<table>
<thead>
<tr>
<th>Title</th>
<th>Numerical semigroups of double covering type and Hurwitz's problem (Algebras, Languages, Algorithms and Computations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Komeda, Jiryo</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2011), 1769: 60-65</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2011-10</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/171483</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Numerical semigroups of double covering type and Hurwitz's problem

神奈川工科大学・基礎・教養教育センター　米田 二良 (Jiryo Komeda)
Center for Basic Education and Integrated Learning
Kanagawa Institute of Technology

Abstract

We are interested in Hurwitz's Problem [2] posed in 1893. Buchweitz [1] and Torres [4] gave some essential statements related to this problem in 1980 and 1993 respectively. Moreover, recently significant examples were given by [3]. In this paper we show that solving Hurwitz's Problem is reduced to finding a necessary and sufficient condition for some kinds of symmetric numerical semigroups to be Weierstrass.

1 Hurwitz's Problem and Buchweitz's Answer

Let \mathbb{N}_0 be the additive monoid of non-negative integers. A submonoid H of \mathbb{N}_0 is called a numerical semigroup if the complement $\mathbb{N}_0 \backslash H$ is finite. The cardinality of $\mathbb{N}_0 \backslash H$ is called the genus of H, denoted by $g(H)$. In this paper a curve means a projective non-singular curve over an algebraically closed field k of characteristic 0. Let $k(C)$ be the field of rational functions on C. For a pointed curve (C, P) we set

$$H(P) = \{ n \in \mathbb{N}_0 \mid \exists f \in k(C) \text{ with } (f)_{\infty} = nP \}.$$

A numerical semigroup H is said to be Weierstrass if there is a pointed curve (C, P) with $H = H(P)$. The following is the original question posed by Hurwitz in which we are interested:

Hurwitz's Problem (Original Version) (1893): Is every numerical semigroup Weierstrass?

This was a long-standing problem. Finally Buchweitz [1] found a non-Weierstrass numerical semigroup in 1980. Here, we will explain his example.

1 This paper is an extended abstract and the details will appear elsewhere.
We consider the following condition: For a numerical semigroup H and any positive integer m we set

$$L_m(H) = \{l_1 + \cdots + l_m | l_i \in \mathbb{N}_0 \setminus H\}.$$

We say that the numerical semigroup H satisfies the Buchweitz’s condition if \(#L_m(H) \leq (2m-1)(g(H)-1)\) for all $m \geq 2$.

Theorem 1.1 (Buchweitz) *Let H be a numerical semigroup. If it is Weierstrass, then it satisfies the Buchweitz’s condition.*

Buchweitz gave a numerical semigroup of genus 16 which does not satisfy the Buchweitz’s condition.

2 Non-Weierstrass semigroups satisfying the Buchweitz’s condition

Theorem 1.1 posed the following problem:

Hurwitz’s Problem (Second Version): *Is a numerical semigroup satisfying the Buchweitz’s condition Weierstrass?*

But Torres and Stöhr [4] found non-Weierstrass numerical semigroups which satisfy the Buchweitz’s condition in 1994. We will introduce their method for constructing such numerical semigroups.

Let γ be a non-negative integer. A numerical semigroup H is said to be γ-hyperelliptic if it satisfies

i) $h_1, h_2, \ldots, h_\gamma$ are even where $H = \{0 < h_1 < h_2 < \cdots\}$,

ii) $h_\gamma = 4\gamma$,

iii) $4\gamma + 2 \in H$.

Theorem 2.1 (Torres [4]) *Let H be a γ-hyperelliptic numerical semigroup with $g(H) \geq 6\gamma + 4$. If it is Weierstrass, then there exists a double covering $\pi : C \rightarrow C'$ with a ramification point $P \in C$ such that $H(P) = H$.*

Remark 2.2 *For a numerical semigroup H we set*

$$d_2(H) = \left\{ \frac{h}{2} \mid h \in H \text{ is even} \right\}.$$
which is a numerical semigroup. Let $\pi : C \rightarrow C'$ be a double covering with a ramification point P. Then we have $H(\pi(P)) = d_2(H(P))$.

Stöhr and Torres [4] gave γ-hyperelliptic numerical semigroups H satisfying the Buchweitz's condition with $g(H) \geq 6\gamma + 4$ such that $d_2(H)$ is the non-Weierstrass semigroup given by Buchweitz. By Torres' Theorem these H are non-Weierstrass numerical semigroups satisfying the Buchweitz’s condition.

3 Torres' Question

Torres [5] introduced the following notation including the notion of γ-hyperelliptic numerical semigroup.

Let γ and N be positive integers with $N \geq 2$. A numerical semigroup $H = \{0 < h_1 < h_2 < \cdots \}$ is said to be of type (N, γ) if

i) h_1, \ldots, h_{γ} are multiples of N,

ii) $h_{\gamma} = 2\gamma N$,

iii) $(2\gamma + 1)N \in H$.

In fact, type $(2, \gamma)$ means γ-hyperelliptic.

