Symmetries of Julia sets of polynomial skew products on \mathbb{C}^{2}

Kohei Ueno
Toba National College of Maritime Technology
kueno＠toba－cmt．ac．jp

1 Introduction

Any kind of Julia sets of a polynomial map can have symmetries．We say that a Julia set has symmetries if some transformations preserve it．Bear－ don［1］investigated the symmetries of the Julia sets of polynomials on \mathbb{C} ．He considered conformal functions as symmetries．To generalize the results in one－dimension to those in higher dimensions，we［3］previously investigated the symmetries of the Julia sets of nondegenerate polynomial skew products on \mathbb{C}^{2} ．We defined the Julia sets as the supports of the Green measures， which are compact，and considered suitable polynomial automorphisms as the symmetries．In this paper，we investigate the symmetries of Julia sets of polynomial skew products on \mathbb{C}^{2} ，which generalize some of these previous results in［1］and［3］．We define the Julia sets by the fiberwise Green func－ tions，which are close to the supports of the Green measures．However，the Julia sets may no longer be compact．

A polynomial skew product on \mathbb{C}^{2} is a polynomial map of the form $f(z, w)=(p(z), q(z, w))$ ．More precisely，let $p(z)=a_{\delta} z^{\delta}+O\left(z^{\delta-1}\right)$ and $q(z, w)=q_{z}(w)=b_{d}(z) w^{d}+O_{z}\left(w^{d-1}\right)$ ．We assume that $\delta \geq 2$ and $d \geq 2$ ． Our results are as follows．First，we define the centroids of f as defined in［1］，and show that the symmetries of the Julia set of f are birationally conjugate to rotational products．The tools of the proof are the fiberwise Green and Böttcher functions of f ，which also relate to the centroids of f ． Next，under some assumptions，we characterize the group of symmetries by functional equations including the iterates of f ．The assumptions are，for example，the normality of f and the special form of the polynomial b_{d} ．The normality of f ，assuming f is in normal form，means that the centroids are at the origin．Finally，we classify the polynomial skew products whose Ju－
lia sets have infinitely many symmetries. Our main result claims that these maps are classified into four types.

This paper is organized into five sections, including this one. In Section 2 , we briefly recall the dynamics of polynomials and the relevant results on the symmetries of the Julia sets of polynomials. In Section 3, we recall the dynamics of polynomial skew products. In particular, we review the existence of the fiberwise Green and Böttcher functions, and give the definition of Julia sets. The study of the symmetries of Julia sets begins in Section 4. We show that the symmetries are birationally conjugate to rotational products, and characterize the group of symmetries by functional equations. This section concludes with several examples. These examples include polynomial skew products that are semiconjugate to polynomial products whose Julia sets have infinitely many symmetries. We classify the polynomial skew products whose Julia sets have infinitely many symmetries in Section 5. We have two main theorems for the classification: the case when the map is in normal form and the case when it is not in normal form.

2 Symmetries of Julia sets of polynomials

In this section, we recall the dynamics of polynomials on \mathbb{C} and the relevant results on the symmetries of the Julia sets of polynomials.

Let $p(z)=a_{\delta} z^{\delta}+a_{\delta-1} z^{\delta-1}+\cdots+a_{0}$ be a polynomial of degree $\delta \geq 2$. We denote by $p_{2} p_{1}$ the composition of polynomials p_{1} and $p_{2}: p_{2} p_{1}(z)=p_{2}\left(p_{1}(z)\right)$. Let p^{n} be the n-th iterate of p. A useful tool for the study of the dynamics of p is the Green function of p,

$$
G_{p}(z)=\lim _{n \rightarrow \infty} \delta^{-n} \log ^{+}\left|p^{n}(z)\right| .
$$

It is well known that the limit G_{p} is a nonnegative, continuous and subharmonic function on \mathbb{C}. By definition, $G_{p}(p(z))=\delta G_{p}(z)$. Moreover, G_{p} is harmonic on $\mathbb{C} \backslash K_{p}$ and zero on K_{p}, where $K_{z}=\left\{z: G_{p}(z)=0\right\}$, and $G_{p}(z)=\log |z|+\frac{1}{\delta-1} \log \left|a_{\delta}\right|+o(1)$ as $z \rightarrow \infty$. This is the Green function for K_{p} with a pole at infinity, determined only by the the compact set K_{p}. This function induces the Böttcher function φ_{p} defined near infinity such that $\varphi_{p}(z)=z+O(1)$ as $z \rightarrow \infty, \log \left|c \varphi_{p}(z)\right|=G_{p}(z)$, where $c=\sqrt[\delta-1]{a_{\delta}}$, and $\varphi_{p}(p(z))=a_{\delta}\left(\varphi_{p}(z)\right)^{\delta}$.

