A quandle cocycle invariant with non-commutative flows for a handlebody-knot (Intelligence of Low-dimensional Topology)

Author(s)
Ishii, Atsushi

Citation
数理解析研究所講究録 (2011), 1766: 63-71

Issue Date
2011-09

URL
http://hdl.handle.net/2433/171426

Type
Departmental Bulletin Paper
A quandle cocycle invariant with non-commutative flows for a handlebody-knot

Atsushi Ishii (University of Tsukuba)

Abstract

This is a summary of the construction of the quandle cocycle invariant obtained in the joint work with Iwakiri, Jang and Oshiro [7]. Iwakiri and the author [6] introduced a notion of a flow, and defined a quandle cocycle invariant for handlebody-knots. The quandle cocycle invariant given in this article is defined by using “non-commutative” flows.

1 A G-family of quandles

A quandle [8, 9] is a non-empty set X with a binary operation $*: X \times X \rightarrow X$ satisfying

- $x * x = x \ (x \in X),$
- $x * x : X \rightarrow X$ is bijective $(x \in X),$
- $(x * y) * z = (x * z) * (y * z) \ (x, y, z \in X).$

An Alexander quandle $(M, *)$ is a Λ-module M with the binary operation defined by $x * y = tx + (1 - t)y$, where $\Lambda := \mathbb{Z}[t, t^{-1}]$. A conjugation quandle $(G, *)$ is a group G with the binary operation defined by $x * y = y^{-1}xy$.

A G-family of quandles is a non-empty set X with a family of binary operations $*^g : X \times X \rightarrow X \ (g \in G)$ satisfying

- $x *^g x = x \ (x \in X, g \in G),$
- $x *^g^h y = (x *^g y) *^h y, x *^e y = x \ (x, y \in X, g, h \in G),$
• $(x \ast^g y)^h z = (x^h z)^{h^{-1} g h} (y^h z)$ \quad (x, y, z \in X, g, h \in G)$.

Proposition 1. Let G be a group, and $(X, \{\ast^g\}_{g \in G})$ a G-family of quandles.

(1) For any $g \in G$, (X, \ast^g) is a quandle.

(2) We define $\ast : (X \times G) \times (X \times G) \to X \times G$ by

$$(x, g) \ast (y, h) = (x^h y, h^{-1} g h).$$

Then $(X \times G, \ast)$ is a quandle.

We call the quandle $(X \times G, \ast)$ given in Proposition 1 the associated quandle of X.

Proposition 2. Let R be a ring, G a group, and X a right $R[G]$-module. We define a binary operation $\ast^g : X \times X \to X$ by $x \ast^g y = xg + ye - g$. Then X is a G-family of quandles.

Let X be a G-family of quandles, and Q the associated quandle of X. The associated group of X, denoted by $\text{As}(X)$, is defined by

$$\text{As}(X) = \left\{ q \in Q \mid q_1 \ast q_2 = q_2^{-1} q_1 q_2 \ (q_1, q_2 \in Q), \quad (x, gh) = (x, g)(x, h) \ (x \in X, g, h \in G) \right\}.$$

An X-set Y is a set equipped with a right action of the associated group $\text{As}(X)$. We denote by $y \ast q$ the image of an element $y \in Y$ by the action $q \in \text{As}(X)$. We also denote $y \ast (x, g)$ by $y \ast^g x$. Any singleton set $\{y\}$ is an X-set with the trivial action, which is a trivial X-set. The set X is also an X-set with the action defined by $y \ast (x, g) = y \ast^g x$ for $y \in X$, $(x, g) \in Q$.

2 A handlebody-link

A handlebody-link is a disjoint union of handlebodies embedded in the 3-sphere S^3. Two handlebody-links are equivalent if there is an orientation-preserving self-homeomorphism of S^3 which sends one to the other. A spatial graph is a finite graph embedded in S^3. Two spatial graphs are equivalent if there is an orientation-preserving self-homeomorphism of S^3 which sends one to the other. When a handlebody-link H is a regular neighborhood of a spatial graph K, we say that H is represented by K. In this article,
Figure 1:

Figure 2:

A trivalent graph may contain circle components. Then any handlebody-link can be represented by some spatial trivalent graph. A diagram of a handlebody-link is a diagram of a spatial trivalent graph which represents the handlebody-link. An IH-move is a local spatial move on spatial trivalent graphs as described in Figure 1.

