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1 Introduction
Any kind of Julia sets of a polynomial map can have symmetries. We say
that a Julia set has symmetries if some transformations preserve it. Bear-
don [1] investigated the symmetries of the Julia sets of polynomials on $\mathbb{C}$ . He
considered conformal functions as symmetries. To generalize the results in
one-dimension to those in higher dimensions, we [3] previously investigated
the symmetries of the Julia sets of nondegenerate polynomial skew products
on $\mathbb{C}^{2}$ . We defined the Julia sets as the supports of the Green measures,
which are compact, and considered suitable polynomial automorphisms as
the symmetries. In this paper, we investigate the symmetries of Julia sets
of polynomial skew products on $\mathbb{C}^{2}$ , which generalize some of these previous
results in [1] and [3]. We define the Julia sets by the fiberwise Green func-
tions, which are close to the supports of the Green measures. However, the
Julia sets may no longer be compact.

A polynomial skew product on $\mathbb{C}^{2}$ is a polynomial map of the form
$f(z, w)=(p(z), q(z, w))$ . More precisely, let $p(z)=a_{\delta}z^{\delta}+O(z^{\delta-1})$ and
$q(z, w)=q_{z}(w)=b_{d}(z)w^{d}+O_{z}(w^{d-1})$ . We assume that $\delta\geq 2$ and $d\geq 2$ .
Our results are as follows. First, we define the centroids of $f$ as defined
in [1], and show that the symmetries of the Julia set of $f$ are birationally
conjugate to rotational products. The tools of the proof are the fiberwise
Green and B\"ottcher functions of $f$ , which also relate to the centroids of $f$ .
Next, under some assumptions, we characterize the group of symmetries by
functional equations including the iterates of $f$ . The assumptions are, for
example, the normality of $f$ and the special form of the polynomial $b_{d}$ . The
normality of $f$ , assuming $f$ is in normal form, means that the centroids are
at the origin. Finally, we classify the polynomial skew products whose Ju-
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lia sets have infinitely many symmetries. Our main result claims that these
maps are classified into four types.

This paper is organized into five sections, including this one. In Section
2, we briefly recall the dynamics of polynomials and the relevant results on
the symmetries of the Julia sets of polynomials. In Section 3, we recall the
dynamics of polynomial skew products. In particular, we review the existence
of the fiberwise Green and B\"ottcher functions, and give the definition of Julia
sets. The study of the symmetries of Julia sets begins in Section 4. We show
that the symmetries are birationally conjugate to rotational products, and
characterize the group of symmetries by functional equations. This section
concludes with several examples. These examples include polynomial skew
products that are semiconjugate to polynomial products whose Julia sets
have infinitely many symmetries. We classify the polynomial skew products
whose Julia sets have infinitely many symmetries in Section 5. We have two
main theorems for the classification: the case when the map is in normal
form and the case when it is not in normal form.

2 Symmetries of Julia sets of polynomials
In this section, we recall the dynamics of polynomials on $\mathbb{C}$ and the relevant
results on the symmetries of the Julia sets of polynomials.

Let $p(z)=a_{\delta}z^{\delta}+a_{\delta-1}z^{\delta-1}+\cdots+a_{0}$ be a polynomial of degree $\delta\geq 2$ . We
denote by $p_{2}p_{1}$ the composition of polynomials $p_{1}$ and $p_{2}:p_{2}p_{1}(z)=p_{2}(p_{1}(z))$ .
Let $p^{n}$ be the n-th iterate of $p$ . A useful tool for the study of the dynamics
of $p$ is the Green function of $p$ ,

$G_{p}(z)= \lim_{narrow\infty}\delta^{-n}\log^{+}|p^{n}(z)|$ .