Let us recall some objects and results of the symmetries of the Julia sets of polynomials on \mathbb{C}. For further details, see [1]. We define the Julia set J_{p} of p as the boundary ∂K_{p}, and consider conformal functions as the symmetries of J_{p}. Since J_{p} is compact, such functions are conformal Euclidean isometries.

Hence the group of the symmetries of J_{p} is defined by

$$
\Sigma_{p}=\left\{\sigma \in E: \sigma\left(J_{p}\right)=J_{p}\right\},
$$

where $E=\left\{\sigma(z)=c_{1} z+c_{2}:\left|c_{1}\right|=1, c_{1}, c_{2} \in \mathbb{C}\right\}$.
The centroid of p is defined by

$$
\zeta=\frac{-a_{\delta-1}}{\delta a_{\delta}} .
$$

If the solutions of $p(z)=Z$ are $z_{1}, z_{2}, \cdots, z_{\delta}$, then $p(z)=a_{\delta}\left(z-z_{1}\right)(z-$ $\left.z_{2}\right) \cdots\left(z-z_{\delta}\right)+Z$ and so the center of gravity of the points z_{j} coincides with ζ. It is known that each symmetry σ is a rotation about the centroid of p.

Proposition 2.1 ([1, Theorem 5]). For any symmetry σ in Σ_{p}, there is μ in the unit circle S^{1} such that $\sigma(z)=\mu(z-\zeta)+\zeta$.

We can characterize Σ_{p} by the unique equation.
Proposition 2.2 ([1, Lemma 7]). It follows that $\Sigma_{p}=\left\{\sigma \in E: p \sigma=\sigma^{\delta} p\right\}$.
By Proposition 2.1, the group Σ_{p} is identified with a subgroup of the unit circle S^{1}. This group is trivial, finite cyclic or infinite. We have a sufficient and necessary condition for Σ_{p} to be infinite.

Proposition 2.3 ([1, Lemma 4]). The group Σ_{p} is infinite if and only if p is affinely conjugate to z^{δ}, or equivalently, if J_{p} is a circle. In this case, Σ_{p} consists of all rotations about ζ.

We say that p is in normal form if $a_{\delta}=1$ and $a_{\delta-1}=0$, so that the centroid is at the origin. We may assume that p is in normal form without loss of generality because p is conjugate to a polynomial in normal form by the affine function $z \rightarrow c(z-\zeta)$, where $c=\sqrt[\delta-1]{a_{\delta}}$. With this terminology, we can restate Proposition 2.2 as follows.

Proposition 2.4. Let p be in normal form. Then Σ_{p} is infinite if and only if $p(z)=z^{\delta}$, or equivalently, if $J_{p}=S^{1}$. In this case, $\Sigma_{p} \simeq S^{1}$.

We can completely determine the group Σ_{p} even if it is finite.
Proposition 2.5 ([1, Theorem 5]). Let p be in normal form. Then the order of Σ_{p} is equal to the largest integer m such that p can be written in the form $p(z)=z^{r} Q\left(z^{m}\right)$ for some polynomial Q.

The tools for the proofs of these facts are the Green and Böttcher functions of p. We generalize Propositions 2.1 and 2.2 in Section 4, and Propositions 2.3 and 2.4 in Section 5. We use Proposition 2.5 to prove a lemma in Section 5.

3 Dynamics of polynomial skew products

In this section, we recall the dynamics of polynomial skew products on \mathbb{C}^{2} and give the definition of Julia sets.

3.1 Polynomial skew products

A polynomial skew product on \mathbb{C}^{2} is a polynomial map of the form $f(z, w)=$ ($p(z), q(z, w)$). Let

$$
\left\{\begin{array}{l}
p(z)=a_{\delta} z^{\delta}+a_{\delta-1} z^{\delta-1}+\cdots+a_{0} \\
q(z, w)=q_{z}(w)=b_{d}(z) w^{d}+b_{d-1}(z) w^{d-1}+\cdots+b_{0}(z)
\end{array}\right.
$$

and let b_{d} be a polynomial of degree $l \geq 0$. We assume that $\delta \geq 2$ and $d \geq 2$. As in [3], we say that f is nondegenerate if b_{d} is a nonzero constant.

