<table>
<thead>
<tr>
<th>Title</th>
<th>Differential equations satisfied by principal series Whittaker functions on $SU(2,2)$ (Automorphic forms, trace formulas and zeta functions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Bayarmagnai, G.</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2011), 1767: 54-60</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2011-10</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/171448</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Differential equations satisfied by principal series Whittaker functions on $SU(2, 2)$

G. Bayarmagnai

Abstract

In this talk, we discuss about a holonomic system of differential equations for Whittaker functions associated with the principal series representation of $SU(2; 2)$ with higher dimensional minimal K-type.

1 Introduction

Throughout, let G be the simple real Lie group $SU(2, 2)$ of rank two, and let

$$K = SU(2) \times U(2) : \text{the maximal compact subgroup of } G$$

$$\pi : \text{an irreducible representation of } G \text{ which is } K\text{-admissible.}$$

For the representation π, there are two types of Whittaker model with respect to a character η of N (a spherical subgroup of G). One is the smooth model, and the other is the algebraic models induced by the space of algebraic Whittaker vectors:

$$W(\pi, \eta) := \text{Hom}_{(g, K)}(\pi |_{K}, C^{\infty}\text{-Ind}_{N}^{G}(\eta)).$$

Here, g is the Lie algebra of G, $\pi |_{K}$ is the subspace of K-finite vectors in π and $C^{\infty}\text{-Ind}_{N}^{G}(\eta)$ is the right G-module smoothly induced from η.

Our aim is a characterization of the space $W(\pi, \eta)$ for the principal series representation π of G associated with a minimal parabolic subgroup, which leads to a description of the following challenging question associated to π.

Question. For each intertwiner Φ in $W(\pi, \eta)$, what is the image of Φ? Equivalently, for each K-type τ occurring in π, one can ask the image of the τ-isotypic component in π. The latter image is called the space of Whittaker functions of π with respect to τ.

The natural and classical approach. Let τ be a K-type belonging to π, and $f_{1}, ..., f_{n}$ be its a basis in π. Denote by $\phi_{j}(g)$ the image of f_{j} under a fixed intertwiner Φ. Then, for each j and k in K, the function $(k\phi_{j})(g) = \phi_{j}(gk)$ is a linear combination of the functions $\phi_{1}(g), ..., \phi_{n}(g)$. Thus, it is enough to consider the functions ϕ_{j} on A for our purpose.
Assume that C is a square matrix of size $\dim(\tau)$, with entries in the universal enveloping algebra of \mathfrak{g}, so that
\[
\pi(C) \circ \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{pmatrix} = \gamma \cdot \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{pmatrix},
\]
for some constant $\gamma \in \mathbb{C}$.

By applying Φ to the identity (1) we get the following system of differential equations (the A-radial part)
\[
\mathcal{R}(C) \circ \begin{pmatrix} \phi_1(a) \\ \phi_2(a) \\ \vdots \\ \phi_n(a) \end{pmatrix} = \gamma \cdot \begin{pmatrix} \phi_1(a) \\ \phi_2(a) \\ \vdots \\ \phi_n(a) \end{pmatrix}, \quad a \in A
\]
where \mathcal{R} denotes the infinitesimal action of G on C^∞-$Ind_N^G(\eta)$. Thus, one can regard the space $W(\pi, \eta)$ as a subset of the solution space $Sol(\mathcal{R}(C))$ of the system by sending Φ to the functions $\{\phi_j(a)\}$.

Remark. Recall that Whittaker functions satisfy differential equations with regular singularities at "0". The most important requirements for choosing a basis for τ are the simplicity and symmetricity of the series expansion of these functions $\phi_j(a)(a \in A)$ around 0 and of the system of differential equations arising from (1).

