Monodromy and bifurcations of the Hénon map

Zin ARAI

Creative Research Institution, Hokkaido University / JST PRESTO

10 Dec 2010, Research on Complex Dynamics and Related Fields Dedicated to Professor Ushiki on his 60th birthday

1 Monodromy of the *complex* Hénon Map

We discuss the structure of the parameter space of the complex Hénon map

$$H_{a,c}: \mathbb{C}^2 \to \mathbb{C}^2: (x, y) \mapsto (x^2 + c - ay, x), \quad (a, c) \in \mathbb{C}^2$$

and the pruning front of the *real* Hénon map $H_{a,c}|_{\mathbb{R}^2}$ for $(a, c) \in \mathbb{R}^2$. Let \mathcal{H} be the subset of \mathbb{C}^2 which consists of the parameter values (a, c) such that $K_{a,c}^{\mathbb{C}} := \{p \in \mathbb{C}^2 : \{H_{a,c}^n(p)\}_{n \in \mathbb{Z}} \text{ is bounded}\}$ is uniformly hyperbolic and conjugate to the full shift $\sigma : \Sigma_2 \to \Sigma_2$ of two symbols. We denote $K_{a,c}^{\mathbb{C}} \cap \mathbb{R}^2$ by $K_{a,c}^{\mathbb{R}}$.

Let us fix a basepoint $(a_0, c_0) \in \mathcal{H}$ and a topological conjugacy $h_0 : K_{a_0,c_0}^{\mathbb{C}} \to \Sigma_2$. Given a loop $\gamma : [0,1] \to \mathcal{H}$ based at (a_0, c_0) , we construct a continuous family of conjugacies $h_t : K_{\gamma(t)}^{\mathbb{C}} \to \Sigma_2$ along γ . Then we define $\rho(\gamma) := h_1 \circ (h_0)^{-1} : \Sigma_2 \to \Sigma_2$. It is easy to see that ρ defines a group homomorphism $\rho : \pi_1(\mathcal{H}, (a_0, c_0)) \to \operatorname{Aut}(\Sigma_2)$ where $\operatorname{Aut}(\Sigma_2)$ is the group of the automorphisms of Σ_2 . We call ρ the monodromy homomorphism. Let us denote the image of ρ by Γ .

In analogy with the one dimensional complex dynamics, John Hubbard raised the following conjecture, which implies that the topological structure of \mathcal{H} should be extremely rich.

Hubbard's Conjecture. $\Gamma \cup \{\sigma\}$ generates Aut(Σ_2).

Theorem 1. The image Γ satisfies the following properties:

- (1) Γ contains non-trivial elements. In particular, it contains elements of infinite order [1].
- (2) Γ does NOT contain any odd-time iteration of σ. Moreover, with respect to the decomposition Aut(Σ₂) = Z(σ)⊕Inert(Σ₂) where Inert(Σ₂) is the subgroup of inert automorphisms, we have Γ ⊂ Z(σ²)⊕Inert(Σ₂).

The proof for the statement (1) is computer-assisted (see [1, 2]). To prove (2), we make use of the following algebraic condition on the automorphism of Σ_2 .

Let $\phi \in \operatorname{Aut}(\Sigma_2)$ be an automorphism. The n-th sign number $s_n(\phi)$ of ϕ is the sign ±1, of the permutation induced by ϕ on the set of periodic orbits of least period *n*. For each periodic orbit *U* of least period *n*, we choose an arbitrary element $x_U \in U$. Since $\phi(x_U)$ and $x_{\phi(U)}$ are in the same periodic orbit, we can find an integer k(U) such that $\phi(x_U) = \sigma^{k(U)}(x_{\phi(U)})$. Then we define the n-th gyration number $g_n(\phi) \in \mathbb{Z}_n$ by

$$g_n(\phi) := \sum_U k(U) \mod n$$

where the sum is taken over all the periodic orbit of least period *n*.

