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Abstract

This paper presents a level set-based topology optimization method for the design of
negative permeability dielectric metamaterials. Metamaterials are artificial materi-
als that display extraordinary physical properties that are unavailable with natural
materials. The aim of the formulated optimization problem is to find optimized
layouts of a dielectric material that achieve negative permeability. The presence of
grayscale areas in the optimized configurations critically affects the performance
of metamaterials, positively as well as negatively, but configurations that contain
grayscale areas are highly impractical from an engineering and manufacturing point
of view. Therefore, a topology optimization method that can obtain clear optimized
configurations is desirable. Here, a level set-based topology optimization method
incorporating a fictitious interface energy is applied to a negative permeability di-
electric metamaterial design problem. The optimization algorithm uses the finite
element method (FEM) for solving the equilibrium and adjoint equations, and de-
sign problems are formulated for both two- and three-dimensional cases. First, the
level set-based topology optimization method is explained, and the optimization
problems for the design of metamaterials are then discussed. Several optimum de-
sign examples for the design of dielectric metamaterials that demonstrate negative
effective permeability at prescribed frequencies are provided to confirm the utility
and validity of the presented method.
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1 Introduction

This paper discusses a level set-based topology optimization method for the
design of dielectric metamaterials that achieve a negative permeability at de-
sired frequencies. Electromagnetic metamaterials are artificial materials that
exhibit extraordinary electromagnetic properties not available in nature, such
as a negative refractive index, that is, negative permittivity and permeabil-
ity. The existence of such materials was first proposed by Veselago [1] in 1968.
After Pendry et al. [2][3] and Smith et al. [4] showed that arrangements of split-
ring resonators that have negative permeability and metallic wires that have
negative permittivity can exhibit negative refraction at a certain frequency,
considerable research was carried out to investigate the unusual properties of
such materials, and develop certain applications, such as cloaking devices [6],
waveguides [5], super lenses [7], leaky wave antennas [8], energy harvesting
devices [9], and the like. Furthermore, recently, new types of metamaterials
that utilize the magnetic and electric resonance phenomena of dielectric mate-
rials rather than effects primarily derived from metallic inclusions have been
proposed [10–14]. These new dielectric metamaterials are expected to offer
advantages due to improved manufacturability and the possibility of achiev-
ing isotropic metamaterials that provide advanced functions under no metallic
loss.

Holloway et al. [11] showed theoretically that negative effective permittiv-
ity and negative effective permeability can be simultaneously achieved with
appropriately designed dielectric spheres embedded in a host material. Subse-
quently, more practical structures based on this approach were suggested, such
as structures using dielectric particles of two different radii [12], structures us-
ing identically sized spheres but with different values of dielectric constant
[13], and arrays of cylindrical dielectric materials [14]. Experimental verifica-
tions are provided for three-dimensionally isotropic dielectric metamaterials
consisting of an array of dielectric cubes that exhibit negative permeability
[15], and an array of dielectric rods [16], and cubic dielectric particles [17]
that exhibit negative permittivity and negative permeability simultaneously.
Furthermore, applications such as all-dielectric cloaking devices [18][19], as
well as waveguides [20] and leaky wave antennas [21] composed of dielectric
materials and metallic plates, have been discussed.

Most electromagnetic metamaterials consist of periodic arrays of unit cells
that are adequately small compared to the wavelength of the target frequency,
with cells composed of a layer of dielectric material, with or without metal-
lic inclusions. The overall structure of such periodic arrays can be considered
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as an effectively homogeneous electromagnetic structure, so the electromag-
netic metamaterial behaves as a material having negative properties exhibited
globally, whereas the individual cell materials do not exhibit these proper-
ties. Several methods have been proposed to obtain the effective properties
of electromagnetic metamaterials, such as homogenization methods based on
the asymptotic-expansion approach [22–25] and the energy-based approach
[26] that can be applied when the periodic unit cell can be considered as
infinitely small compared to the wavelength, a method that computes the ef-
fective properties by averaging electric and magnetic fields in the unit cell [27],
and methods that extract effective properties from S-parameters, namely, the
complex transmission and reflection coefficients[28–31]. Such effective medium
theories provide the basis for the design of metamaterial unit cells that can
be used to construct useful metamaterials.

