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Abstract

Measurements of the acoustic characteristics of materials are often needed to make accurate pre-
dictions of sound fields by numerical simulations. From the existent in situ measurement techniques,
those based on inverse boundary models have the advantage to deal with surfaces of arbitrary shape.
However, a drawback with such approaches is their high sensitivity to noise due to a rank deficient
linear model, and although regularization steps have been applied to improve their robustness, their
application in practical situations is still limited. The inverse boundary model presented in this pa-
per takes a different approach to deal with such ill-conditioned model by exploiting knowledge of the
surface geometry which allows us to formulate an iterative optimization procedure with an improved
robustness to noise. This formulation further allows the estimation of the acoustic impedance of
not only a single surface but all the modeled surfaces in an interior space. Moreover, in contrast
to previous papers of similar methods that have reported numerical simulations, this paper shows
results from preliminary experiments in an acoustically controlled environment.

1 Introduction

The traditional measurement techniques with a pair of microphones [1, 2] provide important information
of the acoustic absorption/impedance coeficients of the materials in situ, but on the other hand, their
application is limited to a few practical situations that meet strict geometrical conditions. Most of such
constraints have been overcome with the use of sound pressure and particle velocity sensors recently
introduced into the market [3]. Another branch of methods able to deal with vibro-acoustic objects
of arbitrary shape are those based on inverse boundary formulations. In this kind of approach, the
unknown acoustic parameters at the surface (boundary) are estimated from measurements of the sound
field under influence. To achieve that, the wave propagation (linear) model has to be solved in its
inverse form. Indeed, pioneering attempts to estimate boundary values in such fashion date back to
the appearance of the near-field acoustic holography (NAH) [4], but it was until more recent years that
estimation of the acoustic impedance on the surface of materials was coped by acoustical inverse methods
[5, 6]. Nevertheless, a significant pitfall of these methods is their high sensitivity to noise due to the
rank deficiency of the inverse model. And although engineers have suggested regularization techniques
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Figure 1: Diagram of the inverse estimation of the acoustic impedance on the interior surfaces of a room.

(e.g. Tikhonov regularization) and measurement procedures [7] to deal with such problem, a practical
implementation for in situ acoustic impedance measurement had remained unrealized. In contrast, this
paper reports experimental attempts to estimate the acoustic impedance on the (configurable) surfaces
of a real (experimental) room, by the use of a readily introduced system [8]. Its theoretical framework is
based on the inverse boundary element method formulated as an iterative optimization algorithm which
takes as input the geometrical model of the room, the position and strength of the sound source, and
samples of the sound pressure measured at arbitrary points in the interior field. Further assumptions
on the segmentation of the test surfaces allows simplification of the model leading to a reduction of
dimensionality and improvement of its robustness to noise.

2 Theoretical framework

Consider the arbitrary subspace of Fig. 1, bounded by n surfaces S, whose acoustic impedance is to be
calculated from M measurements of sound pressure py taken at aleatory points in the interior sound field
which is generated by a source (speaker) vibrating harmonically with a normal particle velocity E and
frequency w. At any point of the surfaces, the normal-incidence acoustic impedance zg is given by the
ratio:

25 =25, (1)

vs

Thus, 2g is related to ps through the surface parameters pg and vg (sound pressure and particle velocity,
respectively), according to the Kirchhoff-Helmholtz expression:

ps+ [S (Ps% + jwpG(r) Us) ds$=0, (2)

where G(r) = e=7%" /4xr is the Green’s function in 3D space, dependent on the distance r = Irg — ry|
and the wave number k = w/c. p and c are the density and sound speed of the propagation medium, and
j=v-1

Therefore, in order to estimate zg, equation (2) should be solved for pg and vg. This can be accom-
plished numerically by discretizing the surfaces into a mesh of N elements (e.g. triangles). By doing
80, it can be shown that applying a Boundary Element Method (BEM) framework [9] yields two matrix
equations derived from eq. (2):

Asps—Bsvs = 0, (3)
Afps—Bst = = Ps. (4)
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Assuming constant interpolation between elements, the coefficients of the complex matrices Ag, Bg and
A, Bycan be computed from:

X0 s, bun = ~jup [ G(r) s, (5)

Qg =
Sk
here, si is the surface of the k-th elementm, thus k = 1,2,...,N, and i = 1,2,...,N for eq. (3) or
t=1,2,...,M for eq. (4). Furhtermore, taking into account the sound source F, eq. 4 can be expanded
to express known and unknown parameters at each side:

A;ps — Bfunvs =By gve - py, (6)

were By ., and By g represent the coefficients of the unknown velocities vs and of the known sources
VE.

We can proceed now to simplify the model by assuming that the surfaces have been clustered by
homogeneity as the geometry of the interior space is known. Moreover, if only the acoustic effect at the
point of incidence on the surface (i.e. local impedance) is considered, then for each surface type, the
acoustic impedance can be approximated by the following relation:

ps.'ll ~ pS;,Z .. ~ pS’(,fm , (7)
vshl vsiaz US{,M(
that is
Z5 N z5 2 ® .. R Zgm = i (®)

where, m; is the number of discrete element that belongs to the i-th surface. Since ps and zg are
interchangeable, the sound pressure pg in eq. (6) can be substituted by their impedance equivalent and
the matrix Ay can be rearranged according to eq. (7) as follows:

my ma Mn \
( Sonam sk Y apam sk oo > anam sk
k=1 k=mi+41 k=mpn_1+1
(Af"."S): ' o . ) (9)
my ’ ma ' o Mp ’
Kz asmm) Tsk Y, GpmME) sk e > apmam Tsk
k=1 k=mji+1 k=mp-1+1 /
to yield the compact matrix form
(Ay-vs)z2—Bjsunvs = Py , (10)
where
z={21,2,...,2,}", Py=Bseve—Dps. (11)