Let us briefly recall the dynamics of polynomial skew products. Roughly speaking, the dynamics of f consists of the dynamics on the base space and on the fibers. The first component p defines the dynamics on the base space \mathbb{C}. Note that f preserves the set of vertical lines in \mathbb{C}^{2}. In this sense, we often use the notation $q_{z}(w)$ instead of $q(z, w)$. The restriction of f^{n} to vertical line $\{z\} \times \mathbb{C}$ is viewed as the composition of n polynomials on \mathbb{C},

$$
f^{n}(z, w)=\left(p^{n}(z), Q_{z}^{n}(w)\right),
$$

$$
\text { where } Q_{z}^{n}(w)=q_{p^{n-1}(z)} \cdots q_{p(z)} q_{z}(w)
$$

3.2 Green and Böttcher functions

It is well known that for a polynomial p, the Green function of p is well defined and useful for studying the dynamics of p. In a similar fashion, we define the fiberwise Green function of f as follows:

$$
G_{z}(w)=\lim _{n \rightarrow \infty} d^{-n} \log ^{+}\left|Q_{z}^{n}(w)\right| .
$$

Favre and Guedj [2] showed that the limit G_{z} defines a local bounded function on $K_{p} \times \mathbb{C}$ such that $G_{p(z)}\left(q_{z}(w)\right)=d G_{z}(w)$. In fact, they used the limit $\lim _{n \rightarrow \infty} d^{-n} \log \left\|Q_{z}^{n}(w)\right\|$, where $\|w\|=|w|+1$, which coincides with G_{z} on $K_{p} \times \mathbb{C}$. However, it is not continuous in general. If $b_{d}^{-1}(0) \cap K_{p}=\emptyset$, then it is continuous on $K_{p} \times \mathbb{C}$. To describe G_{z} more precisely, define

$$
\Phi(z)=\sum_{n=0}^{\infty} \frac{1}{d^{n+1}} \log \left|b_{d}\left(p^{n}(z)\right)\right| .
$$

It belongs to $L^{1}\left(\mu_{p}\right)$, where μ_{p} is the Green measure of p. For fixed z in $K_{p} \backslash\{\Phi=-\infty\}$, the function G_{z} is nonnegative, continuous and subharmonic on \mathbb{C}. More precisely, it is harmonic on $\mathbb{C} \backslash K_{z}$ and zero on K_{z}, where $K_{z}=\left\{w: G_{z}(w)=0\right\}$, and $G_{z}(w)=\log |w|+\Phi(z)+o_{z}(1)$ as $w \rightarrow \infty$. This is the Green function for the compact set K_{z} with a pole at infinity. We remark that $K_{p} \backslash\{\Phi=-\infty\}$ is forward invariant under p; that is, $p\left(K_{p} \backslash\{\Phi=-\infty\}\right) \subset K_{p} \backslash\{\Phi=-\infty\}$.

The fiberwise Green function G_{z} induces the fiberwise Böttcher function φ_{z}, which is useful to investigate the symmetries of Julia sets.
Lemma 3.1. For every z in $K_{p} \backslash\{\Phi=-\infty\}$, there exists a unique conformal function φ_{z} defined near infinity such that
(i) $\varphi_{z}(w)=w+O_{z}(1)$ as $w \rightarrow \infty$,
(ii) $\log \left|c_{z} \varphi_{z}(w)\right|=G_{z}(w)$, where $c_{z}=\exp (\Phi(z))$,
(iii) $\varphi_{p(z)}\left(q_{z}(w)\right)=b_{d}(z)\left(\varphi_{z}(w)\right)^{d}$.

3.3 Julia sets

In this paper, we consider the following Julia set:

$$
J_{f}=\bigcup_{z \in J_{p}}\{z\} \times \partial K_{z} .
$$

Here we define $\partial K_{z}=\emptyset$ if $K_{z}=\mathbb{C}$. We call ∂K_{z} the fiberwise Julia set. Hence J_{f} is the union of the fiberwise Julia sets over the base Julia set J_{p}. It follows that J_{f} is forward invariant under f; that is, $f\left(J_{f}\right) \subset J_{f}$. If $b_{d}^{-1}(0) \cap J_{p}=\emptyset$, then J_{f} is completely invariant under f. Moreover, J_{f} is compact if and only if $b_{d}^{-1}(0) \cap J_{p}=\emptyset$.