Principal series $\pi_{s,\chi}$. Let
\[
a = \{a(t_1, t_2) = \begin{pmatrix} 0 & 0 & t_1 & 0 \\ 0 & 0 & 0 & t_2 \\ t_1 & 0 & 0 & 0 \\ 0 & t_2 & 0 & 0 \end{pmatrix} | t_1, t_2 \in \mathbb{R} \} \subset \mathfrak{g},
\]
\[
M = \{\text{diag}(e^{i\theta}, e^{-i\theta}, e^{i\theta}, e^{-i\theta})\} \oplus \{1_4, \text{diag}(1, -1, 1, -1)\}.
\]
Define linear functions λ_1 and λ_2 on a by $\lambda_1(a(t_1, t_2)) = t_1$ and $\lambda_2(a(t_1, t_2)) = t_2$. Then the set $\{\pm \lambda_1 \pm \lambda_2, \pm 2\lambda_1, \pm 2\lambda_2\}$ forms the restricted root system of type C_2 for the pair (\mathfrak{g}, a). Define $\lambda_1 \pm \lambda_2, 2\lambda_1$ and $2\lambda_2$ to be positive. Let P_{\min} be the minimal parabolic subgroup of G with Langlands decomposition $P_{\min} = MAN$, where N is the unipotent subgroup defined by the root spaces corresponding to positive roots. For the character $s \otimes \chi$ of M, $s \in \mathbb{Z}$, and the \mathbb{C}-valued real linear form $\mu = \mu_1 \lambda + \mu_2 \lambda_2$, one has the principal series representation
\[
\pi_{s,\chi} := \text{Ind}_M^G((s \otimes \chi)_M \otimes e^{\mu + \rho} \otimes 1_N),
\]
where 1_N is the trivial character of N.

The main object in the paper is the 8-dimensional space $W(\pi_{s,\chi}, \eta)$ of algebraic Whittaker vectors (see Kostant [2]) for non-degenerate character η (unitary) of N. Note that it is sufficient for our purpose to assume that $s \geq 0$.
1.1 Some previous results

Let us recall some known identities as in (1) and previous results for the space $W(\pi, \eta)$. The first example is the classical Casimir equation: let Ω be the Casimir operator of G. Then we have the following identity

$$\pi_{s, \chi}(\Omega)v = \chi_{\pi_{s, \chi}}(\Omega)v,$$

where $\chi_{\pi_{s, \chi}}$ is the infinitesimal character and v is a differential vector. This identity gives us an injection of $W(\pi_{s, \chi}, \eta)$ into the solution space $Sol(\mathcal{R}(\Omega))$ of the above equation. Note that the space $Sol(\mathcal{R}(\Omega))$ is of infinite dimension.

Let π be a discrete series representation of G and τ be its minimal K-type. Then Yamashita [10] defined an operator $D_{\pi, \tau}$ on τ under π:

$$\pi(D_{\pi, \tau})\tau = 0.$$

This gives us an injection of $W(\pi, \eta)$ into the solution space $Sol(\mathcal{R}(D_{\pi, \tau}))$ of the operator $\mathcal{R}(D_{\pi, \tau})$. Moreover, under certain conditions, he showed that

$$W(\pi, \eta) \cong Sol(\mathcal{R}(D_{\pi, \tau}))$$

as vector spaces. This result is not just for the group G (see [10] and [11]).

Let π be the principal series representation of $G = Sp(2, \mathbb{R})$ as in [6], and τ be the minimal K-type of π. In [6], the authors obtained a matrix, of size $\dim(\tau)$, formula of the form $\pi(D)v = \gamma v$ which implies

$$W(\pi, \eta) \cong Sol(\mathcal{R}(\Omega), \mathcal{R}(\mathcal{D})), $$

where Ω stands for the Casimir operator of $Sp(2, \mathbb{R})$. Note that the possible value of $\dim(\tau)$ is 1 or 2. The degree of D is 4 if $\dim(\tau) = 1$, and 2 for the case of dimension 2.

Remark. In the case $s = 0$ and $s = 1$, the corresponding spaces $W(\pi_{s, \chi}, \eta)$ behave quite similar to the above mentioned cases for $G = Sp(2, \mathbb{R})$, and are studied in [4].

