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ABSTRACT. We generalize the class of roll-spun knots in 2-knot theory and study the
quandle colorings for such a 2-knot. We also explain how to calculate the quandle

cocycle invariant and prove that the invariant of any roll-spun knot is trivial if the

second homology group of the quandle vanishes.

1. INTRODUCTION

For an oriented surface-knot $F$ and a third cohomology class $\theta\in H^{3}(X;A)$ of a
quandle $X$ , the calculation of the quandle cocycle invariant of $F$ with respect to $\theta$ is

given as follows:

$C\in Co1_{X}(F)rightarrow\gamma(C)\in H_{3}(X)\vee\div\Phi_{X}(F)-\Phi_{\theta}(F)$ .

More precisely, each X-coloring $C$ for $F$ defines a third homology class $\gamma(C)\in H_{3}(X)$

by taking the sum of weights on triple points of a diagram, and such classes form the

multi-set

$\Phi_{X}(F)=\{\gamma(C)\in H_{3}(X)|C\in$ Col$x(F)\}$ .

Under the Kronecker product $\langle$ , $\rangle$ : $H_{3}(X)\otimes H^{3}(X;A)arrow A$ , the cocycle invariant
$\Phi_{\theta}(F)$ is the evaluation of $\Phi_{X}(F)$ by $[\theta]$ ;

$\Phi_{\theta}(F)=\{\{\gamma(C), \theta\rangle\in A|C\in Co1_{X}(F)\}$ .

The deform-spun knot [8] is a 2-knot obtained from a tangle of a l-knot with its

motion. The spinning process is originally introduced by Artin [1], and generalized to

twist-spinning by Fox [5] and Zeeman [11]. The quandle cocycle invariant of a twist-spun

knot is calculated in some cases (cf. [2, 3, 6, 7]).

In this note, we introduce a 2-knot $F(K, K’)$ associated with a tangle diagram $K$

and a l-knot diagram $K$‘. In particular, $F(K, K’)$ is a roll-spun knot in the special

case. Under some condition for a quandle $X$ , we prove that there is a one-to-one

correspondence between Col$x(F(K, K’))$ and Col$x(K)$ ; that is, each X-coloring $C$ for
$K$ can be extended to that for $F(K, K’)$ naturally which is denoted by $\overline{C}$ .
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On the other hand, we define a normal subgroup $G_{0}(X)$ of the adjoint group $G(X)$

and a shifting map $S_{2}^{w}$ : $H_{2}(X)arrow H_{3}(X)$ for every element $w\in G_{0}(X)$ so that we have

$\gamma(\overline{C})=S_{2}^{w(C)}(\gamma(C))$

for any $C\in Co1_{X}(K)$ , where $w(C)\in G_{0}(X)$ and $\gamma(C)\in H_{2}(X)$ are the element of
$G_{0}(X)$ and the second homology class associated with $C$ . This implies that $\Phi_{X}(F(K, K’))$

is calculated in terms of $Co1_{X}(K)$ , and so is $\Phi_{\theta}(F(K, K^{l}))$ . As an application, we give
a sufficient condition for $\Phi_{X}(F(K, K’))$ to be trivial.

2. DEFINITION OF $F(K, K’)$

Let $K$ be an oriented tangle diagram and $K’$ an oriented knot diagram. We assume
that $K’$ is located on a 2-sphere $S^{2}$ embedded in $\mathbb{R}^{3}$ . We replace a tubular neighborhood
of $K’$ in $S^{2}$ with a product $K\cross S^{1}$ , where the modification near a crossing of $K’$ is
illustrated in Fiugre 1. This modification is realized by the connected sum of two copies
of $K$ as cross-sections such that one of $K$ ’s passes through the other $K$ .

$\sim\vee$

$\aleph’$

FIGURE 1

We denote by $F(K, K’)$ the 2-knot presented by this diagram. Let $\omega(K)$ and $\omega(K’)$

denote the writhes of $K$ and $K’$ , respectively. Then we have the following.

Lemma 2.1. If $\omega(K_{0})=\omega(K_{1})$ and $\omega(K_{0}’)=\omega(K_{1}’)_{\rangle}$ then $F(K_{0}, K_{0}’)\cong F(K_{1}, K_{1}’)$ .
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Proposition 2.2. $F(K, K^{l})$ is a deform-spun knot.

We denote by $\tau^{r}\rho^{\theta}K$ the r-twist-s-roll-spinning of $K$ (cf. [8]).

Theorem 2.3. If $K’$ is a diagram of the trivial knot, then $F(K, K’)\cong\tau^{-rs}\rho^{-s}K$ , where
$r=\omega(K)$ and $s=\omega(K’)$ . In particular, if $K$ is a tangle diagram with $\omega(K)=0_{f}$ then
$F(K, K’)\cong\rho^{-s}K$ .