The following subset of J_{p} plays an important role in the proofs:

$$
J_{p}^{*}=J_{p} \backslash\{\Phi=-\infty\} .
$$

Note that J_{p}^{*} is dense in J_{p} because it contains most periodic points. For any z in J_{p}^{*}, the limits G_{z} and φ_{z} are well defined. In addition, J_{p}^{*} is forward invariant under p, and $J_{p}^{*} \backslash p\left(J_{p}^{*}\right) \subset p\left(b_{d}^{-1}(0)\right)$.

There is another Julia set of f that might be appropriately called the Julia set of f. Favre and Guedj [2] showed that the closure

$$
\overline{\bigcup_{z \in J_{p}^{*}}\{z\} \times \partial K_{z}}
$$

coincides with the support of the Green measure of f. Similar to J_{f}, this Julia set is compact if and only if $b_{d}^{-1}(0) \cap J_{p}=\emptyset$.

Remark 3.2. The same results hold for the symmetries of the last Julia set if $b_{d}^{-1}(0) \cap J_{p}=\emptyset$, or if it holds that K_{z} contains the restriction of the last Julia set to $\{z\} \times \mathbb{C}$ for any periodic point z in J_{p}^{*}.

4 Symmetries of Julia sets

In this section, we consider suitable symmetries of the Julia set of a polynomial skew product f.

As a symmetry, we consider a polynomial automorphism of the form $\gamma(z, w)=\left(\gamma_{1}(z), \gamma_{2}(z, w)\right)$ that preserves J_{f}. Since γ_{1} is conformal, $\gamma_{1}(z)=$ $c_{1} z+c_{2}$, where c_{1} and c_{2} are complex numbers. Since J_{p} is compact, $\left|c_{1}\right|=1$. Since γ_{2} is conformal on each fiber, $\gamma_{2}(z, w)=c_{3} w+c_{4}(z)$, where c_{3} is a complex number and c_{4} is a polynomial in z. Since K_{z} is compact for some z in J_{p}, it follows that $\left|c_{3}\right|=1$. Therefore, we define

$$
\Gamma_{f}=\left\{\gamma \in S: \gamma\left(J_{f}\right)=J_{f}\right\}
$$

where

$$
S=\left\{\gamma\binom{z}{w}=\binom{c_{1} z+c_{2}}{c_{3} w+c_{4}(z)}:\left|c_{1}\right|=\left|c_{3}\right|=1\right\} .
$$

Let us denote γ in Γ_{f} by $\left(\sigma(z), \gamma_{z}(w)\right)$. Since σ preserves J_{p}, it follows that σ belongs to Σ_{p}. By definition, $\gamma_{z}\left(\partial K_{z}\right)=\partial K_{\sigma(z)}$ and so $\gamma_{z}\left(K_{z}\right)=K_{\sigma(z)}$ for any z in J_{p}.

4.1 Centroids

As defined in Section 2, we define the centroids of f as

$$
\zeta=\frac{-a_{\delta-1}}{\delta a_{\delta}} \text { and } \zeta_{z}=\frac{-b_{d-1}(z)}{d b_{d}(z)} .
$$

Although ζ is a constant, ζ_{z} is a rational function in z, If f is nondegenerate, then ζ_{z} is a polynomial.

The fiberwise Böttcher function φ_{z} relates to the centroid ζ_{z}. The following proposition follows from (i) and (iii) in Lemma 3.1.

Lemma 4.1. It follows that $\varphi_{z}(w)=w-\zeta_{z}+o_{z}(1)$ for any z in J_{p}^{*}.
We first show that a symmetry γ is birationally conjugate to a rotational product, which generalizes Proposition 2.1.

Proposition 4.2. For any γ in Γ_{f}, there are μ and ν in S^{1} such that

$$
\gamma\binom{z}{w}=\binom{\mu(z-\zeta)+\zeta}{\nu\left(w-\zeta_{z}\right)+\zeta_{\sigma(z)}},
$$

where $\sigma(z)=\mu(z-\zeta)+\zeta$ belongs to Σ_{p}.
Corollary 4.3. It follows that σ, the first component of γ in Γ_{f}, preserves the set $\left\{z \in J_{p}: \zeta_{z}=\infty\right\}$.