Theorem 3.1 (Torres [5]) Let H be a numerical semigroup of type (N, γ) with $g(H) > (2N - 1)(N\gamma + N - 1)$. If it is Weierstrass, then there exists a covering $\pi : C \rightarrow C'$ of degree N with a total ramification point $P \in C$ such that $H(P) = H$ where the genus of C' is γ.

We also generalize the notion of d_2 given in the previous section. Let N be an integer with $N \geq 2$. For a numerical semigroup H we set

$$d_N(H) = \left\{ \frac{h}{N} \middle| h \in H \text{ is a multiple of } N \right\}.$$

Let $\pi : C \rightarrow C'$ be a covering of degree N with a total ramification point P. Then we have $H(\pi(P)) \subseteq d_N(H(P))$. Torres posed the following question in the end of his paper [5].

Hurwitz's Problem (Torres' Question): Let H be a numerical semigroup satisfying the Buchweitz's condition. Then are the following equivalent?

i) H is non-Weierstrass.
ii) There exists an integer $N \geq 2$ with $g(H) > (2N - 1)(Ng(d_N(H)) + N - 1)$ such that H is of type $(N, g(d_N(H)))$ and $d_N(H)$ is non-Weierstrass.

We note that i) comes from ii) by Theorem 3.1.

4 Answer to Torres’ Question

The aim of this section is to give a negative answer to Torres’ Question in Section 3. We prepare some notation. A numerical semigroup H is said to be of double covering type if there exists a double covering $\pi : C \to C'$ with a ramification point P such that $H(P) = H$. Using this notation we can restate Theorem 2.1 as follows:

Theorem 4.1 (Torres) If H is a γ-hyperelliptic Weierstrass numerical semigroup with $g(H) \geq 6\gamma + 4$, then it is of double covering type.

We found crucial examples which give a negative answer to Torres’ Question.

Theorem 4.2 ([3]) For any $\gamma \geq 5$ there are γ-hyperelliptic numerical semigroups H satisfying the Buchweitz’s condition with $g(H) \geq 6\gamma + 4$ which are not of double covering type such that $d_2(H)$ is Weierstrass. By Theorem 4.1 these H are non-Weierstrass.

In fact, the following examples satisfy the conditions in Theorem 4.2.

Example 4.1 For any $l \geq 2$ and any odd $n \geq 4l + 3$ the submonoid of \mathbb{N}_0 generated by $8, 12, 8l + 2, 8l + 6, n$ and $n + 4$ is a non-Weierstrass numerical semigroup satisfying the Buchweitz’s condition. Moreover, for any $N \geq 2$ the semigroup $d_N(H)$ is Weierstrass.

Hence, Torres’ Question has been solved negatively.

5 Hurwitz’s Problem and Symmetric numerical semigroups

First we introduce one kind of numerical semigroup which plays an important role in rewriting Hurwitz’s Problem. For a numerical semigroup H we
set $c(H) = \min\{n \in \mathbb{N}_0 \mid n + \mathbb{N}_0 \subseteq H\}$, which is called the conductor of H. It is known that $c(H) \leq 2g(H)$. A numerical semigroup H is said to be symmetric if $c(H) = 2g(H)$. We guess that some kinds of symmetric numerical semigroups hold the key to solving Hurwitz’s Problem. In fact, we can prove the following theorem:

Theorem 5.1 Let H be a symmetric numerical semigroup of genus $g \geq 4g(d_2(H))$. If $d_2(H)$ is Weierstrass, then H is of double covering type. Hence, H is Weierstrass.

Combining the above theorem with Theorem 2.1 we get the following:

Corollary 5.2 Let H be a symmetric numerical semigroup of genus $g \geq 6g(d_2(H)) + 4$. Then the following are equivalent:

i) $d_2(H)$ is Weierstrass.

ii) H is Weierstrass.

In these cases, H is of double covering type.

Using Theorem 3.1 we obtain the following:

Corollary 5.3 Let H be a symmetric numerical semigroup of genus $g \geq 6g(d_2(H)) + 4$. Then Torres’ Question in Section 3 is solved affirmatively.

We can construct symmetric numerical semigroups from any numerical semigroups as follows:

Lemma 5.4 Let H be a numerical semigroup. For $g \geq 3g(H)$ we set

$$S(H, g) = 2H \cup \{2g - 1 - 2t \mid t \in \mathbb{Z} \setminus H\}.$$

Then $S(H, g)$ is a symmetric numerical semigroup of genus g.

By Theorem 5.1 and Lemma 5.4 we get the main theorem in this paper.

Theorem 5.5 Let H be a numerical semigroup satisfying the Buchweitz’s condition and $g \geq 3g(H)$. Then the following are equivalent:

i) H is Weierstrass.

ii) There exists an integer $g \geq 6g(H) + 4$ such that $S(H, g)$ is Weierstrass, in this case it is of double covering type.
By Theorem 5.5 Hurwitz’s Problem is reduced to the following:

Problem Find a necessary and sufficient condition for a symmetric numerical semigroup S of sufficiently large genus compared with $g(d_2(S))$, at least $6g(d_2(S)) + 4$, to be Weierstrass.

References

