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Abstract

1 Introduction
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Figure 1: Diagram of the inverse estimation of the acoustic impedance on the interior surfaces of a room.

2 Theoretical framework

Consider the arbitrary subspace of Fig. 1, bounded by $n$ surfaces $S_{n}$ whose acoustic impedance is to be
calculated from $M$ measurements of sound pressure $p_{f}$ taken at aleatory points in the interior sound field
which is generated by a source (speaker) vibrating harmonically with a normal particle velocity $E$ and
frequency $\omega$ . At any point of the surfaces, the normal-incidence acoustic impedance $z_{S}$ is given by the
ratio:

$z_{S}= \frac{p_{S}}{v_{S}}$ . (1)

Thus, $z_{S}$ is related to $p_{f}$ through the surface parameters $p_{S}$ and $v_{S}$ (sound pressure and particle velocity,
respectively), according to the Kirchhoff-Helmholtz expression:

$p_{f}+ \int_{S}(ps\frac{\partial G(r)}{\partial n}+j\omega\rho G(r)vs)dS=0$ , (2)

where $G(r)=e^{-jkr}/4\pi r$ is the Green’s function in $3D$ space, dependent on the distance $r=|r_{S}-r_{f}|$

and the wave number $k=\omega/c$. $\rho$ and $c$ are the density and sound speed of the propagation medium, and
$j=\sqrt{-1}$.

Therefore, in order to estimate $z_{S}$ , equation (2) should be solved for $p_{S}$ and $v_{S}$ . This can be accom-
plished numerically by discretizing the surfaces into a mesh of $N$ elements (e.g. triangles). By doing
so, it can be shown that applying a Boundary Element Method (BEM) ffamework [9] yields two matrix
equations derived $hom$ eq. (2):

$A_{S}p_{S}-B_{S}v_{S}$ $=$ $0$ , (3)
$A_{f}p_{S}-B_{f}v_{S}$ $=$ $-Pf$ . (4)
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Assuming constant interpolation between elements, the coefficients of the complex matrices $A_{S},$ $B_{S}$ and
$A_{f},$ $B_{f}$can be computed ffom:

$a_{i,k}= \int_{S_{k}}\frac{\partial G(r)}{\partial n}$ ds , $b_{i,k}=$ $-j \omega\rho\int_{S_{k}}G(r)$ ds, (5)

here, $s_{k}$ is the surface of the k-th elementm, thus $k=1,2,$ $\ldots,N$ , and $i=1,2,$ $\ldots,$
$N$ for eq. (3) or

$i=1,2,$ $\ldots,$
$M$ for eq. (4). Furhtermore, taking into account the sound source $E$ , eq. 4 can be expanded

to express knom and unknown parameters at each side:

A$fp_{S}-B_{f,un}v_{S}=B_{f,E}v_{E}-p_{f}$ , (6)

were $B_{f,un}$ and $B_{f^{E}}$, represent the coefficients of the unknown velocities $v_{S}$ and of the known sources
$v_{E}$ .

We can proceed now to $simpli\mathfrak{g}_{\Gamma}$ the model by assuming that the surfaces have been clustered by
homogeneity as the geometry of the interior space is known. Moreover, if only the acoustic effect at the
point of incidence on the surface (i.e. local impedance) is considered, then for each surface type, the
acoustic impedance can be approximated by the following relation:

$p_{\underline{S_{1},1}_{\approx}}p_{\underline{S_{i},2}_{\approx}}...$ $\approx^{\underline{p_{S,m}}}$ , (7)
$v_{S,1}$ $vs_{:},2$ $v_{S_{l},m_{i}}$

that is
$zs_{i},1\approx z_{S_{*},2}\approx\ldots\approx z_{S_{1},m_{i}}=Z_{1}$ , (8)

where, $m_{1}$ is the number of discrete element that belongs to the i-th surface. Since $ps$ and $z_{S}$ are
interchangeable, the sound pressure Ps in eq. (6) can be substituted by their impedance equivalent and
the matrix $A_{f}$ can be rearranged according to eq. (7) as follows:

$\langle$A$f.S(_{\sum_{k=1}\tilde{v}_{S,k}}^{\sum^{m_{1}}a_{f,(1,k)}\tilde{v}_{S,k}}m_{1}.$ $\sum_{k=m_{1+1}}^{k=m_{1}+1_{a_{f,(M,k)}}}.’\tilde{v}_{S,k}m_{2}\sum^{m_{2}}a_{ft^{1,k)}}\tilde{v}_{S,k}$

$.\cdots$

$k+1_{:} \sum_{k=m_{n-1}+1^{a_{f,(M,k)}}}^{=m_{n-1}}.\tilde{v}_{S,k}\sum_{m_{\mathfrak{n}}}^{m_{n}}a_{f,t^{1,k)}}\tilde{v}_{S,k}:]$ , (9)

to yield the compact matrix form

$\langle A_{f}\cdot v_{S})z-B_{f,un}v_{S}=\hat{p}_{f}$ , (10)

where
$z=\{Z_{1}, Z_{2}, \ldots, Z_{n}\}^{T}$ , $\hat{p}_{f}=B_{f,E}v_{E}-p_{f}$ . (11)

Hence, the sought acoustic impedances $Z_{n}$ can be found by solving the optimization problem