It is well known that the limit $G_{p}$ is a nonnegative, continuous and subhar-
monic function on $\mathbb{C}$ . By definition, $G_{p}(p(z))=\delta G_{p}(z)$ . Moreover, $G_{p}$ is
harmonic on $\mathbb{C}\backslash K_{p}$ and zero on $K_{p}$ , where $K_{z}=\{z : G_{p}(z)=0\}$ , and
$G_{p}(z)= \log|z|+\frac{1}{\delta-1}\log|a_{\delta}|+o(1)$ as $zarrow\infty$ . This is the Green function
for $K_{p}$ with a pole at infinity, determined only by the the compact set $K_{p}$ .
This function induces the B\"ottcher function $\varphi_{p}$ defined near infinity such
that $\varphi_{p}(z)=z+O(1)$ as $zarrow\infty,$ $\log|c\varphi_{p}(z)|=G_{p}(z)$ , where $c=\delta-\sqrt[1]{a_{\delta}}$ ,
and $\varphi_{p}(p(z))=a_{\delta}(\varphi_{p}(z))^{\delta}$ .

Let us recall some objects and results of the symmetries of the Julia sets of
polynomials on C. For further details, see [1]. We define the Julia set $J_{p}$ of $p$

as the boundary $\partial K_{p}$ , and consider conformal functions as the symmetries of
$J_{p}$ . Since $J_{p}$ is compact, such functions are conformal Euclidean isometries.
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Hence the group of the symmetries of $J_{p}$ is defined by

$\Sigma_{p}=\{\sigma\in E:\sigma(J_{p})=J_{p}\}$ ,

where $E=\{\sigma(z)=c_{1}z+c_{2}:|c_{1}|=1, c_{1}, c_{2}\in \mathbb{C}\}$ .
The centroid of $p$ is defined by

$\zeta=\frac{-a_{\delta-1}}{\delta a_{\delta}}$ .

If the solutions of $p(z)=Z$ are $z_{1},$ $z_{2},$ $\cdots,$ $z_{\delta}$ , then $p(z)=a_{\delta}(z-z_{1})(z-$

$z_{2})\cdots(z-z_{\delta})+Z$ and so the center of gravity of the points $z_{j}$ coincides with
$\zeta$ . It is known that each symmetry $\sigma$ is a rotation about the centroid of $p$ .

Proposition 2.1 ([1, Theorem 5]). For any symmetry $\sigma$ in $\Sigma_{p}$ , there is $\mu$

in the unit circle $S^{1}$ such that $\sigma(z)=\mu(z-\zeta)+\zeta$ .

We can characterize $\Sigma_{p}$ by the unique equation.

Proposition 2.2 ([1, Lemma 7]). It follows that $\Sigma_{p}=\{\sigma\in E:p\sigma=\sigma^{\delta}p\}$ .
By Proposition 2.1, the group $\Sigma_{p}$ is identified with a subgroup of the unit

circle $S^{1}$ . This group is trivial, finite cyclic or infinite. We have a sufficient
and necessary condition for $\Sigma_{p}$ to be infinite.

Proposition 2.3 ([1, Lemma 4]). The group $\Sigma_{p}$ is infinite if and only if $p$

is affinely conjugate to $z^{\delta}$ , or equivalently, if $J_{p}$ is a circle. In this case, $\Sigma_{p}$

consists of all rotations about $\zeta$ .
We say that $p$ is in normal form if $a_{\delta}=1$ and $a_{\delta-1}=0$ , so that the

centroid is at the origin. We may assume that $p$ is in normal form without
loss of generality because $p$ is conjugate to a polynomial in normal form by
the affine function $zarrow c(z-\zeta)$ , where $c=\delta-\sqrt[1]{a_{\delta}}$ . With this terminology,
we can restate Proposition 2.2 as follows.

Proposition 2.4. Let $p$ be in $no7vnal$ form. Then $\Sigma_{p}$ is infinite if and only
if $p(z)=z^{\delta}$ , or equivalently, if $J_{p}=S^{1}$ . In this case, $\Sigma_{p}\simeq S^{1}$ .

We can completely determine the group $\Sigma_{p}$ even if it is finite.

Proposition 2.5 ([1, Theorem 5]). Let $p$ be in nomal form. Then the
order of $\Sigma_{p}$ is equal to the largest integer $m$ such that $p$ can be written in the
$fomp(z)=z^{r}Q(z^{m})$ for some polynomial $Q$ .