We say that a map $\phi: \Sigma_2 \to \Sigma_2$ satisfies the sign-gyration compatibility condition (SGCC, see [3]) if

$$g_{2^{m}q}(\phi) = \begin{cases} 0 & \text{if} & \prod_{j=0}^{m-1} s_{2^{j}q}(\phi) = 1, \\ & & & \\ 2^{m-1}q & \text{if} & \prod_{j=0}^{m-1} s_{2^{j}q}(\phi) = -1. \end{cases}$$

for every odd positive integer q and every non-negative integer m. It is known that every inert automorphism satisfies SGCC.

Note that if ϕ satisfies SGCC, it follows from the condition for q = 1 and m = 1 that ϕ interchanges the two fixed points if and only if it rotates the period 2 orbit. By investigating the configuration of bifurcation curves of periodic orbit of period 1 and 2, we can prove that this property also holds for all automorphisms in Γ .

Lemma 2. Let $\phi \in \Gamma$. Then ϕ interchanges the two fixed points if and only if it rotates the period 2 orbit.

Proof of Theorem 1 (2). Let $\phi \in \Gamma$ and assume $\phi = (\sigma^k, \phi')$ where *k* is odd. Then $\sigma^{-k} \circ \phi \in \text{Inert}(\Sigma_2)$ and therefore satisfies SGCC. However, by Lemma 2 and the assumption *k* is odd, $\sigma^{-k} \circ \phi$ does not satisfy SGCC. This is a contradiction.

2 Application to pruning fronts of the *real* Hénon Map

The key to relate the monodromy of the complex Hénon map to the pruning front of the real Hénon map is the following theorem.

Theorem 3 (ZA [1]). For $(a, c) \in \mathcal{H} \cap \mathbb{R}^2$ and a path α connecting (a_0, b_0) to (a, c), define $\gamma := \alpha \cdot (\bar{\alpha})^{-1}$. Then $\rho(\gamma)$ is an involution and $H_{a,c} : K_{a,c}^{\mathbb{R}} \to K_{a,c}^{\mathbb{R}}$ is topologically conjugate to $\sigma|_{\text{Fix}(\rho(\gamma))} : \text{Fix}(\rho(\gamma)) \to \text{Fix}(\rho(\gamma))$.

By virtue of the theorem, we can define the pruning front for these real Hénon map by

$$P := ([0] \cap (\rho(\gamma))^{-1}[1]) \cup ([1] \cap (\rho(\gamma))^{-1}[0]).$$

The pruning front *P* completely determines the dynamics of the real Hénon map acting on $K_{q,c}^{\mathbb{R}}$ (see [1]).

It is known that SGCC holds for any automorphisms of a full shift which is a composition of finiteorder automorphisms. It follows that

Proposition 4. If γ is symmetric (i.e. $\bar{\gamma} = \gamma$) then $\rho(\gamma)$ must satisfy SGCC.

This implies there is a restriction on the shape of pruning fronts. For example, although $0_1^0 10$ is possible (and in fact, is the pruning front for a = -1, c = -5), $0_1^0 100$ is not allowed.

Recently, Nicholas Long proved the following related result posing an algebraic restriction on subshifts that can be the fixed point set of an involution.

Theorem 5 (Long [5]). If a SFT Y is the fixed point set of an inert involution of a mixing shift of finite type X, then $Per(X) \setminus Per(Y)$ is the disjoint union of 2-cascades.

This theorem suggests that in a hyperbolic SFT that appears via pruning, if a periodic orbit *O* is missing, then all periodic orbits on the period-doubling cascade beginning at *O* should also be missing.

References

- [1] Z. Arai, On loops in the hyperbolic locus of the complex Hénon map and their monodromies, preprint.
- [2] Z. Arai, On Hyperbolic Plateaus of the Hénon Map, Experimental Mathematics, 16:2 (2007), 181–188.
- [3] M. Boyle and W. Krieger, Periodic points and automorphisms of the shift, *Trans. Amer. Math. Soc.*, 302 (1987), 125–149.
- [4] K. H. Kim, F. W. Roush and J. B. Wagoner, Characterization of inert actions on periodic points, Part I and II, Forum Mathematicum, 12 (2000), 565–602 (I), 671–712 (II).
- [5] N. Long, Fixed point sets of inert involutions, preprint.