$z_{\min}=\min\Vert$ $\langle$A$f.vs\rangle$z–B$f,un^{V_{S}-\hat{p}_{f}\Vert}$ (12)

s.t. $Z_{\min}\leq z\leq Z_{\max}$

within the iterative algorithm shown in Algorithm 1. The iteration process is mitialized with an $\ddot{m}tial$

guess $z^{(0)}=\{Z_{1}^{(0)}, Z_{2}^{(0)}, \ldots, Z_{n}^{(0)}\}$ and continued until the condition of eq. (16) is satisfied. For each
iteration, eq. (14) is solved using a global optimization solver based on Sequential Quadratic Programming
implemented on readily available commercial software which allows its straightforward utilization. The
matrices $C$ ’s are assembled as

$c_{1,k}=z_{S,k}\cdot a_{\dot{\tau},k}$ , (17)

and finally, $PG$ and $PF$ are the predicted and the measured sound pressures expressed in decibels. The
predicted sound pressure is computed at the same points of the actual measurements, therefore, the
position of the measurement points is also assumed to be known.
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1: Using $z^{(0)}$ , solve for $v_{S}^{(\ell)}hom$

$(C_{S}-B_{S,un})v_{S}=B_{S,E}v_{E}$

2: while condition (16) is false do
3: Update $z$ by

$z^{(\ell+1)}=\min\Vert$ $\langle A$

$f$
. $v_{S}\}z-B_{f,un}v_{S}-\hat{p}_{f}\Vert$

s.t. $Z_{\min}\leq z\leq Z_{\max}$

4: Update $v_{S}^{(\ell+1)}$ from eq. (13) using $z^{(\ell+1)}$

5: Compute $p_{g}$ by
$p_{g}=B_{f,E}v_{S,E}-(C_{f}-B_{f,un})v_{S}^{(\ell+1)}$

6: Evaluate
$h( p_{9}, p_{f})=\frac{\Vert p_{g}-p_{f}\Vert^{2}}{\Vert p_{f}\Vert^{2}}+\frac{1}{M-1}\frac{\Vert p_{G}-p_{F}\Vert^{2}}{\Vert p_{F}\Vert^{2}}\leq\alpha$

$7$ : $\ellarrow\ell+1$

8: end while

(13)

(14)

(15)

(16)

Algorithm 1: Iterative algorithm for the estimation of $z$

3 Experiments in a room

$p_{f}$ $=$ $|P|ex\mathscr{S}^{(\omega t+\theta_{f})}$ ,
$v_{spk}$ $=$ $|V|ex\dot{d}^{(\omega t+\theta_{\epsilon pk})}$ . (18)

The strength of the sound source $|V|$ is calculated from the laser doppler vibrometer (LDV) which is also
taken as reference $(i.e. \theta_{\epsilon pk}=0)$ to estimate the phase $\theta_{f}$ of the sound pressure $p_{f}$ . The sound pressure
amplitude $|P|$ is directly observed from the microphone signals. The test hequencies fall in the range 80
Hz to 240 Hz with intervals of 20 Hz.

To estimate the acoustic impedance of the surfaces in the room, the geometric model, the measure
data and sound source information was input Algorithm 1. Moreover, the initialization parameters were
set to $z^{(0)}=1$ , i.e. the normalized characteristic acoustic impedance of the media $z=\rho c$, and the bounds
of the solution space were constrained $to-Z_{\max}\leq{\rm Re}\{z\}\leq Z_{\max}and-Z_{\max}\leq{\rm Im}\{z\}\leq z_{\max}$ , where
$Z_{\max}=1000$ (nomalized). The stopping parameter was set as $\alpha=0.01$ . Note that these are empirical
values that should be further investigated to $\iota mify$ a universally applicable criteria.
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video cameras

$\square Z1-$ Floor (carpet)
$G$ Z2-Wa11s (absorbent)
$\square$ Z3 -Ceiling (absorbent)
$\square$ Rigid walls (no panel installed)

a$)$

Figure 2: Experimental room.

4 Experimental results

BOSE 170511 RME Fireface 400

b $)$

Figure 3: Measurement system.

The perfomance of the iterative Algorithm 1 can be observed in the iteration history shown in Fig.
4. Although care has been put to perfom the experiments, none of the analyses achieved the preset
criterion $\alpha=0.01$ (or 1%). The best perfomance is is shom at 120 Hz where an evaluation 21.5 % was
achieved, and 63.3 % at 160 Hz for the worst case. These levels suggest a considerable error introduced
during the geometric modeling stage and$/or$ the measurement process itself. Nevertheless, the Algorithm
1 converged to the stable values of acoustic impedance shown in Fig. 5. Note that the real and imaginary
parts of the complex acoustic impedance is expressed as nomalized values $Z_{n}=Z/\rho c$ . Let us remark
that, although a clear tendency can be appreciate it in the results, a definite validation is achieved by
comparison with the tme values or results obtained by other similar methods. By the moment, the lack
of either motives further research on altemative validation methods.

5 Conclusions
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Figure 4: Iteration history showing the perfor- Figure 5: Estimated values of complex acoustic
mance of the Algorithm lwith the experimental impedance on the surfaces of the experimental
data. room.
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