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Abstract

An interactive software for experimental study of complex H\’enon dy-
namics is presented (in the talk). Julia sets and stable/unstable manifolds
of saddle fixed points of the complex H\’enon maps are visualized. These
pictures gives some intuitive understanding of the dynamics. (Interactive
graphics viewing is not recorded in this note.)

0. Introduction
In the early $80$ ’s of the last century, computer generated pictures of Julia

sets and the Mandelbrot set opened a new way of research in complex
dynamical systems. And they played an important role for the progress
of complex dynamical systems theory. Computer graphics technology is
highly developed in recent years, and now powerful computers are capable
of visualizing higher dimensional objects. In order to make use of such
computer facilities for a research of higher dimensional dynamical systems,
we have to find what to visualize and how to visualize.

In this note, we report our first trials of the visualization of Julia sets
and invariant manifolds of the complex H\’enon map. Our computations
are all numerical and do not have rigorous justifications. Periodic points
are computed by the method proposed by Biham and Wenzel. Unstable
manifolds and stable manifolds are computed by Poincar\’e $s$ power series
expansion formula. The Julia set, in this note, is to be understood as the
smallest invariant closed set containing the saddle periodic points. Note
that near parabolic points, the period of periodic points are large and hard
to compute. Also, Biham and Wenzel $s$ method fails to find many periodic
pints when the parameters or periodic points are away from the real axis.

1. Classical strange attractor of H\’enon
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As is well known, He’non’s strange attractor lives in $\mathbb{R}^{2}$ . In this note, the
H\’enon map $(x, y)\mapsto(X, Y)$ is defined by the following formula.

$\{\begin{array}{l}X=x^{2}+c+byY= x\end{array}$

Here, parameter $c$ corresponds to $-a$ in the classical He’non’s family, and
the coordinates $x,$ $y$ are rescaled so that we can compare the behavior of
the dynamics with the one-dimensional Mandelbrot family of quadratic
functions. For most parameters, there are two fixed points., which will be
denoted as $P$ and Q. Fixed point $P$ corresponds to the beta fixed point (
with external angle $0$ ) for one dimensional quadratic map. The other fixed
point, $Q$ , corresponds to the alpha fixed point. In the following picture,
periodic points of periods up to 19 are plotted. You may recognize the self-
folded strange attractor is embedded as a subset. The picture is a little
rotated in $\mathbb{C}$ to show that the “pruned branches” are emanating into the
imaginary space.

Fig. 1

Observe “fish bone” like branches coming out from the turning points of
the real strange attractor. There are components disjoint from the main
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component in the real axis. The existence of disjoint componets is more
clearly observed in the following picture.

Fig.2

Observe that there is a gap, in the picture above(Fig.2), between the right
upper components and the rest of the set. There is a critical point of the
Green’s function restricted to the unstable manifold of saddle point P. The
unstable manifold of $P$ is a complex analytic curve immersed in $\mathbb{C}^{2}$ .

Fig.3 Fig.4

Fig.3 represents a square region of the unstable manifold of $P$ , in the domain
of definition of Poincar\’e $s$ function $\varphi$ : $\mathbb{C}arrow \mathbb{C}^{2}$ , colored according to the value
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of the Green’s function. Fig. 4 is an enlargement of the lower part of Fig.3.
In this picture, a “canal” is observed.

Fig.5

In Fig.5, stable manifold of $P$ , square region represented in Fig.3, trimmed
along a certain level of the value of Green $s$ function is embedded in $\mathbb{C}^{2}$ ,
together with the Julia set and a small square region of the stable manifold
are shown. The saddle point $P$ is located at the intersection of the invariant
manifolds.

Fig.6

To see the behavior of the orbit of the critical point, take a point in the
middle of the “canal” as in Fig.6.
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Fig.7

The tenth iterate of the critical point comes near the saddle point $P$, and
escapes to the infinity.

Fig.8

The behavior of critical point suggests that the stable manifold of $P$ plays
the role of a “separatorix”. Fig. 8 shows that the stable manifold passes
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through the “end points” of the “pruned branches” near the turning loca-
tion.

Fig.9

Fig.9 shows successive enlargements of the stable manifold of P. These pic-
tures suggest that the intersection of the Julia set with the stable manifold
of $P$ consists is NOT self similar.

2. Homoclinic points and heteroclinic points
In the previous section, pictures of [un]stable manifolds are either some

region in the domain of definition of Poincar\’e $s$ function, or the immersed
image in $\mathbb{C}^{2}$ (projected to $\mathbb{R}^{2}$ in some way). In this section, we try to
understand how they are immersed and intersect with each other.
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Fig. 10 Fig.11

The unstable manifold of $P$, and the stable manifold of $Q$ are shown in the
above.

Fig. 12

In this case $(c=-0.7, b=0.3)$ , in Fig.10, which represents a square region
in the domain of definition of the Poincar\’e $s$ function, the pinched points
in the real axis are the points on the stable manifold of the other saddle
point Q. Fig.11 shows the stable manifold of Q. The points in the real axis
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of this Cantor-like set contains the intersection points with the unstable
manifold, i.e. heteroclinic points.
In Fig.12, these two curves are viewed. Observe tat the stable manifold
of $Q$ intersects at the pinched point of the unstable manifold of P. As
these curves are in $\mathbb{C}^{2}$ , they appear to intersect along a real curve, the
intersection is (numerically) transversal.

Fig.13 Fig.14

Fig.13 shows the unstable manifold of $Q$ , and Fig.14 shows an enlargement
of right upper part. The unstable manifold picture in the domain of defini-
tion of the Poincar\’e‘s function is similar to itself with respect to the origin
by the multiplication by the eigenvalue. However, small portion of it is not
necessarily similar to the whole picture. Note that this picture is differ-
ent from that of the unstable manifold of $P$, although further enlargement
reveals some detail similar to that of $P$, and vise-versa.

In Fig.15, the unstable manifold and the stable manifold of $Q$ are plotted.
they intersect at pinching point of the Julia set in the unstable manifold.
The intersection point in Fig.10 is away from the real axis. These in-
tersection points are homoclinic points. NumericalIy, the intersection is
transversal. Therefore, there must be a horseshoe. The invariant set in the
horseshoe is hidden in the Julia set and hard to recognize the Cantor set
structure.
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Fig.15

Fig.16 Fig17

Fig.16 and Fig.17 shows pictures with small portion of unstable manifold
of $Q$ and the stable manifold of Q.

Although objects living in $\mathbb{C}^{2}$ are quite hard to understand, we can try
to visualize them with the help of computer graphics. The color version of
this note will be uploaded on the author’s web page:

http: $//www$ . math. $h$ . kyoto-u. ac. jp$/\sim ushiki/$ index. html
with interactive graphics software. Followings are some interesting pic-
tures.
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Fig.18

In this picture, the stable manifold of $Q$ (which is located at a pinched
location of the JUlia set) intersects with the unstable manifold of $P$ in two
points. The intersection is close to a heheroclinic tangency.

Fig. 19

This picture shows a near-parabolic situation. Spiraling fixed points and
solenoidal cauliflower are observed.
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Fig.20

For some parameter, there is a case with rabbit-like Julia set. Some part
of the stable and unstable manifolds of $Q$ intersect in $Q($ the alpha fixed
point of the rabbit).

Fig.21 Fig.22
Fig.21 shows a part of the unstable manifold of $P$ , and Fig.22 shows a part
of the unstable manifold of Q. They are embedded in $\mathbb{C}^{2}$ as in the following
picture.
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