2 Differential equations

We begin by providing some formulas for the multiplicity one K-types $\tau_{[0, s; l]}$ in the principal series $\pi_{s, \chi}$. These formulas come from the explicit (\mathfrak{g}, K)-module structure of $\pi_{s, \chi}$ which originally discussed by Oda [7].

Note that the space of the adjoint K-representation $(Ad, \mathfrak{p}_{\mathbb{C}})$ is generated by the matrix units E_{ij+2} and E_{i+2j} ($1 \leq i, j \leq 2$) and denote by \mathcal{E}_{ij+2} and \mathcal{E}_{i+2j} their infinitesimal actions with respect to π_{s}. Let denote $F_{[s;l]}$ the transpose of the vector $(f_{0}, f_{1}, ..., f_{s})$, where $\{f_{j} : 0 \leq j \leq s\}$ is the "nice" basis of $\tau_{[0, s; l]}$ introduced in [1] and $c_{q} := q/s$ for $0 \leq q \leq s$.

Formula 1. (Casimir equation) Let Ω be the Casimir operator. Then we have

$$\pi_{s, \chi}(\Omega) \cdot F_{[s;l]} = (\mu_{1}^{2} + \mu_{2}^{2} + \frac{1}{2}s^{2} - 10)F_{[s;l]}.$$
Formula 2. (Shift equations) Set $\nu_1 = \frac{1}{2}(s + l)$ and $\nu_2 = \frac{1}{2}(s - l)$. Then we have
\[
\pi_{s,\chi}(\bar{Q}) \cdot F_{[s;l]} = \frac{1}{4}(\mu_1^2 - (\nu_1 + 1)^2)F_{[s;l]},
\]
and
\[
\pi_{s,\chi}(Q) \cdot F_{[s;l]} = \frac{1}{4}(\mu_2^2 - (\nu_2 - 1)^2)F_{[s;l]},
\]
where $\bar{Q} = \{\bar{Q}_{ij}\}_{0 \leq i,j \leq s}$ and $Q = \{Q_{ij}\}_{0 \leq i,j \leq s}$ are square matrices given by
\[
\begin{align*}
\bar{Q}_{qq-1} &= -c_q(\mathcal{E}_{24}\mathcal{E}_{32} + \mathcal{E}_{14}\mathcal{E}_{31}) \\
\bar{Q}_{qq+1} &= -(1-c_q)(\mathcal{E}_{23}\mathcal{E}_{42} + \mathcal{E}_{13}\mathcal{E}_{41}) \\
\bar{Q}_{qq} &= (1-c_q)(\mathcal{E}_{23}\mathcal{E}_{32} + \mathcal{E}_{13}\mathcal{E}_{31}) + c_q(\mathcal{E}_{14}\mathcal{E}_{14} + \mathcal{E}_{24}\mathcal{E}_{32})
\end{align*}
\]
and
\[
\begin{align*}
Q_{qq-1} &= c_q(\mathcal{E}_{32}\mathcal{E}_{24} + \mathcal{E}_{31}\mathcal{E}_{14}) \\
Q_{qq+1} &= (1-c_q)(\mathcal{E}_{42}\mathcal{E}_{23} + \mathcal{E}_{41}\mathcal{E}_{13}) \\
Q_{qq} &= c_q(\mathcal{E}_{32}\mathcal{E}_{23} + \mathcal{E}_{31}\mathcal{E}_{13}) + (1-c_q)(\mathcal{E}_{41}\mathcal{E}_{14} + \mathcal{E}_{42}\mathcal{E}_{24})
\end{align*}
\]
for $0 \leq q \leq s$, but all other entries are 0.