Hence, the sought acoustic impedances Z,, can be found by solving the optimization problem

Zmin = min |[(Af - vs)z — ByunVs — Pyl (12)
s.t. Zmin S z< Zmax

within the iterative algorithm shown in Algorithm 1. The iteration process is initialized with an initial
guess z(0 = {Zfo), z§°), .. .,Z,(.O)} and continued until the condition of eq. (16) is satisfied. For each
iteration, eq. (14) is solved using a global optimization solver based on Sequential Quadratic Programming
implemented on readily available commercial software which allows its straightforward utilization. The
matrices C’s are assembled as ’

Ci,k = 28,k * Gik (17)
and finally, pg and pr are the predicted and the measured sound pressures expressed in decibels. The
predicted sound pressure is computed at the same points of the actual measurements, therefore, the
position of the measurement points is also assumed to be known.



1: Using 2(9, solve for vg) from
(Cs— BS,un)VS =Bsgve (13)

2: while condition (16) is false do
3: Update z by

24+ = min|[(A - vs)z — By uavs — Dyl (14)
8.t Zmin £ 2 < Zmax
4 Update vgﬂ) from eq. (13) using z(¢+Y)
5: Compute pg by
‘ py =Bjevse - (C;—B fun)VETY (15)
6: Evaluate
Ipg = psll? 1 llpe —pr|?
h y = S (o] 16
®oP) = SEE T =T el (16)
7 e—f+1

8: end while

Algorithm 1: Iterative algorithm for the estimation of z

3 Experiments in a room

To demonstrate the performance of the Algorithm 1, experiments in an acoustically isolated room were
performed. The objective was to estimate the acoustic impedance of its walls (which are covered by
removable sound-absorbent panels), its carpeted floor, and its ceiling (covered with the same absorbent
panels) distributed as illustrated in Fig. 2. For that purpose, the real-time measurement setup depicted
in Fig. 3 was employed. In brief, the implementation consists of an omnidirectional microphone to
which a light has been attached, and a set of four overhead video cameras. Thus, while the microphone
records samples of sound pressure in the 3D space, the video system keeps track of the light marker
(i.e. the microphone) calculating its 3D position by triangulation. Such real-time implementation has
been introduced previously and demonstrated that is able to record massive number of sound pressure
measurements while allowing a free displacement of the microphone [8]. For each experiment, a pure tone
was output through the sound source (speaker) and M = 2N samples were recorded. Here, the physical
parameters to be measured are the complex sound pressure and vibration of the sound source, expressed
respectively as: :

T |P|expj(wt+9f) ,
Ugpk = lV[expj(“’""B“P“) . (18)

The strength of the sound source | V]| is calculated from the laser doppler vibrometer (LDV) which is also
taken as reference (i.e. 85k = 0) to estimate the phase 6y of the sound pressure py. The sound pressure
amplitude |P| is directly observed from the microphone signals. The test frequencies fall in the range 80
Hz to 240 Hz with intervals of 20 Hz.

To estimate the acoustic impedance of the surfaces in the room, the geometric model, the measure
data and sound source information was input Algorithm 1. Moreover, the initialization parameters were
set to 2(0) = 1, i.e. the normalized characteristic acoustic impedance of the media z = pc, and the bounds
of the solution space were constrained to —Zm,z < Re{2} < Zmee a0d —Zmax < Im{z} < Zpax, where
Zmax = 1000 (normalized). The stopping parameter was set as & = 0.01. Note that these are empirical
values that should be further investigated to unify a universally applicable criteria.
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Figure 2: Experimental room. Figure 3: Measurement system.

4 Experimental results

The performance of the iterative Algorithm 1 can be observed in the iteration history shown in Fig.
4. Although care has been put to perform the experiments, none of the analyses achieved the preset
criterion @ = 0.01 (or 1%). The best performance is is shown at 120 Hz where an evaluation 21.5 % was
achieved, and 63.3 % at 160 Hz for the worst case. These levels suggest a considerable error introduced
during the geometric modeling stage and /or the measurement process itself. Nevertheless, the Algorithm
1 converged to the stable values of acoustic impedance shown in Fig. 5. Note that the real and imaginary
parts of the complex acoustic impedance is expressed as normalized values Z, = Z/pc . Let us remark
that, although a clear tendency can be appreciate it in the results, a definite validation is achieved by
comparison with the true values or results obtained by other similar methods. By the moment, the lack
of either motives further research on alternative validation methods.

5 Conclusions

An acoustical inverse approach for the estimation of in situ acoustic impedance of arbitrary-shape interiors
has been presented. At the core of the method is an iterative optimization algorithm derived from the
boundary element method applied to the geometric model of the room. The algorithm takes as input the
geometric model, a number of sound pressure measurements, and the position and strength of the sound
source. As output, the (normal-incidence) acoustic impedance of all the surfaces are computed at once.
A few similar approaches have been reported before, but none had been tested experimentally. However,
this paper has introduced an algorithm robust to noise enough to allow for experiments. Also, a real-
time measurement implementation that further facilitates experimenting in real rooms was described.
Although a definite validation of the system is in an undergoing-stage, the preliminary experiments have
shown promising results that motivate further investigation.
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Figure 4: Iteration history showing the perfor- Figure 5: Estimated values of complex acoustic
mance of the Algorithm 1 with the experimental impedance on the surfaces of the experimental
data. room.
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