The tools for the proofs of these facts are the Green and B\"ottcher func-
tions of $p$ . We generalize Propositions 2.1 and 2.2 in Section 4, and Propo-
sitions 2.3 and 2.4 in Section 5. We use Proposition 2.5 to prove a lemma in
Section 5.
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3Dynamics of polynomial skew products
In this section, we recall the dynamics of polynomial skew products on $\mathbb{C}^{2}$

and give the definition of Julia sets.

3.1 Polynomial skew products
A polynomial skew product on $\mathbb{C}^{2}$ is a polynomial map of the form $f(z, w)=$
$(p(z), q(z, w))$ . Let

$\{\begin{array}{l}p(z)=a_{\delta}z^{\delta}+a_{\delta-1}z^{\delta-1}+\cdots+a_{0},q(z, w)=q_{z}(w)=b_{d}(z)w^{d}+b_{d-1}(z)w^{d-1}+\cdot\cdot+b_{0}(z),\end{array}$

and let $b_{d}$ be a polynomial of degree $l\geq 0$ . We assume that $\delta\geq 2$ and $d\geq 2$ .
As in [3], we say that $f$ is nondegenerate if $b_{d}$ is a nonzero constant.

Let us briefly recall the dynamics of polynomial skew products. Roughly
speaking, the dynamics of $f$ consists of the dynamics on the base space and
on the fibers. The first component $p$ defines the dynamics on the base space
$\mathbb{C}$ . Note that $f$ preserves the set of vertical lines in $\mathbb{C}^{2}$ . In this sense, we
often use the notation $q_{z}(w)$ instead of $q(z, w)$ . The restriction of $f^{n}$ to
vertical line $\{z\}\cross \mathbb{C}$ is viewed as the composition of $n$ polynomials on $\mathbb{C}$ ,
$q_{p^{n-1}(z)}\cdots q_{p(z)}q_{z}$ . Therefore, the n-th iterate of $f$ is written as follows:

$f^{n}(z, w)=(p^{n}(z), Q_{z}^{n}(w))$ ,

where $Q_{z}^{n}(w)=q_{p^{n-1}(z)}\cdots q_{p(z)}q_{z}(w)$ .

3.2 Green and B\"ottcher functions
It is well known that for a polynomial $p$ , the Green function of $p$ is well
defined and useful for studying the dynamics of $p$ . In a similar fashion, we
define the fiberwise Green function of $f$ as follows:

$G_{z}(w)= \lim_{narrow\infty}d^{-n}\log^{+}|Q_{z}^{n}(w)|$ .

Favre and Guedj [2] showed that the limit $G_{z}$ defines a local bounded function
on $K_{p}\cross \mathbb{C}$ such that $G_{p(z)}(q_{z}(w))=dG_{z}(w)$ . In fact, they used the limit
$\lim_{narrow\infty}d^{-n}\log\Vert Q_{z}^{n}(w)\Vert$ , where $\Vert w\Vert=|w|+1$ , which coincides with $G_{z}$ on
$K_{p}\cross \mathbb{C}$ . However, it is not continuous in general. If $b_{d}^{-1}(0)\cap K_{p}=\emptyset$ , then it
is continuous on $K_{p}\cross \mathbb{C}$ . To describe $G_{z}$ more precisely, define

$\Phi(z)=\sum_{n=0}^{\infty}\frac{1}{d^{n+1}}\log|b_{d}(p^{n}(z))|$ .
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It belongs to $L^{1}(\mu_{p})$ , where $\mu_{p}$ is the Green measure of $p$ . For fixed $z$ in
$K_{p}\backslash \{\Phi=-\infty\}$ , the function $G_{z}$ is nonnegative, continuous and subharmonic
on $\mathbb{C}$ . More precisely, it is harmonic on $\mathbb{C}\backslash K_{z}$ and zero on $K_{z}$ , where
$K_{z}=\{w : G_{z}(w)=0\}$ , and $G_{z}(w)=\log|w|+\Phi(z)+o_{z}(1)$ as $warrow\infty$ .
This is the Green function for the compact set $K_{z}$ with a pole at infinity.
We remark that $K_{p}\backslash \{\Phi=-\infty\}$ is forward invariant under $p$ ; that is,
$p(K_{p}\backslash \{\Phi=-\infty\})\subset K_{p}\backslash \{\Phi=-\infty\}$ .

