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A quandle cocycle invariant with
non-commutative flows for a handlebody-knot

Atsushi Ishii (University of Tsukuba)

Abstract

This is a summary of the construction of the quandle cocycle in-
variant obtained in the joint work with Iwakiri, Jang and Oshiro [7].
Iwakiri and the author [6] introduced a notion of a flow, and defined a
quandle cocycle invariant for handlebody-knots. The quandle cocycle
invariant given in this article is defined by using “non-commutative”
flows.

1 A G-family of quandles

A quandle [8, 9] is a non-empty set X with a binary operation * : X x X — X
satisfying

ezxz=2z (z€X),
e xz: X — X is bijective (z € X),
o (zxy)xz=(zx2)*x(y*z2) (z,9,2 € X).

An Alexander quandle (M, %) is a A-module M with the binary operation
defined by z %y = tx + (1 — t)y, where A := Z[t,t™!]. A conjugation quandle
(G, %) is a group G with the binary operation defined by z xy = y~zy.

A G-family of quandles is a non-empty set X with a family of binary
operations *? : X x X — X (g € G) satisfying

sezxz=z (z€ X, geq),

o zxy=(zx9y) sy, zx°y=2 (z,y€ X, g,h €G),
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o (zx9y) stz = (zxh2) ¥ (yxh2) (z,9,2€ X, g,h €Q).
Proposition 1. Let G be a group, and (X, {*9}4e¢) a G-family of quandles.
(1) For any g € G, (X, *9) is a quandle.
(2) We define *: (X xG) X (X xG) = X x G by
(z,9) * (y,h) = (z *"y, k™" gh).
Then (X X G, ) is a quandle

We call the quandle (X x G,*) given in Proposition 1 the associated
quandle of X.

Proposition 2. Let R be a ring, G a group, and X a right R[G]-module.
We define a binary operation *9 : X x X — X by zx9y = zg + y(e — g).
Then X is a G-family of quandles.

Let X be a G-family of quandles, and @ the associated quandle of X.
The associated group of X, denoted by As(X), is defined by

O+ =900 (61,9 € Q), >

As(X) = <q €Q (z,gh) = (z,9)(z,h) (z € X, g,h € G)

An X-set Y is a set equipped with a right action of the associated group
As(X). We denote by y * g the image of an element y € Y by the action
g € As(X). We also denote y * (z,g) by y *¢ . Any singleton set {y} is an
X-set with the trivial action, which is a trivial X-set. The set X is also an
X-set with the action defined by y * (z,g9) = y*9z for y € X, (z,9) € Q.

2 A handlebody-link

A handlebody-link is a disjoint union of handlebodies embedded in the 3-
sphere S3. Two handlebody-links are equivalent if there is an orientation-
preserving self-homeomorphism of $2 which sends one to the other. A spatial
graph is a finite graph embedded in S3. Two spatial graphs are equivalent
if there is an orientation-preserving self-homeomorphism of S% which sends
one to the other. When a handlebody-link H is a regular neighborhood
of a spatial graph K, we say that H is represented by K. In this article,
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a trivalent graph may contain circle components. Then any handlebody-

Figure 2:
link can be represented by some spatial trivalent graph. A diagram of a
handlebody-link is a diagram of a spatial trivalent graph which represents
the handlebody-link. An IH-mowve is a local spatial move on spatial trivalent
graphs as described in Figure 1.
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Theorem 3 ([5]). For spatial trivalent graphs K; and K, the following are
equivalent.

e K, and K, represent an equivalent handlebody-link.
e K; and K, are related by a finite sequence of IH-moves.

e Diagrams of K| and K, are related by a finite sequence of the moves
depicted in Figure 2.

3 A coloring with G-family of quandles

Let D be a diagram of a handlebody-link H. Putting an orientation to each
edge in D, we obtain a diagram D of an oriented spatial trivalent graph. We
may represent an orientation of an edge by a normal orientation, which is ob-
tained by rotating a usual orientation 7/2 counterclockwise on the diagram.

65



66

For an arc incident to a vertex w, we define ¢(o;w) € {1, -1} by

elasw) = 1  the orientation of the arc o points to the vertex w,
’ —1 otherwise.