By Proposition 4.2, we can identify Γ_{f} with a subgroup of the torus:

$$
\begin{gathered}
\Gamma_{f}=\left\{\gamma_{\mu, \nu}\binom{z}{w}=\binom{\mu(z-\zeta)+\zeta}{\nu\left(w-\zeta_{z}\right)+\zeta_{\sigma(z)}}: \gamma_{\mu, \nu}\left(J_{f}\right)=J_{f}\right\} \\
\simeq\left\{(\mu, \nu) \in S^{1} \times S^{1}: \gamma_{\mu, \nu} \in \Gamma_{f}\right\} \subset S^{1} \times S^{1}
\end{gathered}
$$

Hereafter, we use the notation $=$ instead of \simeq. By definition, Γ_{f} is a subset of $\Sigma_{p} \times S^{1}$. More practically, the birational map $(z, w) \rightarrow\left(z-\zeta, w-\zeta_{z}\right)$ conjugates the symmetry γ in Γ_{f} to a rotational product $\tilde{\gamma}(z, w)=(\mu z, \nu w)$.

4.2 Normal form

As in Section 2, we say that f is in normal form if p and b_{d} are monic and $a_{\delta-1}$ and b_{d-1} are the constant 0 . Roughly speaking, we define the normality of f by the normality of p and q_{z}. Hence if f is in normal form, then the centroids are at the origin.

Unlike the cases of polynomials and nondegenerate polynomial skew products, we may not assume that f is in normal form without loss of generality. However, we can normalize f to a rational map as follows. Define $h(z, w)=\left(c_{1}(z-\zeta), c_{2}\left(w-\zeta_{z}\right)\right)$, where $c_{1}^{\delta-1}$ is equal to a_{δ}, the coefficient of the leading term of p, and $c_{1}^{l} c_{2}^{d-1}$ is equal to the coefficient of the leading term of b_{d}. Then h is a birational map. Let \tilde{f} be the conjugation of f by $h: h f=\tilde{\tilde{f}} h$. The rational map \tilde{f} satisfies all conditions in the definition of normality. Hence we call \tilde{f} the normalized rational skew product of f.

4.3 Functional equations

Under some assumptions, we characterize Γ_{f} by functional equations, which generalizes Proposition 2.2. Although the group Σ_{p} of a polynomial p is characterized by the unique equation $p \sigma=\sigma^{\delta} p$, our characterization of Γ_{f} needs infinitely many equations as in [3, Lemma 3.2]. Moreover, unlike the
nondegenerate case, we need some assumptions for Γ_{f} to coincide with \mathcal{F}, which may be removable.

Let us provide some definitions. We saw in Proposition 4.2 that γ in Γ_{f} can be written as

$$
\gamma\binom{z}{w}=\binom{\mu(z-\zeta)+\zeta}{\nu\left(w-\zeta_{z}\right)+\zeta_{\sigma(z)}} .
$$

Thus define $\mathcal{F}=\left\{\gamma \in S: f^{n} \gamma=\gamma_{n} f^{n}\right.$ for $\left.\forall n \geq 1\right\}$, where

$$
\gamma_{n}\binom{z}{w}=\binom{\mu^{\delta^{n}}(z-\zeta)+\zeta}{\mu^{l_{n}} \nu^{d^{n}}\left(w-\zeta_{p^{n}(z)}\right)+\zeta_{p^{n}(\sigma(z))}} \text { and } l_{n}=\frac{\delta^{n}-d^{n}}{\delta-d} l .
$$

In addition, let us provide a lemma about certain symmetries of b_{d}.
Lemma 4.4. It follows that $\left|b_{d}(\sigma(z))\right|=\left|b_{d}(z)\right|$ for any symmetry σ and for any z in $J_{p}^{*} \backslash\left\{b_{d}(\sigma(z))=0\right\}$, where σ is the first component of γ in Γ_{f}.

We use this lemma to prove the main theorems in the next section. It is natural to ask whether the equation $b_{d}(\sigma(z))=\mu^{l} b_{d}(z)$, where l is the degree of b_{d}, holds or not. In the following proposition, we assume some conditions that guarantee this equation.
Proposition 4.5. If p is in normal form and $b_{d}(z)=z^{l}$, then $\Gamma_{f} \subset \mathcal{F}$. Moreover, σ preserves J_{p}^{*}, where σ is the first component of γ in Γ_{f}.

With a slight change in the proof, we can replace the assumption in this proposition with the assumption that f is in normal form and q is not divisible by any polynomial in z.