The fiberwise Green function $G_{z}$ induces the fiberwise B\"ottcher function
$\varphi_{z}$ , which is useful to investigate the symmetries of Julia sets.

Lemma 3.1. For every $z$ in $K_{p}\backslash \{\Phi=-\infty\}$ , there exists a unique conformal
function $\varphi_{z}$ defined near infinity such that

(i) $\varphi_{z}(w)=w+O_{z}(1)$ as $warrow\infty_{f}$

(ii) $\log|c_{z}\varphi_{z}(w)|=G_{z}(w)$ , where $c_{z}=\exp(\Phi(z))$ ,

(iii) $\varphi_{p(z)}(q_{z}(w))=b_{d}(z)(\varphi_{z}(w))^{d}$ .

3.3 Julia sets
In this paper, we consider the following Julia set:

$J_{f}= \bigcup_{z\in J_{p}}\{z\}\cross\partial K_{z}$
.

Here we define $\partial K_{z}=\emptyset$ if $K_{z}=\mathbb{C}$ . We call $\partial K_{z}$ the fiberwise Julia set. Hence
$J_{f}$ is the union of the fiberwise Julia sets over the base Julia set $J_{p}$ . It follows
that $J_{f}$ is forward invariant under $f$ ; that is, $f(J_{f})\subset J_{f}$ . If $b_{d}^{-1}(0)\cap J_{p}=\emptyset$ ,
then $J_{f}$ is completely invariant under $f$ . Moreover, $J_{f}$ is compact if and only
if $b_{d}^{-1}(0)\cap J_{p}=\emptyset$ .

The following subset of $J_{p}$ plays an important role in the proofs:

$J_{p}^{*}=J_{p}\backslash \{\Phi=-\infty\}$ .
Note that $J_{p}^{*}$ is dense in $J_{p}$ because it contains most periodic points. For
any $z$ in $J_{p}^{*}$ , the limits $G_{z}$ and $\varphi_{z}$ are well defined. In addition, $J_{p}^{*}$ is forward
invariant under $p$ , and $J_{p}^{*}\backslash p(J_{p}^{*})\subset p(b_{d}^{-1}(0))$ .

There is another Julia set of $f$ that might be appropriately called the
Julia set of $f$ . Favre and Guedj [2] showed that the closure

$\bigcup_{z\in J_{p^{*}}}\{z\}\cross\partial K_{z}$

coincides with the support of the Green measure of $f$ . Similar to $J_{f}$ , this
Julia set is compact if and only if $b_{d}^{-1}(0)\cap J_{p}=\emptyset$ .
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Remark 3.2. The same results hold for the symmetries of the last Julia set
if $b_{d}^{-1}(0)\cap J_{p}=\emptyset$ , or if it holds that $K_{z}$ contains the $resMction$ of the last
Julia set to $\{z\}\cross \mathbb{C}$ for any periodic point $z$ in $J_{p}^{*}$ .

4 Symmetries of Julia sets
In this section, we consider suitable symmetries of the Julia set of a polyno-
mial skew product $f$ .

As a symmetry, we consider a polynomial automorphism of the form
$\gamma(z, w)=(\gamma_{1}(z), \gamma_{2}(z, w))$ that preserves $J_{f}$ . Since $\gamma_{1}$ is conformal, $\gamma_{1}(z)=$

$c_{1}z+c_{2}$ , where $c_{1}$ and $c_{2}$ are complex numbers. Since $J_{p}$ is compact, $|c_{1}|=1$ .
Since $\gamma_{2}$ is conformal on each fiber, $\gamma_{2}(z, w)=c_{3}w+c_{4}(z)$ , where $c_{3}$ is a
complex number and $c_{4}$ is a polynomial in $z$ . Since $K_{z}$ is compact for some
$z$ in $J_{p}$ , it follows that $|c_{3}|=1$ . Therefore, we define

$\Gamma_{f}=\{\gamma\in S:\gamma(J_{f})=J_{f}\}$ ,

where
$S=\{\gamma(\begin{array}{l}zw\end{array})=(\begin{array}{l}c_{l}z+c_{2}c_{3}w+c_{4}(z)\end{array}):|c_{1}|=|c_{3}|=1\}$ .