Theorem 3 ([5]). For spatial trivalent graphs K_1 and K_2, the following are equivalent.

- K_1 and K_2 represent an equivalent handlebody-link.
- K_1 and K_2 are related by a finite sequence of IH-moves.
- Diagrams of K_1 and K_2 are related by a finite sequence of the moves depicted in Figure 2.

3 A coloring with G-family of quandles

Let D be a diagram of a handlebody-link H. Putting an orientation to each edge in D, we obtain a diagram D of an oriented spatial trivalent graph. We may represent an orientation of an edge by a normal orientation, which is obtained by rotating a usual orientation $\pi/2$ counterclockwise on the diagram.
For an arc incident to a vertex \(\omega \), we define \(\epsilon(\alpha; \omega) \in \{1, -1\} \) by

\[
\epsilon(\alpha; \omega) = \begin{cases}
1 & \text{the orientation of the arc } \alpha \text{ points to the vertex } \omega, \\
-1 & \text{otherwise.}
\end{cases}
\]

We denote by \(\mathcal{A}(D) \) (resp. \(\mathcal{R}(D) \)) the set of arcs (resp. complementary regions) of \(D \). Let \(D \) be a diagram of an oriented spatial trivalent graph. Let \(X \) be a \(G \)-family of quandles, \(Y \) an \(X \)-set, and \(Q \) be the associated quandle of \(X \). Let \(p_X \) and \(p_G \) be the projections from \(Q \) to \(X \) and \(G \), respectively.

An \(X_Y \)-coloring of \(D \) is a map \(C : \mathcal{A}(D) \cup \mathcal{R}(D) \to Q \cup Y \) satisfying the following conditions (see Figures 3, 4).

- \(C(\mathcal{A}(D)) \subset Q \), \(C(\mathcal{R}(D)) \subset Y \).
- Let \(\chi_3 \) be the over-arc at a crossing \(\chi \). Let \(\chi_1, \chi_2 \) be the under-arc at the crossing \(\chi \) such that the normal orientation of \(\chi_3 \) points from \(\chi_1 \) to \(\chi_2 \). Then
 \[C(\chi_2) = C(\chi_1) \ast C(\chi_3). \]
- Let \(\omega_1, \omega_2, \omega_3 \) be the arcs incident to a vertex \(\omega \). Then
 \[
 (p_X \circ C)(\omega_1) = (p_X \circ C)(\omega_2) = (p_X \circ C)(\omega_3),
 \]
 \[
 (p_G \circ C)(\omega_1)^{\epsilon(\omega_1; \omega)}(p_G \circ C)(\omega_2)^{\epsilon(\omega_2; \omega)}(p_G \circ C)(\omega_3)^{\epsilon(\omega_3; \omega)} = e.
 \]
- For any arc \(\alpha \in \mathcal{A}(D) \), we have
 \[C(\alpha_1) \ast C(\alpha) = C(\alpha_2), \]
 where \(\alpha_1, \alpha_2 \) are the regions facing the arc \(\alpha \) so that the normal orientation of \(\alpha \) points from \(\alpha_1 \) to \(\alpha_2 \).

We denote by \(\text{Col}_{X_Y}(D) \) the set of \(X_Y \)-colorings of \(D \).

For two diagrams \(D \) and \(E \) which locally differ, we denote by \(\mathcal{A}(D, E) \) (resp. \(\mathcal{R}(D, E) \)) the set of arcs (resp. regions) that \(D \) and \(E \) share.

Lemma 4. Let \(X \) be a \(G \)-family of quandles, and \(Y \) an \(X \)-set. Let \(D \) be a diagram of an oriented spatial trivalent graph. Let \(E \) be a diagram obtained by applying one of the R1–R6 moves to the diagram \(D \) once, where we choose orientations for \(E \) which agree with those for \(D \) on \(\mathcal{A}(D, E) \). For \(C \in \text{Col}_{X_Y}(D) \), there is a unique \(X_Y \)-coloring \(C_{D,E} \in \text{Col}_{X_Y}(E) \) such that \(C|_{\mathcal{A}(D,E)} = C_{D,E}|_{\mathcal{A}(D,E)} \) and \(C|_{\mathcal{R}(D,E)} = C_{D,E}|_{\mathcal{R}(D,E)} \).
Figure 3:

Figure 4:
4 A homology

Let X be a G-family of quandles, Y an X-set, and Q the associated quandle of X. Let $B_n(X)_Y$ be the free abelian group generated by the elements of $Y \times Q^n$ if $n \geq 0$, and let $B_n(X)_Y = 0$ otherwise. We put

$$(y, q_1, \ldots, q_i \ast q, q_{i+1}, \ldots, q_n) := (y * q, q_1 \ast q, \ldots, q_i \ast q, q_{i+1}, \ldots, q_n)$$

for $y \in Y$ and $q, q_1, \ldots, q_n \in Q$. We define a boundary homomorphism $\partial_n : B_n(X)_Y \rightarrow B_{n-1}(X)_Y$ by

$$\partial_n(y, q_1, \ldots, q_n) = \sum_{i=1}^{n} (-1)^i (y, q_1, \ldots, q_{i-1}, q_{i+1}, \ldots, q_n) - \sum_{i=1}^{n} (-1)^i ((y, q_1, \ldots, q_{i-1}) \ast q_i, q_{i+1}, \ldots, q_n)$$

for $n > 0$, and $\partial_n = 0$ otherwise. Then $B_\ast(X)_Y = (B_n(X)_Y, \partial_n)$ is a chain complex (see [1, 2, 3, 4]).

Let $D_n(X)_Y$ be the subgroup of $B_n(X)_Y$ generated by the elements of

$$\bigcup_{i=1}^{n-1} \left\{ (y, q_1, \ldots, q_{i-1}, (x, g), (x, h), q_{i+2}, \ldots, q_n) \mid y \in Y, x \in X, g, h \in G \right\} \bigcup_{i=1}^{n} \left\{ -(y, q_1, \ldots, q_{i-1}) \ast (x, g), (x, h), q_{i+1}, \ldots, q_n \mid y q_1 \in Y, x, q_n \in Q \right\}$$

Lemma 5. For $n \in \mathbb{Z}$, we have $\partial_n(D_n(X)_Y) \subset D_{n-1}(X)_Y$. Thus $D_\ast(X)_Y = (D_n(X)_Y, \partial_n)$ is a subcomplex of $B_\ast(X)_Y$.

We put $C_n(X)_Y = B_n(X)_Y/D_n(X)_Y$. Then $C_\ast(X)_Y = (C_n(X)_Y, \partial_n)$ is a chain complex. For an abelian group A, we define the cochain complex $C^\ast(X; A)_Y = \text{Hom}(C_\ast(X)_Y, A)$. We denote by $H_n(X)_Y$ the nth homology group of $C_\ast(X)_Y$.
5 A cocycle invariant

Let D be a diagram of an oriented spatial trivalent graph. For an X_Y-coloring $C \in \text{Col}_X(D)_Y$, we define the weight $w(\chi; C) \in C_2(X)_Y$ at a crossing χ of D as follows. Let χ_1, χ_2 and χ_3 be respectively the under-arcs and the over-arc at a crossing χ such that the normal orientation of χ_3 points from χ_1 to χ_2. Let R_χ be the region facing χ_1 and χ_3 such that the normal orientations χ_1 and χ_3 point from R_χ to the opposite regions with respect to χ_1 and χ_3, respectively. Then we define

$$w(\chi; C) = \epsilon(\chi)(C(R_\chi), C(\chi_1), C(\chi_3)),$$

where $\epsilon(\chi) \in \{1, -1\}$ is the sign of a crossing χ. We define a chain $W(D; C) \in C_2(X)_Y$ by

$$W(D; C) = \sum_{\chi} w(\chi; C),$$

where χ runs over all crossings of D.

Lemma 6. The chain $W(D; C)$ is a 2-cycle of $C_*(X)_Y$. Further, for cohomologous 2-cocycles θ, θ' of $C^*(X; A)_Y$, we have $\theta(W(D; C)) = \theta'(W(D; C))$.

Lemma 7. Let D be a diagram of an oriented spatial trivalent graph. Let E be a diagram obtained by applying one of the R1–R6 moves to the diagram D once, where we choose orientations for E which agree with those for D on $A(D, E)$. For $C \in \text{Col}_X(D)_Y$ and $C_{D,E} \in \text{Col}_X(E)_Y$ such that $C|_{A(D,E)} = C_{D,E}|_{A(D,E)}$ and $C|_{R(D,E)} = C_{D,E}|_{R(D,E)}$, we have $[W(D; C)] = [W(E; C_{D,E})] \in H_2(X)_Y$.

