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1 Introduction

A chaotic dynamical system includes an infinite number of unstable pe-
riodic orbits in general. Therefore, in order to capture statistical values of
chaos weighted average along a series of unstable periodic orbits (UPOs),
which is sometimes called a cycle expansion, has been proposed and used
to study low dimensional systems [1, 2, 5]. Recently, in some turbulence
systems in fluid dynamics, it has been shown that even only a few UPOs
with relatively low periods can capture mean properties of chaotic mo-
tions [6, 7]. For example, for the turbulent Couette flow of rather low
Reynolds number of $t_{I}he$ full Navier-Stokes system, Kawahara and Kida
[6] obtained a remarkable agreement of an averaged velocity profile along
a single UPO with that along a chaotic orbit in phase space of turbulent
Couette flows. In the above studies, it seems that only a few UPOs with
relatively low periods are enough to capture some mean properties of a
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chaotic solution. However, on the other hand, it appears that an UPO
with longer period gives a better approximation to $t_{\mathfrak{u}}hest_{1}atistica1$ proper-
$t_{t}ies$ of chaotic solutions. So we lnay have a question why in the above
systems even a small number of UPOs with rather low periods can give a
remarkably good approximation to the various chaotic mean values. Some
studies have been concerned with this problem. For example, Saiki and
Yamada [10] employed three chaotic systems described by low dimensional
ODEs and $investiga_{1}ted$ the difference between the average of a dynamical
quantity along an UPO and t,hat along a chaotic orbit, especially with an
attent.ion focused on the dependence of the variance of the averaged value
on the period of the UPOs. It was found that for each chaotic system the
distributions of a time average of a dynalnical variable along UPOs with
lower and higher periods are silnilar to each other and the variance of the
distribution is slnall, in contrast with that along chaotic segments. In this
paper, we employ two chaotic systems described by differential equation
systems and investigate the relation between the averages of dynamical
quantities along UPOs detected numerically.

2 Relation between statistical values along UPOs

2.1 Lorenz system

UPOs in the Lorenz system $(dx/dt=\sigma(y-x),$ $dy/dt=rx-y-$
$xz,$ $dz/dt=$ xy–bz$)$ with the classical parameter values $(\sigma=10,$ $b=$

$8/3,$ $r=28)$ have been extensively studied [11, 4, 3, 14]. Although the
Lorenz system is not uniformly hyperbolic, it is recently proved by the aid
of numerical calcula.tion with guaranteed accuracy that the Lorenz attrac-
tor is chaotic and includes an infinite number of UPOs densely [12, 13].
Here we focus our attention to the relations between time averaged val-
ues of dynamical variables along UPOs of the Lorenz system. In order to
detect UPOs we employ in this paper the Newton-Raphson-Mees method
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in which the period of the UPO is regarded as a variable to be found in
the numerical $calculat_{I}ion$ . We found more than 1000 UPOs of the periods
from 1.558 through 16.445, corresponding respectively from 2 through 23
rotations around a wing of the Lorenz attractor. The number of rotations
corresponds to $t_{\text{・}}he$ period (PERIOD $N$) of the Poincar\’e map defined by the
Poincar\’e section $z=r-1,$ $dz/dt>0$ . Figure 1 shows the relation of time
average of $z(\langle z\})$ and the variance of $z$ (Var of z) along UPOs $(N=11)$ ,
along segments of chaotic orbits (chaotic segments) $(N=1, \cdots, 11)$ and
along a long chaotic orbit. It shows that whereas the chaotic segments give
scattering points in ( $\langle z\}$ , Var of z)-plane, the UPOs give an almost straight
line. In addition, a chaotic orbit gives a point on the line. From Figure 2
we can see that also in $(\lambda,\{z\rangle)$ -plane the UPOs give points on a straight
line, where $\lambda$ represents the Lyapunov exponent. Figures 1 and 2 show that
if we choose a special UPO whose Lyapunov exponent approximates that
of a long chaotic orbit, the UPO also gives various macroscopic statistical
quantities of chaos, even if the period is not large enough. This result im-
plies that there are UPOs which can capture various types of macroscopic
statistical quantities of chaos.

2.2 Kuramoto-Sivashinsky system

The Kuramoto-Sivashinsky (KS) syst.em can be written as $u_{t}=-u_{u\cdot x}-$

$\nu u_{xxxx}-(u^{2})_{\alpha}.\cdot$ , where th$e’$’viscosity” control $paramet_{I}er\nu$ is fixed as 0.02991.
We assume periodic boundary conditions $u(x, t)=u(x+2\pi, t)$ and through
a symmetry reduction $u(x, t)=-(i/2) \sum a_{k}(t)e^{ikx}$ we obtain the equations
in Fourier space [9]:

$\dot{a}_{k}$

$k=1,$ $\cdots,$
$N$.
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Fig. 1: ( $\{z\}$ ,Var of z) for each chaotic segment $(N=11)$ (small plus)(left)
and each UPO $(N=1, \cdots, 11)$ (small plus) with chaos averages (big
cross)(right) for the Lorenz system.
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Fig. 2: $(\lambda, \langle z\rangle)$ for each UPO $(N=1, \cdots, 11)$ (slnall plus) with chaos
averages (big cross) for the Lorenz system.
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Fig. 3: $(\{a_{2}\rangle,$ $\langle a_{3}\rangle)$ for each chaotic segment $(N=8)$ (small plus)(left)
and each UPO $(N=1, \cdots, 12)$ (small plus) and with chaos averages (big
cross)(right) for the KS system.

$N$ is fixed as 16 in this study. For the case of the KS system we obtain a
similar result on the relation between time averaged values along UPOs.
We see in Figure 3 that $(\{a_{2}\}, \{a_{3}))$ for each UPO with PERIOD 8 (Poincar\’e
map is defined by the section $a_{1}=0,$ $da_{1}/dt>0$ ) is on a single almost
straight line, whereas those along chaotic segments scatter in the plane.
We should also remark that averages along a chaotic orbit are on the line.

3 Concluding Remarks

By employing two chaotic systems described by differential equation sys-
tems, we study relations between tilne averaged values of some variables
along UPOs, and find that there is almost a one to one and linear corre-
spondence. In addition, statistical values along a long chaot.ic orbit are on
the same constraint as those along UPOs. This implies that UPO which
approximates one of the statistical quantities along a long chaotic orbit
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approximates another sta.tistical quantity, and suggests that longer UPOs
of two systems can be approximable by some UPOs with low periods at
least in the statistical sense. Moreover, we found in the Lorenz system that
when the system possesses a tangency structure as a parameter changes,
another class of UPOs appear outside the linear correspondence discussed
above.
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