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1 Monodromy of the complex H\’enon Map
We discuss the structure of the parameter space of the complex Hdnon map

$H_{a_{l}c}:\mathbb{C}^{2}arrow \mathbb{C}^{2}:(x,y)\mapsto(x^{2}+c-ay,x)$ , $(a,c)\epsilon \mathbb{C}^{2}$

and the prming front of the real H\’enon map $H_{a,c}|_{R^{2}}$ for $(a,c)\in \mathbb{R}^{2}$ . Let ${}^{t}H$ be the subset of $\mathbb{C}^{2}$ which
consists of the parameter values $(a,c)$ such that $K_{a}^{c},$ $:=\{p\in \mathbb{C}^{2}$ : { $H_{a_{j}c}^{n}(p)|_{n\epsilon Z}$ is bounded} is uniformly
hyperbolic and conjugate to the full shift $\sigma:\Sigma_{2}arrow\Sigma_{2}$ of two symbols. We denote $K_{a}^{\mathbb{C}},$

$\cap \mathbb{R}^{2}$ by $K_{a_{l}c}^{\mathbb{R}}$ .
Let us fix a basepoint $(a_{0},c_{0})\in H$ and a topological conjugacy $h_{0}$ : $K_{a_{0},c_{0}}^{\mathbb{C}}arrow\Sigma_{2}$ . Given a loop

$\gamma:[0,1]arrow H$ based at $(a_{0},c_{0})$, we construct a continuous family of conjugacies $h_{t}:K_{\gamma\langle t)}^{C}arrow\Sigma_{2}$ along $\gamma$ .
Then we define $\rho(\gamma):=h_{1}o(h_{0})^{-1}$ : $\Sigma_{2}arrow\Sigma_{2}$ . It is easy to see that $\rho$ defines a group homomorphism
$\rho$ : $\pi_{1}(H,(a_{0},c_{0}))arrow Aut(\Sigma_{2})$ where $Aut(\Sigma_{2})$ is the group of the automorphisms of $\Sigma_{2}$ . We call $\rho$ the
monodromy homomorphism. Let us denote the image of $\rho$ by $\Gamma$ .

In analogy with the one dimensional complex dynamics, John Hubbard raised the following conjec-
ture, which implies that the topological structure of $j\{$ should be extremely rich.

Hubbard’s Conjecture. $\Gamma\cup\{\sigma\}$ generates $Aut(\Sigma_{2})$ .
Theorem 1. The image $\Gamma$ satisfies thefollowing properties:

(1) $\Gamma$ contains non-trivial elements. In particular, it contains elements of infinite order [I].
(2) $\Gamma$ does NOT contain any odd-time iteration of $\sigma$ . Moreover, with respect to the decomposition $Aut(\Sigma_{2})=$

$Z\langle\sigma\rangle\oplus Inert(\Sigma_{2})$ where Inert$(\Sigma_{2})$ is the subgroup of inert automorphisms, we have $\Gamma\subset Z\langle\sigma^{2}\rangle\oplus$ Inert$(\Sigma_{2})$ .
The proof for the statement (1) is computer-assisted (see [1, 2]). To prove (2), we make use of the

following algebraic condition on the automorphism of $\Sigma_{2}$ .
Let $\phi\in Aut(\Sigma_{2})$ be an automorphism. The n-th sign number $s_{n}(\phi)$ of $\phi$ is the sign $\pm 1$ , of the permutation

induced by $\phi$ on the set of periodic orbits of least period $n$ . For each periodic orbit $U$ of least period $n$,
we choose an arbitrary element $x_{U}\in U$. Since $\phi(x_{U})$ and $x_{\phi(U)}$ are in the same periodic orbit, we can ffid
an integer $k(U)$ such that $\phi(x_{U})=\sigma^{k(1I)}(x_{\phi\langle 1I)})$ . Then we define the n-th gyration number $g_{n}(\phi)\in Z_{n}$ by