We denote by G_H (resp. G_K) the fundamental group of the exterior of a handlebody-link H (resp. a spatial graph K). When H is represented by K, G_H and G_K are identical. Let D be a diagram of an oriented spatial trivalent graph K. By the definition of an X_Y-coloring C of D, the map $p_G \circ C|_{A(D)}$ represents a homomorphism from G_K to G, which we denote by $\rho_C \in \text{Hom}(G_K, G)$. For $\rho \in \text{Hom}(G_K, G)$, we define

$$\text{Col}_X(D; \rho)_Y = \{C \in \text{Col}_X(D)_Y \mid \rho_C = \rho\}.$$
For a 2-cocycle θ of $C^*(X; A)_Y$, we define

\begin{align*}
\mathcal{H}(D) &:= \{[W(D; C)] \in H_2(X)_Y \mid C \in \text{Col}_X(D)_Y\}, \\
\Phi_\theta(D) &:= \{\theta(W(D; C)) \in A \mid C \in \text{Col}_X(D)_Y\}, \\
\mathcal{H}(D; \rho) &:= \{[W(D; C)] \in H_2(X)_Y \mid C \in \text{Col}_X(D; \rho)_Y\}, \\
\Phi_\theta(D; \rho) &:= \{\theta(W(D; C)) \in A \mid C \in \text{Col}_X(D; \rho)_Y\}
\end{align*}

as multiset.

Lemma 8. Let D be a diagram of an oriented spatial trivalent graph K. For $\rho, \rho' \in \text{Hom}(G_K, G)$ such that ρ and ρ' are conjugate, we have

\[\mathcal{H}(D; \rho) = \mathcal{H}(D; \rho'), \quad \Phi_\theta(D; \rho) = \Phi_\theta(D; \rho').\]

We denote by $\text{Conj}(G_K, G)$ the set of conjugacy classes of homomorphisms from G_K to G. By Lemma 8, $\mathcal{H}(D; \rho)$ and $\Phi_\theta(D; \rho)$ are well-defined for $\rho \in \text{Conj}(G_K, G)$.

Lemma 9. Let D be a diagram of an oriented spatial trivalent graph K. Let E be a diagram obtained from D by reversing the orientation of an edge e. For $\rho \in \text{Hom}(G_K, G)$, we have

\[\mathcal{H}(D) = \mathcal{H}(E), \quad \mathcal{H}(D; \rho) = \mathcal{H}(E; \rho), \quad \Phi_\theta(D) = \Phi_\theta(E), \quad \Phi_\theta(D; \rho) = \Phi_\theta(E; \rho).\]

By Lemma 9, $\mathcal{H}(D)$, $\Phi_\theta(D)$, $\mathcal{H}(D; \rho)$ and $\Phi_\theta(D; \rho)$ are well-defined for a diagram D of an unoriented spatial trivalent graph, which is a diagram of a handlebody-link. For a diagram D of a handlebody-link H, we define

\[\mathcal{H}_{\text{hom}}(D) := \{\mathcal{H}(D; \rho) \mid \rho \in \text{Hom}(G_H, G)\}, \]

\[\Phi_{\theta, \text{hom}}(D) := \{\Phi_\theta(D; \rho) \mid \rho \in \text{Hom}(G_H, G)\}, \]

\[\mathcal{H}_{\text{conj}}(D) := \{\mathcal{H}(D; \rho) \mid \rho \in \text{Conj}(G_H, G)\}, \]

\[\Phi_{\theta, \text{conj}}(D) := \{\Phi_\theta(D; \rho) \mid \rho \in \text{Conj}(G_H, G)\}\]

as "multisets of multisets." We remark that, for X_Y-colorings C and $C_{D,E}$ in Lemma 7, we have $\rho_C = \rho_{C_{D,E}}$. Then, by Lemmas 6–9, we have the following theorem.

Theorem 10. Let X be a G-family of quandles, Y an X-set. Let θ be a 2-cocycle of $C^*(X; A)_Y$. Let H be a handlebody-link represented by a diagram D. Then the followings are invariants of a handlebody-link H.

\[D(H), \quad \Phi_\theta(D), \quad \mathcal{H}_{\text{hom}}(D), \quad \Phi_{\theta, \text{hom}}(D), \quad \mathcal{H}_{\text{conj}}(D), \quad \Phi_{\theta, \text{conj}}(D).\]
References

