s_{1}(x, y, t).$ A $solu$tion to
this system gives $m(x, y, t)$ .

Note that this attack requires many rational points on $X(x, y, t)=0$ , which can be obtained by raising
the field of definition for $X(x, y, t)=0$ . But no matter how many rational points we use, the polynomial
$g(x, y, t)$ $($and so $f(x,$ $y,$ $t)$ and $m(x,$ $y,$ $t))$ cannot be determined uniquely.

3.2 Substitution of Series Solution Attack (by Iwami: Jssac2009)

The algorithm of attack on ASC07 by substitution of series solution is as follows.

Algorithm 2 (substitution of series solution attack by Iwami)
1. Let $F(x, y, t)=F_{1}(x, y, t)-F_{2}(x, y, t)$ i.e.

$F(x, y, t)=f(x, y, t)(s_{1}(x, y, t)-s_{2}(x, y, t))+X(x, y, t)(r_{1}(x, y, t)-r_{2}(x, y, t))$.

2. Let $g(x, y, t)=f(x, y, t)(s_{1}(x, y, t)-s_{2}(x, y,t))$ an$d$ write

$g(x, y,t)=\Sigma_{(t,j)\in\Gamma_{g}}g_{ijk}x^{i}\psi t^{k}$

where $\{g_{ijk}\}$ are unknown elements in $F_{p}$ and $\Gamma_{g}=\{(i,j, k)\in N^{3}|g_{ijk}\neq 0\}$ denotes the set of
exponen$ts$ of nonzero $x^{i}y^{j}t^{k}$ terms in $g(x, y, t)$ .

3. Calculate a series solution of $X(x, y, t)=0$ and let it be $x=\eta(y, t)$ . $Su$bstitute it into $F(x, y, t)$ and
le$t$ it be $F(\eta(y, t), y, t)$ $:= \sum\overline{g_{\alpha\beta}}y^{\alpha}t^{\beta}$ where $\{\overline{g_{\alpha\beta}}\}$ are $kn$own elements in $F_{p}$ , whereas,
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$F(\eta(y, t), y, t)$ $=$ $f(\eta(y_{\{}t), y, t)(s_{1}(\eta(y, t), y, t)-s_{2}(\eta(y, t), y, t))$

$+X(\eta(y, t), y, t)(r_{1}(\eta(y, t), y, t)-r_{2}(\eta(y, t), y, t))$

$\equiv$ $f(\eta(y, t), y, t)(s_{1}(\eta(y, t), y, t)-s_{2}(\eta(y, t), y, t))modS^{e}$

$\equiv$ $g(\eta(y, t), y, t)modS^{e}$

$\equiv$ $\sum g_{ijk}\eta(y, t)^{i}y^{j}t^{k}modS^{e}$

$;=$ $\sum_{\alpha,\beta}(\sum_{(i,j,k)}\eta_{\alpha\beta ijk}g_{ijk})y^{\alpha}t^{\beta}$

where $S^{e}$ is a polynomial ideal as $X(\eta(y, t), y, t)$ becomes $0$ by truncation, $\{\eta_{\alpha\beta ijk}\}$ are known elements
in $F_{p}$ . Now we obtain the system of linear $eq$uations by comparing the coefficients $w.r.t$ . $y^{\alpha}t^{\beta}$ as
$\overline{g_{\alpha\beta}}=\sum_{(i,j,k)}\eta_{\alpha\beta ijk}g_{ijk}$ .

4. Solve this system for $g_{ijk}$ and $factorg(x, y, t)$ to lin$df(x, y, t)$ .
5. Finally, substitute series solution of $X(x, y, t)=0$ into

$F_{1}(x, y, t)=m(x, y, t)+f(x, y, t)s_{1}(x, y, t)+X(x, y, t)r_{1}(x, y, t)$

to constr$uct$ a system of $lin$ear $eq$ uations in the coefficients of $m(x, y, t)$ and $s_{1}(x, y, t)w.r.t$ . $y^{\alpha}t^{\beta}$ .
A solution to this system gives $m(x, y, t)$ . (As for this step, we may use step 5 in Voloch’s rational
point attack.)

But $\{g_{ijk}\}$ cannot be determined uniquely because of the freedom of degree as is shown in Figure 2 and
Figure 4. Note that we can also obtain more equations by raising the field of definition for $X(x, y, t)=0$.
But the polynomial $g(x, y, t)$ $($and so $f(x,$ $y,$ $t)$ and $m(x,$ $y,$ $t))$ cannot be determined uniquely.

Figure 2: substitution of series solution attack
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3.3 Comparison between Substitution of Series Solution Attack and Rational
Point Attack

We compare two methods, i.e. substitution of “series solutions” by the author and “ rational point“

by Voloch with simple example as follows.