We denote by A(D) (resp. R(D)) the set of arcs (resp. complementary re-
gions) of D. Let D be a diagram of an oriented spatial trivalent graph. Let
X be a G-family of quandles, Y an X-set, and @) be the associated quandle
of X. Let px and pg be the projections from @ to X and G, respectively.
An Xy-coloring of D is a map C : A(D) UR(D) — Q UY satisfying the
following conditions (see Figures 3, 4).

e C(A(D))CcQ,C(R(D))CY.

e Let x3 be the over-arc at a crossing x. Let xi, x2 be the under-arc at
the crossing x such that the normal orientation of x3 points from x;
to x2. Then

Cx2) = C(x1) * C(x3)-

e Let w;,ws,ws be the arcs incident to a vertex w. Then

(px 0 C)(w1) = (px 0 C)(ws) = (px © C)(ws),
(pG o C)(wl)e(wnw)(pG o C)(w2)e(wz;w) (PG’ o C)(ws)e(w;;;w) = e

e For any arc o € A(D), we have
C(ay) x C(a) = C(ay),

where a1, ag are the regions facing the arc a so that the normal orien-
tation of a points from a; to as.

We denote by Colx(D)y the set of Xy-colorings of D.
For two diagrams D and E which locally differ, we denote by A(D, E)
(resp. R(D, E)) the set of arcs (resp. regions) that D and E share.

Lemma 4. Let X be a G-family of quandles, and Y an X-set. Let D
be a diagram of an oriented spatial trivalent graph. Let E be a diagram
obtained by applying one of the R1-R6 moves to the diagram D once, where
we choose orientations for £ which agree with those for D on A(D, E). For
C € Colx(D)y, there is a unique Xy-coloring Cp g € Colx(E)y such that
Cla,r) = Cp,elap,r) and C|z(p,5) = Cp,E|R(D,E)-
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(z, gh)
q: q1 * g3
43 ('771 g) (CL‘, h)
(z,h™1g™") (z, hg) (z,97'R71)
(z,9) (z,h) (z,9) (z,h) (z,9) (z,h)
Figure 3:
()1 Y1 *q

q

Figure 4:
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4 A homology

Let X be a G-family of quandles, Y an X-set, and @ the associated quandle
of X. Let B,(X)y be the free abelian group generated by the elements of
Y x Q" if n >0, and let B,(X)y = 0 otherwise. We put

((Ys Qrs- e @) * @y Qitty -2 Gn) = (Y* @ Q1 %Gy oo Qi * Qs i1y - - - 5 Gn)

fory € Y and ¢,¢1...,¢, € Q. We define a boundary homomorphism
Op : Bp(X)y — Bp—1(X)y by

n

8n(y1 qi, ... 1qn) = Z(_l)l(ys Q-5 Gi-1,Gi41s - - - ,Qn)

i=1

—E (¥ 15+ -+ Gim1) * @iy Qi1 - - - 5 Gn)

for n > 0, and 8, = 0 otherwise. Then B.(X)y = (Bn(X)y,0,) is a chain
complex (see [1, 2, 3, 4]).
Let D,(X)y be the subgroup of B,(X )y generated by the elements of

n—1
' _ veY,ze X, g,heqG
iLle {(yaqh' c oy qi-1, (1319),(1', h‘)aQH—?)' . 'aqn) Q- 0n € Q
and
n yaqla---aQi—la(x,gh)aQi-i-l"'"qn) y€Y,$€X,
U y 41,-~-,(Iz‘—1,(m,g)7Qi+1,~-,Qn) g’he Ga
=1 ((ya g ... aQi—l) * (13,9), (xah’),qi+1, . "Qn) qis---+,qn € Q

Lemma 5. For n € Z, we have 8,(Dn(X)y) C Dp_1(X)y. Thus D.(X)y =
(Dn(X)y, 8y,) is a subcomplex of B,(X)y.