Let us denote $\gamma$ in $\Gamma_{f}$ by $(\sigma(z)_{)}\gamma_{z}(w))$ . Since $\sigma$ preserves $J_{p}$ , it follows that
$\sigma$ belongs to $\Sigma_{p}$ . By definition, $\gamma_{z}(\partial K_{z})=\partial K_{\sigma(z)}$ and so $\gamma_{z}(K_{z})=K_{\sigma(z)}$ for
any $z$ in $J_{p}$ .

4.1 Centroids
As defined in Section 2, we define the centroids of $f$ as

$\zeta=\frac{-a_{\delta-1}}{\delta a_{\delta}}$ and $\zeta_{z}=\frac{-b_{d-1}(z)}{db_{d}(z)}$ .

Although $\zeta$ is a constant, $\zeta_{z}$ is a rational function in $z$ , If $f$ is nondegenerate,
then $\zeta_{z}$ is a polynomial.

The fiberwise B\"ottcher function $\varphi_{z}$ relates to the centroid $\zeta_{z}$ . The follow-
ing proposition follows from (i) and (iii) in Lemma 3.1.

Lemma 4.1. It follows that $\varphi_{z}(w)=w-\zeta_{z}+o_{z}(1)$ for any $z$ in $J_{p}^{*}$ .

We first show that a symmetry $\gamma$ is birationally conjugate to a rotational
product, which generalizes Proposition 2.1.

61



Proposition 4.2. For any $\gamma$ in $\Gamma_{f}$ , there are $\mu$ and $\nu$ in $S^{1}$ such that

$\gamma(\begin{array}{l}zw\end{array})=(\begin{array}{l}\mu(z-\zeta)+\zeta\nu(w-\zeta_{z})+\zeta_{\sigma(z)}\end{array})$ ,

where $\sigma(z)=\mu(z-\zeta)+\zeta$ belongs to $\Sigma_{p}$ .

Corollary 4.3. It follows that $\sigma$ , the first component of $\gamma$ in $\Gamma_{ff}$ preserves
the set $\{z\in J_{p}:\zeta_{z}=\infty\}$ .

By Proposition 4.2, we can identify $\Gamma_{f}$ with a subgroup of the torus:

$\Gamma_{f}=\{\gamma_{\mu,\nu}(\begin{array}{l}zw\end{array})=(\begin{array}{l}\mu(z-\zeta)+\zeta\nu(w-\zeta_{z})+\zeta_{\sigma(z)}\end{array}):\gamma_{\mu,\nu}(J_{f})=J_{f}\}$

$\simeq\{(\mu, \nu)\in S^{1}\cross S^{1}:\gamma_{\mu,\nu}\in\Gamma_{f}\}\subset S^{1}\cross S^{1}$ .

Hereafter, we use the notation $=$ instead of $\simeq$ . By definition, $\Gamma_{f}$ is a subset
of $\Sigma_{p}\cross S^{1}$ . More practically, the birational map $(z, w)arrow(z-\zeta, w-\zeta_{z})$

conjugates the symmetry $\gamma$ in $\Gamma_{f}$ to a rotational product $\tilde{\gamma}(z, w)=(\mu z, \nu w)$ .

4.2 Normal form
As in Section 2, we say that $f$ is in normal form if $p$ and $b_{d}$ are monic and
$a_{\delta-1}$ and $b_{d-1}$ are the constant $0$ . Roughly speaking, we define the normality
of $f$ by the normality of $p$ and $q_{z}$ . Hence if $f$ is in normal form, then the
centroids are at the origin.