Formula 3. (Annihilation equations) We have
\[
\pi_{s,\chi}(A) \cdot F_{[s;l]} = 0,
\]
and
\[
\pi_{s,\chi}(\bar{A}) \cdot F_{[s;l]} = 0,
\]
where $A = \{A_{ij}\}$ and $\bar{A} = \{\bar{A}_{ij}\}$ are square matrix whose non-zero entries are given by
\[
\begin{align*}
A_{jj-1} &= -\mathcal{E}_{31}\mathcal{E}_{14} - \mathcal{E}_{32}\mathcal{E}_{24}, \\
A_{jj} &= \mathcal{E}_{41}\mathcal{E}_{14} + \mathcal{E}_{42}\mathcal{E}_{24} - \mathcal{E}_{31}\mathcal{E}_{13} - \mathcal{E}_{32}\mathcal{E}_{23}, \\
A_{jj+1} &= \mathcal{E}_{41}\mathcal{E}_{13} + \mathcal{E}_{42}\mathcal{E}_{23},
\end{align*}
\]
and
\[
\begin{align*}
\bar{A}_{jj-1} &= -\mathcal{E}_{14}\mathcal{E}_{31} - \mathcal{E}_{24}\mathcal{E}_{32}, \\
\bar{A}_{jj} &= \mathcal{E}_{14}\mathcal{E}_{41} + \mathcal{E}_{24}\mathcal{E}_{42} - \mathcal{E}_{13}\mathcal{E}_{31} - \mathcal{E}_{23}\mathcal{E}_{32}, \\
\bar{A}_{jj+1} &= \mathcal{E}_{13}\mathcal{E}_{41} + \mathcal{E}_{23}\mathcal{E}_{42},
\end{align*}
\]
for $1 \leq j \leq s - 1$.

Proposition 2.1. On the K-type $\tau_{[0,s;l]}$ with respect to the action $\pi_{s,\chi}$ we have
\[
Q + \bar{Q} = \Omega/4.
\]
2.1 A holonomic system of rank 8

Coordinate system. Since the \mathbb{R}-split torus A for our case is two dimensional, one may choose the coordinate system (y_1, y_2). Denote the Euler operators $y_1 \frac{\partial}{\partial y_1}$ and $y_2 \frac{\partial}{\partial y_2}$ with respect to this system by ∂_1 and ∂_2, respectively.

We now define the matrix differential operator \overline{D} by

$$
\begin{pmatrix}
\overline{d}_{00} & \overline{d}_{01} & 0 & \cdots & 0 \\
0 & \overline{d}_{11} & \overline{d}_{12} & \cdots & 0 \\
0 & 0 & \overline{d}_{22} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \overline{d}_{s-2,s-2} \\
0 & 0 & 0 & \cdots & \overline{d}_{s-1,s-1} \\
0 & 0 & 0 & \cdots & \overline{d}_{s,s}
\end{pmatrix}
$$

where

$$
d_{qq} = \frac{1}{4}((\partial_1 - q)^2 - \mu_1^2) - \xi \overline{\xi} y_1^2, \quad d_{q,q+1} = \overline{\xi} y_1 (\partial_2 + \frac{1}{2}s - q) + \xi y_1 y_2
$$

for $q = 0, \ldots, s - 1$ and

$$
d_{ss} = \frac{1}{4}((\partial_1 - 2\partial_2)^2 - \mu_2^2) - \xi \overline{\xi} y_1^2 - y_2^2 - \nu_1 y_2
$$

$$
d_{s,s-1} = -\xi y_1 (\partial_2 + \frac{1}{2}s) + \xi y_1 y_2.
$$

We also define the matrix differential operator D by

$$
\begin{pmatrix}
d_{00} & d_{01} & 0 & \cdots & 0 \\
d_{10} & d_{11} & 0 & \cdots & 0 \\
0 & a_{32} & d_{33} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & d_{s-2,s-2} \\
0 & 0 & 0 & \cdots & d_{s-1,s-1} \\
0 & 0 & 0 & \cdots & d_{s,s}
\end{pmatrix}
$$