The following corollary of Proposition 4.5 is useful to determine Γ_{f} for a given map f. In fact, we use this corollary to calculate the groups of symmetries of some examples in Section 4.4 and to prove the main theorems in Sections 5.1 and 5.2.
Corollary 4.6. If f is in normal form and $b_{d}(z)=z^{l}$, then

$$
q(\mu z, \nu w)=\mu^{l} \nu^{d} q(z, w)
$$

for any $\gamma(z, w)=(\mu z, \nu w)$ in Γ_{f}.
For the inverse inclusion, we have the following statement.
Proposition 4.7. If $b_{d}^{-1}(0) \cap J_{p}=\emptyset$ or $b_{d-1}(z) \equiv 0$, then $\Gamma_{f} \supset \mathcal{F}$.
Combining Propositions 4.5 and 4.7 , we get sufficient conditions for Γ_{f} to coincide with \mathcal{F}.
Corollary 4.8. Assume that f satisfies one of the following conditions: (i) f is in normal form and q is not divisible by any polynomial in z, (ii) f is in normal form and $b_{d}(z)=z^{l}$, (iii) $p(z)=z^{\delta}$ and $b_{d}(z)=z^{l}$. Then $\Gamma_{f}=\mathcal{F}$ and so γ_{n} belongs to Γ_{f} for any $n \geq 1$ if γ belongs to Γ_{f}.

4.4 Examples

Let us provide some examples of the groups of the symmetries of the Julia sets of polynomial skew products that are not nondegenerate. For a map of these examples, if it is in normal form, then the symmetries have to satisfy the equation in Corollary 4.6. Moreover, we look for the symmetries, i.e., the pairs of the two numbers in the torus, which satisfy the infinitely many equations in Proposition 4.5.

Example 4.9. Let $f(z, w)=\left(z^{3}, z w^{2}+z\right)$. Then $\Gamma_{f} \simeq\left\{(\mu, \nu): \mu^{2}=\nu^{2}=\right.$ $1\}=\{(1,1),(-1,-1),(1,-1),(-1,1)\}$. Moreover, let $g(z, w)=\left(z^{3}, z w^{2}+\right.$ $2 z^{2} w+z$). Then it is conjugate to f by $h(z, w)=(z, w-z): h f=g h$. Hence $\Gamma_{g}=\{(z, w),(-z,-w),(z,-w-2 z),(-z, w+2 z)\}$.

Example 4.10. Let $f(z, w)=\left(z^{2},(z-1) w^{2}\right)$. Then $\Gamma_{f} \simeq\{1\} \times S^{1}$.
Example 4.11. Let $f(z, w)=\left(z^{3}, z w^{2}+z^{3}\right)$. Then $\Gamma_{f} \simeq\left\{(\mu, \nu): \mu^{2}=\nu^{2} \in\right.$ $\left.S^{1}\right\}$. Moreover, f is semiconjugate to $f_{0}(z, w)=\left(z^{3}, w^{2}+1\right)$ by $\pi(z, w)=$ $(z, z w): \pi f_{0}=f \pi$.

Example 4.12. Let $f(z, w)=\left(z^{2}, z^{3} w^{5}+z w^{3}+w^{2}\right)$. Then $\Gamma_{f} \simeq\{(\mu, \nu)$: $\left.\mu=\nu^{-1} \in S^{1}\right\}$. Moreover, f is semiconjugate to $f_{0}(z, w)=\left(z^{2}, w^{5}+w^{3}+w^{2}\right)$ by $\pi(z, w)=(z, w / z): \pi f_{0}=f \pi$.

In particular, the groups of symmetries of Examples 4.10, 4.11 and 4.12 are infinite.

5 Infinite symmetries

In this section, we classify the polynomial skew products whose Julia sets have infinitely many symmetries. We first show that these maps in normal form are classified into four types in Section 5.1. We then remove the assumption of normality and show that the normalized rational skew products of these maps are also classified into four types in Section 5.2.

These maps include polynomial skew products that are semiconjugate to polynomial products such as those given in Examples 4.11 and 4.12. The following lemma gives a sufficient condition of the polynomial map $\left(z^{\delta}, q(z, w)\right)$ to be semiconjugate to a polynomial product.