Unlike the cases of polynomials and nondegenerate polynomial skew prod-
ucts, we may not assume that $f$ is in normal form without loss of general-
ity. However, we can normalize $f$ to a rational map as follows. Define
$h(z, w)=(c_{1}(z-\zeta), c_{2}(w-\zeta_{z}))$ , where $c_{1}^{\delta-1}$ is equal to $a_{\delta}$ , the coefficient
of the leading term of $p$ , and $c_{1}^{l}c_{2}^{d-1}$ is equal to the coefficient of the leading
term of $b_{d}$ . Then $h$ is a birational map. Let $f$ be the conjugation of $f$ by
$h:hf=\tilde{f}h$ . The rational map $f$ satisfies all conditions in the definition of
normality. Hence we call $f$ the normalized rational skew product of $f$ .

4.3 Functional equations
Under some assumptions, we characterize $\Gamma_{f}$ by functional equations, which
generalizes Proposition 2.2. Although the group $\Sigma_{p}$ of a polynomial $p$ is
characterized by the unique equation $p\sigma=\sigma^{\delta}p$ , our characterization of $\Gamma_{f}$

needs infinitely many equations as in [3, Lemma 3.2]. Moreover, unlike the
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nondegenerate case, we need some assumptions for $\Gamma_{f}$ to coincide with $\mathcal{F}$ ,
which may be removable.

Let us provide some definitions. We saw in Proposition 4.2 that $\gamma$ in $\Gamma_{f}$

can be written as

$\gamma(\begin{array}{l}zw\end{array})=(\begin{array}{ll}\mu(z-\zeta)+ \zeta\nu(w-\zeta_{z})+\zeta_{\sigma(z)} \end{array})$ .

Thus define $\mathcal{F}=\{\gamma\in S:f^{n}\gamma=\gamma_{n}f^{n}$ for $\forall n\geq 1\}$ , where

$\gamma_{n}(\begin{array}{l}zw\end{array})=(\begin{array}{ll}\mu^{\delta^{n}}(z-\zeta)+ \zeta\mu^{l_{n}}\nu^{d^{n}}(w-\zeta_{p^{n}(z)})+ \zeta_{p^{n}(\sigma(z))}\end{array})$ and $l_{n}= \frac{\delta^{n}-d^{n}}{\delta-d}l$ .

In addition, let us provide a lemma about certain symmetries of $b_{d}$ .
Lemma 4.4. It follows that 1 $b_{d}(\sigma(z))|=|b_{d}(z)|$ for any symmetry $\sigma$ and for
any $z$ in $J_{p}^{*}\backslash \{b_{d}(\sigma(z))=0\}$ , where $\sigma$ is the first component of $\gamma$ in $\Gamma_{f}$ .

We use this lemma to prove the main theorems in the next section. It is
natural to ask whether the equation $b_{d}(\sigma(z))=\mu^{l}b_{d}(z)$ , where $l$ is the degree
of $b_{d}$ , holds or not. In the following proposition, we assume some conditions
that guarantee this equation.
Proposition 4.5. If $p$ is in normal form and $b_{d}(z)=z^{l}$ , then $\Gamma_{f}\subset \mathcal{F}$ .
Moreover, $\sigma$ preserves $J_{p}^{*}$ , where $\sigma$ is the first component of $\gamma$ in $\Gamma_{f}$ .

With a slight change in the proof, we can replace the assumption in
this proposition with the assumption that $f$ is in normal form and $q$ is not
divisible by any polynomial in $z$ .

The following corollary of Proposition 4.5 is useful to determine $\Gamma_{f}$ for
a given map $f$ . In fact, we use this corollary to calculate the groups of
symmetries of some examples in Section 4.4 and to prove the main theorems
in Sections 5.1 and 5.2.
Corollary 4.6. If $f$ is in normal form and $b_{d}(z)=z^{l}$ , then

$q(\mu z, \nu w)=\mu^{l}\nu^{d}q(z, w)$

for any $\gamma(z, w)=(\mu z, \nu w)$ in $\Gamma_{f}$ .
For the inverse inclusion, we have the following statement.