Example 1
characteristic: $p=17$ ,
public-key: $X(x, y, t)=12+5t+7t^{2}+3t^{4}+7t^{5}+5t^{6}+13t^{7}+4xy+7txy+10x^{2}y+3tx^{2}y$ ,

plain text polynomial: $m(x, y, t)=11+3t+15t^{2}+2t^{3}+5t^{4}+10t^{5}+2t^{6}+2t^{7}+13t^{8}+(2+11t+12t^{7})x^{3}y^{2}$,

randomly chosen polynomials:
$s_{1}=(4t+2)x^{2}y+(9t+4)xy+12t^{7}+14t^{6}+13t^{3}+14t+4$ ,
$s_{2}=(7t+11)x^{2}y+(3t+3)xy+12t^{7}+t^{6}+7t^{5}+t^{4}+4t^{3}+2t+1$ ,
$r_{1}=(10t^{9}+8t^{8}+16t^{6}+t^{3}+16t+2)x^{4}y^{3}+(14t^{9}+10t^{8}+13t^{5}+6t^{4}+10t^{2}+15)xy^{2}+8t^{9}+3t^{8}+3t^{7}+$

$9t^{3}+7t^{2}+t+15$ ,
$r_{2}=(4t^{9}+8t^{8}+13t^{5}+12t^{4}+4t+16)x^{4}y^{3}+(2t^{9}+t^{8}+2t^{6}+4t^{4}+13t^{3}+2t+8)xy^{2}+16t^{9}+4t^{8}+2t^{7}+$

$3t^{5}+13t^{3}+8t+16$ ,
$f(x, y, t)=(8t^{9}+11t^{8}+10t^{7}+7t^{6}+8t^{5}+16t^{4}+10t^{3}+12t^{2}+7t+16)x^{4}y^{3}+(16t^{9}+16t^{8}+2t^{7}+4t^{6}+$

$4t^{5}+9t^{4}+9t^{3}+t^{2}+7t+14)xy^{2}+5t^{9}+14t+11$ where $\deg(X(x, y, t))<\deg(m(x, y, t))<\deg(f(x, y, t))$ .
cipher-text polynomials:
$F_{1}=m(x, y, t)+f(x, y, t)s_{1}(x, y, t)+X(x, y, t)r_{1}(x, y, t)$ ,
$F_{2}=m(x, y, t)+f(x, y, t)s_{2}(x, y, t)+X(x, y, t)r_{2}(x, y, t)$ , ideal $S_{k}(k=0,1, \cdots 20)$ .

Let $g(x, y, t)= \sum_{(ijk)x^{1}y^{j}t^{k}}x^{i}y^{j}t^{k}(=f(x, y, t)(s_{1}(x, y, t)-s_{2}(x, y, t)))$ where $\{g_{ijk}\}$ are unknowns in
$F_{17}$ . We can see that th$e$ number of nonzero terms of $g(x, y, t)$ is $(\# g_{ijk}=)117$ by the conditions of $\Lambda_{f}$

and $\Lambda_{s}(=\Lambda_{X})$ , and the number of rational poin$ts$ of $X(x, y,t)=0$ is 325 if we don’t raise the field of
deIinitions for $X(x, y, t)$ . So we can construct the system of $eq$uations and $ob$tain rank $=87$ as is shown

in Figure 3 an$d$ Figure 4. $So$ , the dimension of the solution space is $30(=117-87)$ and the candidate of
$g(x, y, t)$ is $17^{30}(=p^{30})$ therefore $g(x, y, t)$ cannot be determined uniquely.

$\{\begin{array}{l}\tilde{T_{l}}\vdots\tilde{T_{3_{-}5}}\end{array}\}$ $=\{\begin{array}{l}T_{|}\vdots T_{3_{-}},\end{array}\}\{\begin{array}{l}\vdots g_{t/l}\vdots\end{array}\}$

$\tilde{T_{1}},$ $\cdots,\tilde{T_{325}}\in F_{p}$

Figure 3: Example of Voloch)$s$ rational point attack
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117 degrees offreedom is 30 $(=117-87)$.
$\{g_{ijk}\}$ cannot be determined uniquely.

Figure 4: Example of substitution of series solutions attack

Note that we can obtain more equations by raising the field of definition for $X(x, y, t)=0$ , but both
method result in the same situation.

4 Improvement

4.1 Algorithm for improvement

After performing Voloch $s$ rational point attack (or Iwami $s$ substitution of series solutions attack),
we try to obtain more equations and decrease the candidate of the solution as follows.