Several unit cell layouts have been proposed that achieve good performance at
certain desired frequencies [32]. However, the unit cell layout crucially affects
the performance of metamaterials, and it is usually difficult or time-consuming
to find appropriate unit cell designs by trial and error methods, even for ex-
pert engineers. Thus, there is a need for systematic design methods that assist
or simplify the design of effective metamaterials. One systematic approach
for obtaining desirable unit cell designs is to apply a structural optimization
method. Zhou et al. [33] proposed a level set-based structural optimization
method for the design of double negative metamaterials, that is, metamate-
rials with negative permittivity and negative permeability. The aim of the
optimization problem in this case was to find an optimized layout of metallic
inclusions, and the objective function was formulated using current flow, in-
stead of using the effective permittivity or permeability directly. Subsequently,
Zhou et al. [34] proposed a level set-based structural optimization method in
which the effective permeability is directly used as an objective function. Con-
cerning the design optimization of metamaterial applications, Yamasaki et al.
[35] proposed a level set-based structural optimization method for the design
of composite right- and left-handed transmission lines consisting of a metallic
waveguide with dielectric inclusions. The aim of optimization problem was to
find the optimized configuration of the dielectric inclusion within the unit cell
of the transmission line that provides desired dispersion behavior for the com-
posite right- and left-handed transmission line. In level set-based structural
optimization methods [36,37], the structural boundaries are represented by the
iso-surface of a scalar function called the level set function, and the boundaries
are evolved by updating the level set function using a Hamilton-Jacobi equa-
tion. However, this method is based on the concept of shape optimization, and
only the boundaries of the target structure are changed during the optimiza-
tion procedure, so topological changes such as the introduction of holes is not
allowed, although the number of holes can be decreased during optimization.

On the other hand, topology optimization methods, the most flexible type
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of structural optimization method, allow not only changes in shape, but also
topological changes that include increasing the number of holes in the design
domain [38,39]. Such methods have been applied to a variety of problems, such
as stiffness maximization problems [40], eigen-frequency problems [41], elec-
tromagnetic problems [42] and, recently, electromagnetic metamaterial prob-
lems. Diaz and Sigmund [43] proposed a topology optimization method for
the design of negative permeability metamaterials using an S-parameter re-
trieval method, where the imaginary part of the effective permeability was
minimized at a specific frequency, and several designs for metallic structures
attached to dielectric substrates that achieved negative permeability were pro-
vided. Sigmund [44] proposed a topology optimization method for dielectric
metamaterials to obtain dielectric material designs that minimize the effective
permeability at a specific frequency, which also employed the S-parameter re-
trieval method to obtain the effective properties. Choi and Yoo [45] introduced
the inverse homogenization method [46] for the design of magnetic materials
that demonstrate a desirable prescribed effective permeability value. Zhou et
al. [25] proposed an inverse homogenization method for the design of meta-
materials, where both permittivity and permeability are simultaneously maxi-
mized. El-Kahlout and Kiziltas [47], and Otomori et al. [48] introduced inverse
homogenization methods for the design of dielectric materials that demon-
strate a desirable prescribed effective permittivity value, using an asymptotic
expansion-based homogenization method and Genetic Algorithms (GAs) [47],
and an energy-based homogenization method and density-based topology op-
timization [48], respectively. GAs have also been used to find optimized layouts
of a metallic inclusion in the metamaterial unit cell for a negative permeabil-
ity design problem [49], and for different multi-objective problems [50,51] in
which the refractive index and impedance were simultaneously designed [50],
and the bandwidth of the negative refractive index was maximized and the
dissipation minimized [51].

The basic ideas of topology optimization are (1) the extension of the design
domain to a fixed design domain and (2) the replacement of the optimization
problem with material distribution problem in the fixed design domain using
the characteristic function [52]. Since the characteristic function is a discon-
tinuous function that represents the structure using a value of 0 or 1, the
optimization problem is typically an ill-posed problem. To overcome this diffi-
culty, the Homogenization Design Method (HDM) [38] and density approaches
such as the SIMP method [39] have been proposed, where optimized config-
urations are represented as density distributions, with the density assuming
continuous values from 0 to 1. However, such optimized configurations often
include grayscale areas where the density is an intermediate value between 0
and 1. Although configurations including grayscale areas can be considered as
composite materials, they are typically impractical to manufacture or mean-
ingless in an engineering sense. To overcome this problem, several kinds of
filtering scheme [53–58] have been proposed and applied to many problems,
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to provide optimized configurations that are free from grayscales.