We put Cn(X)y = Bn(X)y/Dn(X)y. Then Ci(X)y = (Ca(X)y,0y) is
a chain complex. For an abelian group A, we define the cochain complex
C*(X;A)y = Hom(C.(X)y, A). We denote by H,(X)y the nth homology
group of C,(X)y.
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5 A cocycle invariant

Let D be a diagram of an oriented spatial trivalent graph. For an Xy-coloring
C € Colx(D)y, we define the weight w(x; C) € Co(X)y at a crossing x of D
as follows. Let x1, x2 and x3 be respectively the under-arcs and the over-arc
at a crossing x such that the normal orientation of x3 points from x; to x2.
Let R, be the region facing x; and x3 such that the normal orientations x;
and x3 point from R, to the opposite regions with respect to x; and ¥,
respectively. Then we define

w(x; C) = e(x)(C(Ry), C(x1),C(xs)),

where ¢(x) € {1, —1} is the sign of a crossing x. We define a chain W(D;C) €
Ca(X)y by
W(D;C) = w(x;C),
X

where x runs over all crossings of D.

Lemma 6. The chain W(D;C) is a 2-cycle of C,(X)y. Further, for coho-
mologous 2-cocycles 6, §' of C*(X; A)y, we have §(W(D; C)) = ¢' (W (D; C)).

Lemma 7. Let D be a diagram of an oriented spatial trivalent graph. Let
E be a diagram obtained by applying one of the R1-R6 moves to the di-
agram [ once, where we choose orientations for F which agree with those
for D on A(D,E). For C € Colx(D)y and Cpp € Colx(E)y such that
Claw.ey = Cp,elaw,r) and Clrp,5) = Cb,5|r(p,5), We have [W(D;C)] =
[W(E;Cp,p)] € Ho(X)y.

We denote by Gy (resp. Gk) the fundamental group of the exterior of
a handlebody-link H (resp. a spatial graph K). When H is represented by
K, Gy and Gk are identical. Let D be a diagram of an oriented spatial
trivalent graph K. By the definition of an Xy-coloring C of D, the map
pa o C| 4 p) represents a homomorphism from Gk to G, which we denote by
pc € Hom(Gg,G). For p € Hom(Gk, G), we define

Cle(D;p)y = {C € Cle(D)y ’po = p}.
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For a 2-cocycle 8 of C*(X; A)y, we define
H( ) := {[W(D;C)] € Hy(X)y | C € Colx(D)y},
®y(D) := {§(W(D;C)) € A|C € Colx(D)y},
H(D; p) := {[W(D;C)] € Hy(X)y | C € Colx(D;p)y},
®y(D; p) := {0(W(D;C)) € A|C € Colx(D;p)y}

as multisets.
Lemma 8. Let D be a diagram of an oriented spatial trivalent graph K.
For p, o’ € Hom(Gg, G) such that p and p’ are conjugate, we have

H(D; p) = H(D; p') Dy(D; p) = 0o(D; p).

We denote by Conj(Gg, G) the set of conjugacy classes of homomorphisms
from Gg to G. By Lemma 8, H(D;p) and ®¢(D;p) are well-defined for
p € Conj(Gg, G).

Lemma 9. Let D be a diagram of an oriented spatial trivalent graph K.
Let E be a diagram obtained from D by reversing the orientation of an edge
e. For p € Hom(Gk, G), we have
H(D) = H(E), H(D; p) = H(E; p),
D9(D) = Do(E), Dg(D; p) = Ps(E; p).
By Lemma 9, H(D), ®¢(D), H(D; p) and ®4(D; p) are well-defined for a

diagram D of an unoriented spatial trivalent graph, which is a diagram of a
handlebody-link. For a diagram D of a handlebody-link H, we define

H"™(D) := {H(D;p) | p € Hom(Gx,G)},
®5°™(D) := {®4(D; p) | p € Hom(GHx, G)},
HN(D) := {H(D; p) | p € Conj(Gy,G)},
5M(D) = {®¢(D;p) | p € Conj(Gu, G)}

as “multisets of multisets.” We remark that, for Xy-colorings C and Cp g in
Lemma 7, we have pc = pc,, ;- Then, by Lemmas 6-9, we have the following
theorem.

Theorem 10. Let X be a G-family of quandles, Y an X-set. Let 6 be a 2-
cocycle of C*(X; A)y. Let H be a handlebody-link represented by a diagram
D. Then the followings are invariants of a handlebody-link H.

D(H), ®(D), HY™D), &™(D), H™(D), &(D).
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