Let $\vec{g}$ be a coefficient vector of $g(x, y, t)$ obtained by Voloch’s rational point attack (step 4. in
Algorithm 1) or Iwami $s$ substitution of series solutions attack (step 4. in Algorithm 2) $)$ .Then we can
express $\vec{g}$ as

$\vec{g}=g_{s}arrow+\sum c_{i}b_{i}arrow$

where $c_{i}$ is an unknown element in $F_{p},$
$g_{s}arrow$ is a general solution and $\{b_{i}\}arrow$ are fundamental solutions of $\vec{g}$ .

Let $\vec{F_{1}}-\vec{F_{2}}$ be a coefficient vector of $F_{1}-F_{2}(=g(x, y, t)+X(x, y, t)(r_{1}(x, y, t)-r_{2}(x, y, t)))$ then we can
express $\vec{F_{1}}-\vec{F_{2}}-\vec{g}$ by performing monomial reduction as

$\vec{F_{1}}-F_{2}-\vec{g}=\Sigma d_{i}p_{i}Xarrowarrow$

where $d_{i}$ is unknown in $F_{p},$ $p_{i}$ is monomial and $p_{i}Xarrow$ is a coefficient vector of $p_{i}X$ . Therefore the problem
results in combinatorial optimization problem calculating $c_{i}$ and $d_{i}$ satisfying

$\vec{F_{1}}-F_{2}=g_{s}+\Sigma_{C_{i}}b_{i}+\Sigma d_{i}p_{i}\vec{X}arrowarrowarrow$ .

Algorithm 3 (Calculation of $c_{i},$ $d_{i}$ and $\vec{g}$ satisfying $\vec{g}=g_{s}arrow+\Sigma c_{i}b_{i}arrow$ and $\vec{F_{1}}-\vec{F_{2}}=\vec{g}+\Sigma d_{i}p_{i}X$ )
$arrow$

1. Let $\vec{g}$ be a coefficient vector of$g(x, y, t)$ obtained by step 4. $in$ Algorithm 1 or step 4. $in$ Algorithm

2, and express $\vec{g}$ as $\vec{g}=g_{\epsilon}arrow+\sum c_{i}b_{i}arrow$ where $c_{i}$ is an unknown element in $F_{p},$
$g_{s}arrow$ is a general solution

and $\{b_{i}\}arrow$ are fundamental solutions $of\vec{g}$ . And calculate $\vec{F_{1}}-\vec{F_{2}}-g_{s}arrow$ .
2. Let $p_{1},$ $\cdots,p_{r}$ be monimials which are th$e$ support $ofr_{1}(x, y, t)-r_{2}(x, y, t)$ calculated by the conditions

of the public key. Then calculate coefficient vec$tor$ of $p_{i}X$ and let it be $p_{i}^{arrow}X(i=1, \cdots, r)$ .

3. Construct the following matrix and calculate th$e$ reduced rattice basis where $a$ is a scaling factor.
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$[| c)’||1_{\overline{\frac{apE}{\#\{g}}}aE_{1+v+r^{1}}\overline{1^{-}+}v\overline{+r}.ijk\overline{\}}T^{-}|\Gamma||.\underline{)}\}.s|\{!_{\mathfrak{i}\#\{g_{i^{-}}}^{\frac{a(\vec{F}_{1}-\vec{F}_{2}-\vec{g}}{a.\vec{b}_{1}}-}||t|||--------\frac{a.\vec{b}_{\nu}}{a\overline{p_{1}X}}jk^{-}]\}$

.

$\}v\}1\}r\}\#\{g_{i_{j}k}\}$

Figure 5: The matrix for calculating reduced lattice basis.

4. By the short vector, we obtain $c_{i},$
$d_{i}$ satisfying

$\vec{F_{1}}-\vec{F_{2}}=g_{s}+\Sigma_{C_{i}}b_{i}+\Sigma d_{i}p_{i}\vec{X}arrowarrow$,

and then we obtain
$\vec{g}=g_{8}+\Sigma_{C_{1}}b_{i}arrowarrow$.

(proof) The problem is to obtain $c_{1}$ and $d_{i}$ satisfying $\vec{F_{1}}-\vec{F_{2}}-g_{8}arrow=\Sigma c_{n}b_{i}arrow+\Sigma d_{i}p_{i}Xrightarrow$ , so it is obvious

$kom$ the theory of combinatorial optimization problem using lattice basis reduction.

4.2 Analysis

As is shown in the previous section, the strategy is to decrease the number of candidates of $g(x, y, t)$ by

increasing the system of equations by monomial reduction which is reduced to a problem of combinatorial
optimization problem using lattice basis reduction. In this section, we see a simple example of Algorithm
3, and analyze it.

