0000000000
017620 20110 134-135 134

Monodromy and bifurcations of the Hénon map

Zin ARAI
Creative Research Institution, Hokkaido University / JST PRESTO

10 Dec 2010, Research on Complex Dynamics and Related Fields
Dedicated to Professor Ushiki on his 60th birthday

1 Monodromy of the complex Hénon Map
We discuss the structure of the parameter space of the complex Hénon map
Hpy : Q- C:(x,y) = (P +c—ay,x), (ac)eC?

and the pruning front of the real Hénon map H,|g: for (4,c) € R%. Let H be the subset of C? which
consists of the parameter values (4, ¢) such that KT, := {p € C? : (H},(p)}nez is bounded) is uniformly
hyperbolic and conjugate to the full shift o : £, — I, of two symbols. We denote KS, N R? by KR..

Let us fix a basepoint (a9,co) € H and a topological conjugacy o : KL, — L. Given a loop
y :[0,1] — H based at (ag, co), we construct a continuous family of conjugacies h; : K;:(t) — I, along y.
Then we define p(y) := hy o (hg)™! : L — L. It is easy to see that p defines a group homomorphism
p : m1(H, (o, c0)) = Aut(Z;) where Aut(Z;) is the group of the automorphisms of Z;. We call p the
monodromy homomorphism. Let us denote the image of p by I’.

In analogy with the one dimensional complex dynamics, John Hubbard raised the following conjec-
ture, which implies that the topological structure of H should be extremely rich.

Hubbard’s Conjecture. I' U {0} generates Aut(Z>).
Theorem 1. The image I satisfies the following properties:

(1) T contains non-trivial elements. In particular, it contains elements of infinite order [1).
(2) T does NOT contain any odd-time iteration of . Moreover, with respect to the decomposition Aut(X;) =
Z(o)®Inert(L;) where Inert(L,) is the subgroup of inert automorphisms, we have I’ ¢ Z{c?)® Inert(Z,).

The proof for the statement (1) is computer-assisted (see [1, 2]). To prove (2), we make use of the
following algebraic condition on the automorphism of Z,.

Let ¢ € Aut(Z;) be an automorphism. The n-th sign number s,,(¢) of ¢ is the sign +1, of the permutation
induced by ¢ on the set of periodic orbits of least period n. For each periodic orbit U of least period n,
we choose an arbitrary element xy; € U. Since ¢(xu) and x¢(y) are in the same periodic orbit, we can find

an integer k(U) such that ¢(xy) = 0 (x4). Then we define the n-th gyration number g.(¢) € Z, by
gu(@®) =) k() mod n
U

where the sum is taken over all the periodic orbit of least period 7.
We say that a map ¢ : £, — I, satisfies the sign-gyration compatibility condition (SGCC, see [3]) if

m-1
0 if _]:% Syg(@) =1,
gang(P) = ;1;1
2mg if I'I‘](; S2iq(@) = —1.
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for every odd positive integer g and every non-negative integer m. It is known that every inert auto-
morphism satisfies SGCC.

Note that if ¢ satisfies SGCC, it follows from the condition for g = 1 and m = 1 that ¢ interchanges
the two fixed points if and only if it rotates the period 2 orbit. By investigating the configuration of
bifurcation curves of periodic orbit of period 1 and 2, we can prove that this property also holds for all
automorphisms in I'.

Lemma 2. Let ¢ € I. Then ¢ interchanges the two fixed points if and only if it rotates the period 2 orbit.

Proof of Theorem 1 (2). Let ¢ € T and assume ¢ = (0%, ¢’) where k is odd. Then 07* o ¢ € Inert(Z,) and
therefore satisfies SGCC. However, by Lemma 2 and the assumption k is odd, 0¥ o ¢ does not satisfy
SGCC. This is a contradiction. o

2 Application to pruning fronts of the real Hénon Map

The key to relate the monodromy of the complex Hénon map to the pruning front of the real Hénon
map is the followihg theorem.

Theorem 3 (ZA [1]). For (a,c) € H N R? and a path a connecting (ao, bo) to (a,c), define y := a - (&)~1. Then
p(y) is an involution and H, . : KEC — Kfc is topologically conjugate to olixp(yy) : Fix(p(y)) — Fix(p(y)).

By virtue of the theorem, we can define the pruning front for these real Hénon map by

P = ([0] N (py) 11D U (11N (o)) [0D).

The pruning front P completely determines the dynamics of the real Hénon map acting on KX (see [1]).
It is known that SGCC holds for any automorphisms of a full shift which is a composition of finite-
order automorphisms. It follows that

Proposition 4. If y is symmetric (i.e. § = y) then p(y) must satisfy SGCC.

This implies there is a restriction on the shape of pruning fronts. For example, although 0?10 is
possible (and in fact, is the pruning front for a2 = -1, ¢ = -5), 09100 is not allowed.

Recently, Nicholas Long proved the following related result posing an algebraic restriction on subshifts
that can be the fixed point set of an involution.

Theorem 5 (Long [S]). Ifa SFTY is the fixed point set of an inert involution of a mixing shift of finite type X ,
then Per(X) \ Per(Y) is the disjoint union of 2-cascades.

This theorem suggests that in a hyperbolic SFT that appears via pruning, if a periodic orbit O is
missing, then all periodic orbits on the period-doubling cascade beginning at O should also be missing.
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