$g_{n}( \phi):=\sum_{U}k(U)$ $mod n$

where the sum is taken over all the periodic orbit of least period $n$ .
We say that a map $\phi;\Sigma_{2}arrow\Sigma_{2}$ satisfies the sign-gyration compatibility condition (SGCC, see [3]) if

$g_{2^{n\prime}q}(\phi)=\{\begin{array}{ll}0 if \prod_{j=0}^{m-1}s_{21q}(\phi)=1,2^{m-1}q if \prod_{i=0}^{m-1}s_{2lq}(\phi)=-1.\end{array}$

数理解析研究所講究録
第 1762巻 2011年 134-135 134



for every odd positive integer $q$ and every non-negative integer $m$ . It is known that every inert auto-
morphism satisfies SGCC.

Note that if $\phi$ satisfies SGCC, it follows from the condition for $q=1$ and $m=1$ that $\phi$ interchanges
the two fixed points if and only if it rotates the period 2 orbit. By investigatin$g$ the. coMguration of
bifurcation curves of periodic orbit of period 1 and 2, we can prove that this property also holds for all
automorphisms in $\Gamma$ .
Lemma 2. Let $\phi\in\Gamma$. Then $\phi$ interchanges the twofixed points ifand only $\iota f$ it rotates the period 2 orbit,

Proofof Theorem 1 (2). Let $\phi\in\Gamma$ and assume $\phi=(\sigma^{k},\phi’)$ where $k$ is odd. Then $\sigma^{-k}\circ\phi\in$ Inert$(\Sigma_{2})$ and
therefore satisfies SGCC. However, by Lenuna 2 and the assumption $k$ is odd, $\sigma^{-k_{O}}\phi$ does not satisfy
SGCC. This is a contradiction. $o$

2 Application to pruning fronts of the reat H\’enon Map
The key to relate the monodromy of the complex $H6non$ map to the pruning front of the real H\’enon
map is the followihg theorem.

Theorem 3 (ZA [1]). For $(a,c)\in \mathcal{H}\cap N^{2}$ and a path a connecting $(a_{0},b_{0})$ to $(a,c)$ , define $\gamma:=\alpha\cdot(\overline{\alpha})^{-1}$ . Then
$\rho(\gamma)$ is an involution and $H_{a,c}$ : $K_{a,c}^{R}arrow K_{a,c}^{R}$ is topologically conjugate $i0\sigma|_{Fix(\rho(\gamma))}$ : Fix$(\rho(\gamma))arrow$ Fix $(\rho(\gamma))$ .

By virtue of the theorem, we can define the pruning front for these real H\’enon map by

$P:=([0]\cap(\rho(\gamma))^{-1}[1])\cup([1]\cap(\rho(\gamma))^{-1}[0])$ .

The pruning front $P$ completely determines the dynamics of the real H\’enon map acting on $K_{a,c}^{\mathbb{R}}$ (see [1]).
It is known that SGCC holds for any automorphisms of a full shift which is a composition of finite-

order automorphisms. It follows that

Proposition 4. If $\gamma$ is symmetric $(i.e. \overline{\gamma}=\gamma)$ then $\rho(\gamma)$ musf $satis\beta$ SGCC.

This implies there is a restriction on the shape of pmning fronts. For example, although $0_{1}^{0}10$ is
possible (and in fact, is the pruning front for $a=-1,c=-5$), $0_{1}^{0}100$ is not allowed.

Recently, Nicholas Long proved the. following related result posing an algebraic restriction on subshifts
that can be the fixed point set of an involution.

Theorem 5 (Long [5]). Ifa $SFTY$ is thefixed poinf set ofan inert involution ofa mixing shift offinite type X,
then Per$(X)\backslash Per(Y)$ is the disjoint union of2-cascades.

This theorem suggests that in a hyperbolic SFT that appears via pmning, if a periodic orbit $O$ is
missing, then all periodic orbits on the period-doubling cascade beginning at $O$ should also be missing.
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