Proposition 4.7. If $b_{d}^{-1}(0)\cap J_{p}=\emptyset$ or $b_{d-1}(z)\equiv 0$ , then $\Gamma_{f}\supset \mathcal{F}$ .
Combining Propositions 4.5 and 4.7, we get sufficient conditions for $\Gamma_{f}$

to coincide with $\mathcal{F}$.
Corollary 4.8. Assume that $f$ satisfies one of the following conditions: (i)
$f$ is in normal form and $q$ is not divisible by any polynomial in $z,$ $(ii)f$ is
in normal form and $b_{d}(z)=z^{l},$ $(iii)p(z)=z^{\delta}$ and $b_{d}(z)=z^{l}$ . Then $\Gamma_{f}=\mathcal{F}$

and so $\gamma_{n}$ belongs to $\Gamma_{f}$ for any $n\geq 1$ if $\gamma$ belongs to $\Gamma_{f}$ .
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4.4 Examples
Let us provide some examples of the groups of the symmetries of the Julia
sets of polynomial skew products that are not nondegenerate. For a map of
these examples, if it is in normal form, then the symmetries have to satisfy
the equation in Corollary 4.6. Moreover, we look for the symmetries, i.e.,
the pairs of the two numbers in the torus, which satisfy the infinitely many
equations in Proposition 4.5.

Example 4.9. Let $f(z, w)=(z^{3}, zw^{2}+z)$ . Then $\Gamma_{f}\simeq\{(\mu, \nu):\mu^{2}=\nu^{2}=$

$1\}=\{(1,1), (-1, -1), (1, -1), (-1,1)\}$ . Moreover, let $g(z, w)=(z^{3},$ $zw^{2}+$

$2z^{2}w+z)$ . Then it is conjugate to $f$ by $h(z, w)=(z, w-z):hf=gh$ . Hence
$\Gamma_{g}=\{(z, w), (-z, -w), (z, -w-2z), (-z, w+2z)\}$ .

Example 4.10. Let $f(z, w)=(z^{2}, (z-1)w^{2})$ . Then $\Gamma_{f}\simeq\{1\}\cross S^{1}$ .

Example 4.11. Let $f(z, w)=(z^{3}, zw^{2}+z^{3})$ . Then $\Gamma_{f}\simeq\{(\mu, \nu):\mu^{2}=\nu^{2}\in$

$S^{1}\}$ . Moreover, $f$ is semiconjugate to $f_{0}(z, w)=(z^{3}, w^{2}+1)$ by $\pi(z.w)=$

$(z, zw):\pi f_{0}=f\pi$ .

Example 4.12. Let $f(z, w)=(z^{2}, z^{3}w^{5}+zw^{3}+w^{2})$ . Then $\Gamma_{f}\simeq\{(\mu, \nu)$ :
$\mu=\nu^{-1}\in S^{1}\}$ . Moreover, $f$ is semiconjugate to $f_{0}(z, w)=(z^{2}, w^{5}+w^{3}+w^{2})$

by $\pi(z, w)=(z, w/z):\pi f_{0}=f\pi$ .

In particular, the groups of symmetries of Examples 4.10, 4.11 and 4.12
are infinite.

5 Infinite symmetries
In this section, we classify the polynomial skew products whose Julia sets
have infinitely many symmetries. We first show that these maps in normal
form are classified into four types in Section 5.1. We then remove the as-
sumption of normality and show that the normalized rational skew products
of these maps are also classified into four types in Section 5.2.

These maps include polynomial skew products that are semiconjugate to
polynomial products such as those given in Examples 4.11 and 4.12. The fol-
lowing lemma gives a sufficient condition of the polynomial map $(z^{\delta}, q(z, w))$

to be semiconjugate to a polynomial product.

Lemma 5.1. Let $q(z, w)$ be a polynomial. If there exist nonzero integers $s$

and $r$ and positive integer $\delta$ such that $q(z^{r}, z^{s}w)=z^{s\delta}q(1, w)$ , then $(z^{\delta}, q(z, w))$
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is semiconjugate to $(z^{\delta}, q(1, w))$ by $\pi(z, w)=(z^{r}, z^{s}w)$ ,

$\mathbb{C}^{2}arrow^{(z^{\delta},,q(1,,w))}\mathbb{C}^{2}$

$\pi\downarrow$ $\downarrow\pi$

$\mathbb{C}^{2}arrow^{(z^{\delta},,q(z,,w))}\mathbb{C}^{2}$ .