3. DEFINITION OF $G_{0}(X)$

For a quandle $X$ and an element $x\in X$ , we denote by $\varphi_{x}$ : $Xarrow X$ the right action
by $x$ ; that is, $\varphi_{x}(a)=a*x$ . The axiom of the right distribution induces the equality

$\varphi_{y}0\varphi_{x}=\varphi_{x*y}0\varphi_{y}$

for any $x,$ $y\in X$ . Let $W(X)$ denote the set of words on $X$ . For a word $w=x_{1}^{\epsilon_{1}}\ldots x_{n}^{\epsilon_{n}}\in$

$W(X)$ , we define a quandle isomorphism $\varphi_{w}$ : $Xarrow X$ to be

$\varphi_{w}(a)=\varphi_{x_{n}}^{\epsilon_{n}}\circ\cdots\circ\varphi_{x_{1}}^{\epsilon_{1}}(a)$ .

We also use the notation $\varphi_{w}(a)=a*w$ . We remark that $w$ in the definition of $\varphi_{w}$ can
be regarded as an element of the adjoint group

$G(X)=\langle x\in X|a*b=b^{-1}ab(a, b\in X)\}$ .

The index of an element $w=x_{1}^{\epsilon_{1}}\ldots x_{n}^{\epsilon_{n}}\in G(X)$ is defined by ind $(w)=\epsilon_{1}+\cdots+\epsilon_{n}$ .

Definition 3.1. $G_{0}(X)=\{w\in G(X)|\varphi_{w}=id_{X}$ and ind$(w)=0\}$ .

We remark that $G_{0}(X)$ is a normal subgroup of $G(X)$ .

Lemma 3.2. (i) $G_{0}(R_{p})=\{0\}$ , where $R_{\tau}=Z[t, t^{-1}]/(p, t+1)$ for odd prime $p$ .
(ii) $G_{0}(S_{4})=Z_{2}$ , where $S_{4}=Z[t, t^{-1}]/(2, t^{2}+t+1)$ .

Example 3.3. We consider the case $X=S_{4}=Z[t, t^{-1}]/(2, t^{2}+t+1)$ . The element
$w=1\cdot t^{-1}\cdot 0\cdot(t+1)^{-1}$ satisfies $\varphi_{w}=id_{S_{4}}$ ; in fact, we have

$0$ $\mapsto^{\varphi_{1}}t+1$
$\mapsto 1\varphi_{t}^{-1}$

$\underline{\varphi 0}t$

$\mapsto 0\varphi_{t+1}^{-1}$

1 $1$ $0$ $0$ $\mapsto 1$

$t$ $\mapsto 0$ $t+1$ $1$ $\mapsto t$

$t+1$ $\mapsto t$ $\mapsto t$ $t+1$ $\mapsto t+1$ .

Since ind$(w)=0$ , it holds that $w\in G_{0}(S_{4})$ . Figure 2 shows that $w^{2}=1$ in $G_{0}(S_{4})$ .
Moreover, we see that $w$ is the generator of $G_{0}(S_{4})\cong Z_{2}$ .
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FIGURE 2

4. DEFINITION OF $S_{n}^{w}:H_{n}(X)arrow H_{n+1}(X)$

Let $C_{n}(X)$ denote the quandle n-chain group which is the free abelian group generated
by the n-tuples $(a_{1}, \ldots, a_{n})\in X^{n}$ with $a_{i}\neq a_{i+1}$ for any $1\leq i\leq n-1$ .

Definition 4.1. For an n-chain $\gamma=\sum\pm(a_{1}, \ldots, a_{n})\in C_{n}(X)$ , a word $w\in W(X)$ , and
an element $x\in X$ , we denote by

$( \gamma*w, x)=\sum\pm(a_{1}*w, \ldots, a_{n}*w, x)$ .

Deflnition 4.2. For a word $w=x_{1^{1}}^{\epsilon}\ldots x_{k}^{\epsilon_{k}}\in W(X)$ , we define words $w(i)(1\leq i\leq k)$

by

$w(i)=\{\begin{array}{ll}x_{1}^{\epsilon_{1}}\ldots x_{i-1}^{\epsilon_{i-1}} (\epsilon_{i}=+1)x_{1}^{\epsilon_{1}}\ldots x_{i-1}^{\mathcal{E}_{1-1}}x_{i}^{\epsilon_{i}} (\epsilon_{i}=-1)\end{array}$

Definition 4.3. For a word $w=x_{1}^{\epsilon_{i}}\ldots x_{k}^{\epsilon_{k}}\in W(X)$ , the shifting map $S_{n}^{w}$ : $C_{n}(X)arrow$

$C_{n+1}(X)$ is defined by

$S_{n}^{w}( \gamma)=\sum_{i=1}^{k}\epsilon_{i}(\gamma*w(i), x_{i})$ .