Level set-based topology optimization methods that inherently obtain clear
optimized configurations have also been proposed [59,60]. In these methods,
the structural boundaries are implicitly represented by the iso-surface of the
level set function, so grayscale areas do not appear. Yamada et al. [60] pro-
posed a level set-based topology optimization method where the optimization
problem is regularized using the Tikhonov regularization method, and the level
set function is updated based on a reaction-diffusion equation. This method
not only allows topological changes such as the introduction of holes dur-
ing the optimization procedure, but also enables the complexity of optimized
configurations to be controlled by using appropriate magnitudes of a regular-
ization parameter. The method has been applied to many problems, such as
stiffness maximization problems, eigen-frequency problems, compliant mecha-
nism design problems [60], and problems to maximize thermal diffusivity [61],
but application to dielectric metamaterial design problems has not yet been
reported.

In this paper, the above-mentioned level set-based topology optimization method
[60] is applied to the design of negative permeability dielectric metamaterials.
The rest of this paper is as follows. Section 2 describes the formulation of the
optimization problem for the design of dielectric metamaterials, for both two-
and three-dimensional cases, and discusses the level set-based topology opti-
mization method. Section 3 describes the numerical implementation, based on
the formulation of the optimization problem, which uses the Finite Element
Method (FEM) to solve the electromagnetic wave problem and update the
level set function, and the Adjoint Variable Method (AVM) to compute the
sensitivity analysis. Finally, several numerical examples are provided for both
two- and three-dimensional cases to confirm the validity and utility of the
presented method.

2 Formulations

2.1 Governing equation

2.1.1 Two-dimensional electromagnetic wave propagation problem

The design domain for the two-dimensional dielectric metamaterial design
problem is illustrated in Fig. 1. Transverse magnetic (TM) waves propagate
in x-y direction where the magnetic field vector is polarized orthogonal to
the wave direction, and the direction of wave amplitude is in the z-direction.
Incident waves enter the domain from the left boundary Γ1 and output waves
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are observed at the right boundary Γ2. The upper and lower boundaries ΓPEC

are set as Perfect Electric Conductors (PEC) under periodic conditions. In
the two-dimensional case, the governing equation is the following Helmholtz
equation, derived from Maxwell’s equation, and the state variable of the gov-
erning equation is the magnetic field Hz in the z direction. Here, the relative
permeability of both the background material and the dielectric material is
set to 1, with air used as the background material.

∇ ·
(
ε−1
r ∇Hz

)
+ k2

0Hz = 0, (1)

where εr is the relative permittivity and k0 is the wave number in a vacuum
such that k0 = ω

√
ε0μ0, where ω is the angular frequency and ε0 and μ0 are

the permittivity and permeability in a vacuum, respectively. The boundary
conditions are described as follows.

n ·
(
ε−1
r ∇Hz

)
+ jk0Hz = 2jk0H

i
z on Γ1 (2)

n ·
(
ε−1
r ∇Hz

)
+ jk0Hz = 0 on Γ2 (3)

n ·
(
ε−1
r ∇Hz

)
= 0 on ΓPEC (4)

where n is the normal vector, j is the imaginary unit and H i
z is an incident

wave. The weak formulation of Eqs.(1)-(4) is then derived as follows.

a1(Hz, H̃z) + a2(Hz, H̃z) = l(H̃z) for Hz ∈ U, H̃z ∈ U (5)

where

a1(Hz, H̃z) =
∫
D
∇H̃z ·

(
ε−1
r ∇Hz

)
dΩ− k2

0

∫
D
H̃zHzdΩ (6)

a2(Hz, H̃z) = jk0

∫
Γ1∪Γ2

H̃zHzdΓ (7)

l(H̃z) = 2jk0

∫
Γ1

H i
zH̃zdΓ (8)

U = {H̃z ∈ H1(Ω)}, (9)

where H̃z is a test function and H1 is Sobolev space. We note that during the
derivation of the weak formulation, the boundary integral for ΓPEC becomes 0
due to the applied PEC condition. Additional details concerning the derivation
of the weak formulation for the two-dimensional case are provided in Appendix
A.1.

[Fig. 1 about here.]