Lemma 5.1. Let $q(z, w)$ be a polynomial. If there exist nonzero integers s and r and positive integer δ such that $q\left(z^{r}, z^{s} w\right)=z^{s \delta} q(1, w)$, then $\left(z^{\delta}, q(z, w)\right.$)
is semiconjugate to $\left(z^{\delta}, q(1, w)\right)$ by $\pi(z, w)=\left(z^{r}, z^{s} w\right)$,

Remark 5.2. This lemma holds even if q is a rational function; we apply this lemma for the normalized rational skew products in Section 5.2.

5.1 Classification of the maps in normal form

We first assume that polynomial skew products are in normal form and classify the maps whose Julia sets have infinitely many symmetries.

Theorem 5.3. Let f be in normal form. Then Γ_{f} is infinite if and only if one of the following holds:
(i) $f(z, w)=\left(z^{\delta}, z^{l} w^{d}\right)$,
(ii) $f(z, w)=\left(z^{\delta}, q(w)\right)$,
(iii) $f(z, w)=\left(p(z), b_{d}(z) w^{d}\right)$,
(iv) $f(z, w)=\left(z^{\delta}, q(z, w)\right)$ and it is semiconjugate to $\left(z^{\delta}, q(1, w)\right)$ by $\pi(z, w)$ $=\left(z^{r}, z^{s} w\right)$ for some nonzero coprime integers r and s. If $l=0$, then $\delta=d$ and $s / r>0$. If $l \neq 0$, then $\delta \neq d$ and $s / r=l /(\delta-d)$.

To avoid overlap, we assume that $q(w) \neq w^{d}$ in (ii), $p(z) \neq z^{\delta}$ or $b_{d}(z) \neq z^{l}$ in (iii), and $q(z, w) \neq b_{d}(z) w^{d}$ in (iv).

In [2, Section 6.2], Favre and Guedj studied the dynamics of polynomial skew products of the form (iii).

5.2 Classification of normalized rational skew products

Now we classify the polynomial skew products whose Julia sets have infinitely many symmetries.

We saw that the birational map h conjugates f to the normalized rational skew product $\tilde{f}: h f=\tilde{f} h$. Note that h also conjugates a symmetry γ, which corresponds to μ and ν, to a rotational product $\tilde{\gamma}(z, w)=(\mu z, \nu w)$. Let $\tilde{f}(z, w)=(\tilde{p}(z), \tilde{q}(z, w))$ and let $\tilde{q}(z, w)=\tilde{b}_{d}(z) w^{d}+\tilde{b}_{d-1}(z) w^{d-1}+\cdots+\tilde{b}_{0}(z)$. Then \tilde{p} and \tilde{b}_{d} are polynomial and $\tilde{b}_{d-1} \equiv 0$.

Theorem 5.4. Let f be a polynomial skew product whose Julia set has infinitely many symmetries. Then \tilde{f} is one of the following:
(i) $\tilde{f}(z, w)=\left(z^{\delta}, z^{l} w^{d}\right)$,
(ii) $\tilde{f}(z, w)=\left(z^{\delta}, \tilde{q}(w)\right)$,
(iii) $\tilde{f}(z, w)=\left(\tilde{p}(z), \tilde{b}_{d}(z) w^{d}\right)$,
(iv) $\tilde{f}(z, w)=\left(z^{\delta}, \tilde{q}(z, w)\right)$ and it is semiconjugate to $\left(z^{\delta}, \tilde{q}(1, w)\right)$ by $\pi(z, w)$ $=\left(z^{r}, z^{s} w\right)$ for some nonzero coprime integers r and s. If $l=0$, then $\delta=d$ and $s / r>0$. If $l \neq 0$, then $\delta \neq d$ and $s / r=l /(\delta-d)$.

In the cases from (i) to (iii), the maps h and \tilde{f} are polynomial. To avoid overlap, we assume that $\tilde{q}(w) \neq w^{d}$ in (ii), $\tilde{p}(z) \neq z^{\delta}$ or $\tilde{b}_{d}(z) \neq z^{l}$ in (iiii), and $\tilde{q}(z, w) \neq \tilde{b}_{d}(z) w^{d}$ in (iv).

References

[1] A. F. Beardon, Symmetries of Julia sets, Bull. London Math. Soc., 22 (1990), 576-582.
[2] C. Favre and V. Guedj, Dynamique des applications rationnelles des espaces multiprojectifs, Indiana Univ. Math. J., 50 (2001), 2, 881-934.
[3] K. Ueno, Symmetries of Julia sets of nondegenerate polynomial skew products on \mathbf{C}^{2}, Michigan Math. J., 59 (2010), 153-168.