Example 2 (Applying Algorithm 3 to Example 1)
$In$ Example 1, the number of candidates of $g(x, y, t)$ is $17^{30}$ . Here, we try to decrease it by applying

Algorithm 3 to Example 1. We construct the following matrix (Figure 6) and calculate the reduced

rattice basis with scaling factor $a=10^{7}$ .
$arrow$

The rank of the matrix is 31 i.e. the number of unknown $c_{\iota}$ and $d_{i}$ satisfying $\vec{F_{1}}-\vec{F_{2}}=g_{\delta}arrow+\Sigma c_{i}b_{i}+\Sigma d_{t}p_{i}X$

is 30, therefore the number ofcandidates of$g(x, y, t)$ is $17^{30}$ which is the same result obtained in Example

1.

In the presentation, some conditional equations w.r. $t$ . degrees between $r_{1},$ $r_{2}$ and $f(x, y, t),$ $s_{1},$ $s_{2}$ and

$X(x, y, t)$ in the public key and encryption step of ASC07 were missing, and it allowed us to success in
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Figure 6: Example of the matrix for calculating reduced lattice basis.

improvement. However, as is shown in the above example, ASC07 has the degree condition, so we cannot
improve them. We can see the details in the following theorems and their proofs.

Theorem 1
As for $\vec{F_{1}}-\vec{F_{2}}=g_{s}arrow+\Sigma_{i=1}^{v}c_{i}b_{i}arrow+\Sigma_{i=1}^{r}d_{i}p_{i}\vec{X}$ in Algorithm 3, the $equ$ation $v=r$ holds true.

(proof) $v$ is the dimension of the solution space of $g(x, y, t)$ obtained by Algorithm 1 or Algorithm 2,
and the number of candidates of $g(x, y, t)$ is $p^{v}$ . $r$ is the number of monomials of $r_{1}(x, y, t)-r_{2}(x, y, t)$

estimated by the condition of $f(x, y, t)$ because $f(x, y, t)(=\Sigma_{(i,j)\in\Lambda_{f}}f_{ij}(t)x^{i}y^{j})$ is unknown but $\Lambda_{f}$ and
$\deg_{t}f_{ij}(t)$ is opened as a part of the public key, and by the encryption algorithm, we know that $\Lambda_{f}=\Lambda_{r}$

and $\deg r_{ij}(t)=\deg f_{ij}(t)$ for $(i, j)\in\Lambda_{f}$ as polynomials in $x$ and $y$ over $k[t]$ . Moreover, $\Lambda_{X}=\Lambda_{s}$ and
$\deg X_{ij}(t)=\deg s_{ij}(t)$ for $(i,j)\in\Lambda_{X}$ as polynomials in $x$ and $y$ over $k[t]$ , and $F_{1}-F_{2}=f(s_{1}-s_{2})+$

$X(r_{1}-r_{2})=g+X(r_{1}-r_{2})=g_{s}+\Sigma_{i=i}^{v}c_{i}b_{i}+X(r_{1}-r_{2})$ . Now the number of candidates of $r_{1}-r_{2}$ is
$p^{r}$ , then the number of candidates of $g(=g_{s}+\Sigma_{i=i}^{v}c_{i}b_{i})$ is also $p^{r}$ , therefore we obtain $v=r$ .

Theorem 2
The rank of the matrix for calculating reduced lattice basis in Figure 5 is $1+v$ , therefore, th$e$ dimension
of the solution space of $g(x, y, t)$ still remains $v$ .

(proof) As we can see in the proof of Theorem 4.2, from some conditions in the public key and encryption
algorithm, the number of candidates of $r_{1}-r_{2}$ i.e. the number of monomials $p_{1},$ $\cdots,p_{r}$ is equals to the
dimension of the solution space of $g(x, y, t)$ . Therefore, the rank of the matrix becomes $1+v(=1+r)$ .

From Theorem 2, the number of candidates of $g(x, y, t)$ doesn $t$ decrease and still remains $p^{v}$ , i.e.
the trial of the improvement of Algorithm 1 and Algorithm 2 failed.
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5 Conclusion
In the presentation, the author talked that performing monomial reduction increases the number of

the system of equations and it decreases the dimension of the solution space of $g(x, y, t)$ . But after further
investigation, the author realized that some conditional equations w.r. $t$ . degrees in the public key and

encryption step of ASC07 were missing. These restrictions keep the supports of $f(s_{1}-s_{2})$ and $X(r_{1}-r_{2})$

in the same form, and prevent the suggested algorithm from increasing the number of the system of
equations and decreasing the the number of candidates of a certain polynomial, therefore the result of
the suggested method is the same as Voloch’s method.

Assume that there weren $t$ such a degree ristriction in ASC07 then increasing the degrees and the

number of terms seem to make it more complicated and secure, but we can say that the suggested
algorithm (Algorithm 2) in this paper would be useful.
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