2.1.2 Three-dimensional electromagnetic wave propagation problem

The design domain for the three-dimensional problem is illustrated in Fig.2.
Incident waves enter the domain from the left boundary Γ1. The upper and
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lower boundaries ΓPEC are set as Perfectly Electric Conductors (PEC) and
the front and rear boundaries ΓPMC are set as Perfectly Magnetic Conductors
(PMC) under periodic conditions. In the three-dimensional case, the follow-
ing wave propagation equation is derived from Maxwell’s equation and the
state variable is the electric field E. The relative permeability of both the
background material and the dielectric material is again set to 1.

∇× (∇× E)− k2
0εrE = 0 (10)

The boundary conditions are described as follows.

n× (∇× E)− jk0n× (E× n) = −2jk0E
i on Γ1 (11)

n× (∇× E)− jk0n× (E× n) = 0 on Γ2 (12)

n× E = 0 on ΓPEC (13)

n×H = 0 on ΓPMC, (14)

whereEi is the incident field andH is the magnetic field. The weak formulation
of Eqs.(10)-(14) then derived as follows.

a1(E, Ẽ) + a2(E, Ẽ) = l(Ẽ) for E ∈ U, Ẽ ∈ U, (15)

where

a1(E, Ẽ) =
∫
D

(
∇× Ẽ

)
· (∇× E) dΩ− k2

0

∫
D
εrẼ · EdΩ (16)

a2(E, Ẽ) = jk0

∫
Γ1∪Γ2

(
n× Ẽ

)
· (n× E) dΓ (17)

l(Ẽ) = 2jk0

∫
Γ1

Ẽ · EidΓ (18)

U = {Ẽ ∈ H1(Ω)}, (19)

where Ẽ is a test function. We note that during the derivation of the weak
form, the boundary integral for ΓPMC becomes 0, because n×H = 0 and the
relationship ∇ × E = −jωμH holds, which is derived from Faraday’s law of
Maxwell equations, replacing ∂/∂t with jω for time-harmonic electromagnetic
fields, and the same is true for ΓPEC when the Galerkin finite element method
is used [62]. Additional details for the derivation of the weak formulation for
the three-dimensional case are provided in Appendix A.2.

[Fig. 2 about here.]
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2.2 Effective permeability

Several approaches can be used to compute an effective property, such as effec-
tive permeability and effective permittivity, and these are typically categorized
into three types. One approach is to use a homogenization method, such as
a method based on the asymptotic expansion [22,23] and the energy-based
method [26], another approach is to average the electric and magnetic fields
in a unit cell [27], and the third approach is to compute the effective properties
based on the S-parameter, namely, the complex transmission and reflection co-
efficients [28–31]. The first approach can only be applied when the periodic
unit cell can be considered as infinitely small compared to the wavelength.
Since the unit cell size is relatively large in our design problems, consisting of
one unit cell in wave propagation direction, on the order of 1/10 ∼ 1/4 of the
wavelength, this approach is not appropriate. The second approach obtains
the effective properties based on the relation of electric field E and electric
flux density D, and also the magnetic field H and magnetic field density B,
using the integral form of Maxwell’s equations. However, it has been pointed
out that this approach becomes less effective with increasing complexity of
metamaterial cell structure [27].

The S-parameter-based approach was first proposed by Smith et al. [28]. Chen
et al. [29] proposed an improvement to this method, which can determine the
sign of the effective impedance and the correct branch of the real part of the
refractive index, but it includes an iterative process, so it is not appropriate
as an optimization process because the sensitivity may become exceedingly
complicated. In the method of Lubkowski et al. [30], the effective proper-
ties are retrieved using parameterized Drude and Lorentz models, but the
Drude model does not capture the effective permittivity appropriately for
all-dielectric metamaterials. Smith et al. extended their original approach to
deal with inhomogeneous cases [31]. Here, we use the extended approach [31],
with the effective parameters computed based on S-parameters that can be
obtained via the following equations:

S11 =

∫
Γ1
(E− Ei) · Ei∗dΓ∫
Γ1
Ei · Ei∗dΓ

(20)

S21 =

∫
Γ2
E · Ei∗dΓ∫

Γ2
Ei · Ei∗dΓ

(21)

S22 =

∫
Γ2
(E− Ei) · Ei∗dΓ∫
Γ2
Ei · Ei∗dΓ

(22)

where Ei∗ denotes the complex conjugate transpose of Ei. The effective per-
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meability μeff is then obtained by following equation.