Remark 5.2. This lemma holds even if $q$ is a rational function; we apply
this lemma for the normalized rational skew products in Section 5.2.

5.1 Classification of the maps in normal form
We first assume that polynomial skew products are in normal form and clas-
sify the maps whose Julia sets have infinitely many symmetries.

Theorem 5.3. Let $f$ be in normal form. Then $\Gamma_{f}$ is infinite if and only if
one of the following holds:

(i) $f(z, w)=(z^{\delta}, z^{l}w^{d})$ ,

(ii) $f(z, w)=(z^{\delta}, q(w))$ ,

(iii) $f(z, w)=(p(z), b_{d}(z)w^{d})$ ,

(iv) $f(z, w)=(z^{\delta}, q(z, w))$ and it is semiconjugate to $(z^{\delta}, q(1, w))$ by $\pi(z, w)$

$=(z^{r}, z^{s}w)$ for some nonzero coprtme integers $r$ and $s$ . If $l=0$ , then
$\delta=d$ and $s/r>0$ . If $l\neq 0$ , then $\delta\neq d$ and $s/r=l/(\delta-d)$ .

To avoid overlap, we assume that $q(w)\neq w^{d}$ in (ii), $p(z)\neq z^{\delta}$ or $b_{d}(z)\neq z^{l}$

in (iii), and $q(z, w)\neq b_{d}(z)w^{d}$ in (iv).

In [2, Section 6.2], Favre and Guedj studied the dynamics of polynomial
skew products of the form (iii).

5.2 Classification of normalized rational skew products
Now we classify the polynomial skew products whose Julia sets have infinitely
many symmetries.

We saw that the birational map $h$ conjugates $f$ to the normalized rational
skew product $f;hf=\tilde{f}h$ . Note that $h$ also conjugates a symmetry $\gamma$ , which
corresponds to $\mu$ and $\nu$ , to a rotational product $\tilde{\gamma}(z, w)=(\mu z, \nu w)$ . Let
$f(z, w)=(\tilde{p}(z),\tilde{q}(z, w))$ and let $\tilde{q}(z, w)=\tilde{b}_{d}(z)w^{d}+\tilde{b}_{d-1}(z)w^{d-1}+\cdots+\tilde{b}_{0}(z)$.
Then $\tilde{p}$ and $\tilde{b}_{d}$ are polynomial and $\tilde{b}_{d-1}\equiv 0$ .
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Theorem 5.4. Let $f$ be a polynomial skew produ$ct$ whose Julia set has in-
finitely many symmetries. Then $f$ is one of the following:

(i) $f(z, w)=(z^{\delta}, z^{l}w^{d})_{;}$

(ii) $f(z, w)=(z^{\delta},\tilde{q}(w))$ ,

(iii) $f(z, w)=(\tilde{p}(z),\tilde{b}_{d}(z)w^{d})$ ,

(iv) $f(z, w)=(z^{\delta},\tilde{q}(z, w))$ and it is semiconjugate to $(z^{\delta},\tilde{q}(1, w))$ by $\pi(z, w)$

$=(z^{r}, z^{s}w)$ for some nonzero coprime integers $r$ and $s$ . If $l=0$ , then
$\delta=d$ and $s/r>0$ . If $l\neq 0$ , then $\delta\neq d$ and $s/r=l/(\delta-d)$ .

In the cases from (i) to (iii), the maps $h$ and $f$ are polynomial. To avoid
overlap, we assume that $\tilde{q}(w)\neq w^{d}$ in (ii), $\tilde{p}(z)\neq z^{\delta}$ or $\tilde{b}_{d}(z)\neq z^{l}$ in (iii),
and $\tilde{q}(z, w)\neq\tilde{b}_{d}(z)w^{d}$ in (iv).
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