Lemma 4.4. If $w\in G_{0}(X)$ , then $S_{n}^{w}$ induces a shifting map $H_{n}(X)arrow H_{n+1}(X)$ .

Example 4.5. For the element $w=1\cdot t^{-1}\cdot 0\cdot(t+1)^{-1}\in G_{0}(S_{4})$ , the shifting map
$S_{n}^{w}:H_{n}(X)arrow H_{n+1}(X)$ is given by

$S_{n}^{w}(\gamma)=+(\gamma, 1)-(\gamma*(1\cdot t^{-1}), t)+(\gamma*(1\cdot t^{-1}), 0)-(\gamma, 1+t)$.
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See Figure 3.

FIGURE 3

5. $Co1_{X}(F(K, K’))$ AND $Co1_{X}(K)$

Let $K$ be a tangle diagram with $k$ crossings and $\omega(K)=0$ , and $C\in Co1_{X}(K)$ an
X-coloring for $K$ . Let $\epsilon_{i}$ and $x_{i}(1\leq i\leq k)$ be the sign and the color of the upper arc
at ith lower crossing along $K$ , respectively. The element of $G(X)$ associated with $C$ is
given by

$w(C)=x_{1}^{\epsilon_{1}}x_{2}^{\epsilon_{2}}\ldots x_{k}^{\epsilon_{k}}$ .

Example 5.1. We consider the $S_{4}$-coloring $C$ for the tangle diagram of the figure-
eight knot as shown in Figure 4. Then the element associated with $C$ is given by
$w(C)=1\cdot t^{-1}\cdot 0\cdot(t+1)^{-1}$ .

I $t$ $O$ $**|$

FIGURE 4

Lemma 5.2. Let $a$ and $a’$ be the colors assigned to the initial and terminal arcs of $K$ ,

respectively. Then it holds that $\varphi_{w}(a)=a’$ .

We consider the following condition $(\#)$ for a quandle $X$ ;

$(\#)$ For any tangle diagram $K$ with $\omega(K)=0$ and any X-coloring $C$ for $K$ , it holds
that $w(C)\in G_{0}(X)$ .
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We remark that since $\omega(K)=0$ , we have ind$(w(C))=0$ . Therefore, the condition
$(\#)$ is equivalent to $\varphi_{w(C)}=id_{X}$ .

Proposition 5.3. Any Alexander quandle satisfies the condition $(\#)$ .

Theorem 5.4. Suppose that a quandle $X$ satisfies the condition $(\#)$ . If $K$ is a tangle di-
agram with $\omega(K)=0$ , then there is $a$ one-to-one cowespondence between $Co1_{X}(F(K, K’))$

and $Co1_{X}(K)$ .

6. COMPUTATION OF $\Phi_{X}(F(K, K’))$

We consider the connected sum of two copies of a tangle diagram $K$ colored by
$C\in Co1_{X}(K)$ . Let $\gamma\in H_{3}(X)$ be the class associated with the motion where the
small tangle passes through the big one as shown in Figure 5. We divide $\gamma$ into $\gamma+$ and
$\gamma_{-}\in H_{3}(X)$ corresponding to the motions where the small tangle passes over and under
the transverse arc, respectively.

FIGURE 5

The third homology class $\gamma_{+}$ is the sum of weights on the triple points as shown in
Figure 6 which is equivalent to the shadow cocycle invariant of $K$ .

Lemma 6.1. $\gamma+=0$ .

On the other hand, the third homology class $\gamma_{-}$ is the sum of triple points as shown
in Figure 7. Let $\gamma(C)\in H_{2}(X)$ denote the class associated with the X-coloring $C$ for
$K$ . Then we have the following.

35



$\Rightarrow$

FIGURE 6

$\Rightarrow$

FIGURE 7
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Lemma 6.2. $\gamma_{-}=S_{2}^{w(C)}(\gamma(C))$ .

Theorem 6.3. Suppose that a quandle $X$ satisfies the condition $(\#)$ . If $K$ is a tangle
diagmm with $\omega(K)=0$ , then it holds that

$\Phi_{X}(F(K, K’))=\{-\omega(K^{l})\cdot S_{2}^{w(C)}(\gamma(C))|C\in Co1_{X}(K)\}$

Corollary 6.4. Suppose that a quandle $X$ satisfies the condition $(\#)$ with $G_{0}(X)=0$

or $H_{2}(X)=0$ . If $K$ is a tangle diagram with $\omega(K)=0$ , then $\Phi_{X}(F(K, K’))$ is trivial.

After the conference, Nosaka pointed out that $G_{0}(X)$ and $H_{2}(X)$ are isomorphic for
any Alexander quandle (cf. [4]). Therefore, the conditions $G_{0}(X)=0$ and $H_{2}(X)=0$

are equivalent if $X$ is an Alexander quandle.
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