μeff = Zn, (23)

where

Z =

√√√√ (1 + S11)(1 + S22)− S2
21

(1− S11)(1− S22)− S2
21

, (24)

n = cos−1

(
β

2S21

)
λ

2πd
, (25)

where λ is the wavelength and d is the unit cell length, and

β = 1 + S11S22 − S2
21. (26)

We note that in two-dimensional transverse magnetic (TM) wave propagation
problems, Ez = 0, Hx = 0, Hy = 0. In addition, Ex and Ey can be obtained
using the following relationship between E and H, derived from Ampere’s law
of Maxwell equations, ∇ × H = ∂(εE)/∂t, and replacing ∂/∂t with jω for
time-harmonic electromagnetic fields.

Ex =
1

jωε

∂Hz

∂y
(27)

Ey =
−1

jωε

∂Hz

∂x
(28)

Therefore, Sij can be computed using Hz in two-dimensional problems, since
Sij(Hz) is a functional of Hz. We also note that the above formulation [31,44]
is an extended formulation of the one provided in an earlier paper [28], where
S22 is used in addition to S11 and S21, for inhomogeneous inclusions. By using
the extended formulation, symmetric optimized configurations can be obtained
because it is symmetric with respect to S11 and S22.

2.3 Formulation of optimization problem

One particularly interesting optimization problem aims to obtain metamate-
rial designs that exhibit highly negative permeability values. In this case, the
objective of the optimization problem is to find a distribution of dielectric ma-
terial within the fixed design domain that minimizes the effective permeability,
and it can be formulated as a problem to minimize the effective permeability
at a prescribed frequency. On the other hand, to obtain an effective cloak-
ing device, the metamaterial design must exhibit a certain desirable value for
the effective permeability, so the objective of the optimization problem then
is to find a distribution of dielectric material that provides the desired value
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of effective permeability, and the optimization problem can be formulated to
minimize the square of the difference between the effective permeability and
a prescribed value at a prescribed frequency.

2.3.1 Effective permeability minimization problem

The purpose of the optimization here is to minimize the real part of the effec-
tive permeability at a desired frequency. A typical effective permeability curve
is shown in Fig.3(a), where μ′ and μ′′ show the real and imaginary part of the
effective permeability, respectively. The real part of the effective permeability
has a positive peak as well as an anti-resonance point, where the effective
permeability has a desirable negative value. However, if the positive peak lies
between the initial anti-resonance point in the optimization and the target
frequency, that is, if the target frequency is located in the hatched area for
the case shown in Fig.3(a), configurations that demonstrate negative effective
permeability cannot be obtained directly because the level set function must
always return a lower value of the objective function after updating.
For example, considering a case where the target value is set to 3.0THz as
shown in Fig.3(b), and the real part of the effective permeability is minimized
directly, an increase in the frequency of the resonance frequency results in a
decrease of the objectives. When the level set function is updated, the anti-
resonance point moves toward higher frequencies, which prevents obtaining a
configuration that demonstrate negative effective permeability. Thus, we use
a two-stage optimization procedure [44], where the imaginary part of perme-
ability μ′′ is minimized during the first stage, taking advantage of the fact that
the imaginary part of the permeability does not have positive peak (Fig.3(c)).
The optimization problem for this first stage is described as follows.

inf
φ

F = μ′′ (29)

subject to G ≤ 0 (30)

Governing equation (31)

Boundary conditions (32)

where F is the objective functional and G is the constraint functional of the
optimization problem. For the second stage of the optimization, the real part
of the effective permeability is minimized, using the optimized configuration
obtained in the first stage as the initial configuration (Fig.3(d)). The opti-
mization problem for the second stage is described as follows.

inf
φ

F = μ′ (33)

subject to G ≤ 0 (34)

Governing equation (35)

Boundary conditions (36)
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[Fig. 3 about here.]