where

$$
d_{00} = \frac{1}{4}((\partial_1 - 2\partial_2)^2 - \mu_2^2) - \xi \overline{\xi} y_1^2 - y_2^2 - \nu_2 y_2
$$

$$
d_{01} = -\xi y_1 (\partial_2 - \frac{1}{2}s) + \overline{\xi} y_1 y_2
$$

and

$$
d_{qq} = \frac{1}{4}((\partial_1 - s + q)^2 - \mu_2^2) - \xi \overline{\xi} y_1^2, \quad d_{q,q-1} = \xi y_1 (\partial_2 + q - \frac{1}{2}s) - \xi y_1 y_2
$$

for $q = 1, \ldots, s$. Here, the parameters ξ and $\overline{\xi}$ are associated to the character η.
By using Formulas 2 and 3, one can see that the Whittaker functions of \(\pi_{s, \chi} \) with respect to \(\tau_{[0, s;l]} \) satisfy the system of differential equations \(\mathcal{D} = 0 \) and \(\overline{D} = 0 \). Moreover, we have the following result which characterizes the Whittaker functions of \(\pi_{s, \chi} \) with respect to \(\tau_{[0, s;l]} \).

Theorem 2.2. For \(s \geq 2 \), the natural map from \(W(\pi_{s, \chi}, \eta) \) into \(\text{Ker}(\overline{D}, D) \) is bijection if \(\pi_{s, \chi} \) is irreducible and \(\eta \) is a nondegenerate unitary character of \(N \).

Here, we also have the following formula in the case \(s = 0 \), which is analogue to the class one case for \(\text{Sp}(2, \mathbb{R}) \) in [5]. Write \(W \) for the little Weyl group for \((g, a)\), and \((\rho_1, \rho_2)\) for the pair \((3, 2)\) related to the half sum.

Theorem 2.3. Let \(\pi_{0, \chi} \) be an irreducible principal series with parameter \(\mu = (\mu_1, \mu_2) \in a^*_c \), and set \(\epsilon = \frac{1-\chi(-1)}{2} \). Then the function \(\phi_\mu \) on \(A \) defined by

\[
\phi_\mu(y_1, y_2) = y_1^{\rho_1} y_2^{\rho_2} \sum_{m,n \geq 0} \frac{U_{m,n}^0}{2^{2n} (\frac{\mu_1-\epsilon}{2} + 1)^m (\frac{\mu_2-\epsilon}{2} + 1)^n} \times y_1^{\mu_1+2m} y_2^{\mu_2+2n}
+ \frac{\epsilon U_{m,n}^1}{2^{2n+1} (\frac{\mu_1-\epsilon}{2} + 1)^m (\frac{\mu_2-\epsilon}{2} + 1)^{n+1}} \times y_1^{\mu_1+2m} y_2^{\mu_2+2n+1},
\]

is a Whittaker function, on \(A \), of \(\pi_{0, \chi} \) with the \(K \)-type \(\tau_{[0,0;2\epsilon]} \). Moreover, the intertwiners \(\Phi_{\omega(\mu)} \) attached to the function \(\phi_{\omega(\mu)}(y_1, y_2) \) form a basis of the 8-dimensional space \(W(\pi_{0, \chi}, \eta) \). Here,

\[
U_{m,n}^t := \sum_{j=0}^{\min(m,n)} \frac{(\frac{\mu_1-\epsilon}{2} + n + 1 + t)_{m-j}}{(m-j)! (n-j)! j!(\frac{\mu_1+\mu_2}{2} + 1)^j (\frac{\mu_1-\mu_2}{2} + 1)_{m-j}}
\]

for \(t = 0, 1 \).

Acknowledgments. The author thanks the conference organizers for their hospitality. He also owes thanks to Professor Takayuki Oda for his various supports and discussions.

References

[1] Bayarmagnai, G. The \((g, K)\)-module structure of principal series of \(SU(2, 2) \), J. Math. Soc, Vol. 61, No. 3 (2009), 661-686