2.3.2 Effective permeability design problem

The purpose of the optimization here is to obtain a distribution of dielectric
material which achieves the target value of the effective permeability μ′

tar at a
desired frequency. The optimization problem can be formulated as a problem
to minimize the square of the difference between the effective permeability
and a prescribed value. Again, if the positive peak lies between the initial
anti-resonance point in the optimization and the target frequency, obtaining
an optimized configuration that demonstrate negative effective permeability
directly is problematic, so the two-stage optimization procedure is again used.
That is, the imaginary part of the permeability μ′′ is minimized during the first
stage, as described in the previous subsection, and the square of the difference
between the effective permeability and a prescribed value is then minimized
during the second stage. The optimization problem for the second stage is
described as follows.

inf
φ

F = (μ′ − μ′
tar)

2
(37)

subject to G ≤ 0 (38)

Governing Equation (39)

Boundary conditions (40)

2.4 Level set-based topology optimization method

Here, we briefly discuss a level set-based topology optimization method that
incorporates a fictitious interface energy [60]. A topology optimization problem
is formulated using a fixed design domain D that consists of a domain Ω filled
with solid material, a domain filled with void, and structural boundaries ∂Ω.
As shown in Fig.4, in the level set-based topology optimization method, the
structural boundaries are implicitly represented using the iso-surface of the
level set function, as follows.

⎧⎪⎪⎨
⎪⎪⎩

1 ≥ φ(x) > 0 for ∀x ∈ Ω \ ∂Ω
φ(x) = 0 for ∀x ∈ ∂Ω

0 > φ(x) ≥ −1 for ∀x ∈ D \ Ω
(41)
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[Fig. 4 about here.]

The level set function φ is used to represent the boundaries of the target
structure, where positive values represent the solid domain, negative values
represent the void domain, and zero represents the structural boundaries. The
optimization problem that minimizes objective functional F under a constraint
functional G is then formulated as follows, using the above defined level set
function φ.

inf
χφ

F (χφ) =
∫
D
f1(x, χφ)dΩ +

∫
Γ
f2(x, χφ)dΓ (42)

subject to G(χφ) =
∫
D
g(x, χφ)dΩ−Gmax ≤ 0, (43)

where f1 and f2 are density functions of the objective functional, g is the
density function of the constraint functional, and Gmax is the upper limit
value of G. The characteristic function χφ(φ) is defined as follows.

χφ(φ) =

⎧⎨
⎩ 1 if φ ≥ 0

0 if φ < 0
. (44)

The above optimization problem is an ill-posed problem because the level set
function is allowed to be discontinuous at every point, so the optimization
problem needs to be regularized. In our method, the Tikhonov regulariza-
tion method is applied to regularize the optimization problem, and the above
formulation is replaced with the following optimization problem:

inf
φ

FR(χφ, φ) = F +R (45)

subject to G(χφ) ≤ 0, (46)

where R in the above equation is defined as follows.

R =
∫
D

1

2
τ | ∇φ |2 dΩ. (47)

In addition, τ is a regularization parameter that adjusts the degree of reg-
ularization. This formulation is then replaced with an optimization problem
without constraints, using Lagrange’s method of undetermined multipliers, as
follows.

inf
φ

F̂R(χφ, φ) = F̂ +R, (48)

where F̂ = F + λG, F̂R is the Lagrangian and λ is the Lagrange multiplier.
Based on the above formulation, the KKT (Karush-Kuhn-Tucker) conditions
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of this optimization problem are described as follows.

〈
dF̂R

dφ
, φ̃

〉
= 0, λG = 0, λ ≥ 0, G ≤ 0, (49)

where the notation
〈
dF̂R

dφ
, φ̃

〉
represents the Fréchet derivative of the regularized

Lagrangian F̂R with respect to φ.

Level set functions which satisfy the above KKT conditions are candidate
solutions of the level set function that represent optimized configurations.
However, it is not easy to find optimized solutions directly, so the optimization
problem is replaced by a time evolution equation, by introducing a fictitious
time t. The level set function is updated by solving this equation, and an
optimized configuration is ultimately obtained, as explained below.

2.5 Level set function updating scheme

For the following formulation, which introduces a fictitious time t, we assume
that the variation of the level set function is proportional to the gradient of
Lagrangian F̂R, as follows.

∂φ

∂t
= −K(φ)

dF̂R

dφ
, (50)

where K(φ) > 0 is a coefficient of proportionality. Substituting Eq.(48) into
Eq.(50) and setting appropriate boundary conditions, we have the following
equations.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂φ

∂t
= −K(φ)

(
dF̂

dφ
− τ∇2φ

)
∂φ

∂n
= 0 on ∂D \ ∂DN

φ = 1 on ∂DN

(51)

The optimized configuration can be then obtained by solving the above time
evolution problem. In this research, candidate optimum solutions are found
by solving the above equation. Here, since the objective functional F̂ (χφ) is

represented as a functional of χφ, we note that the derivative of F̂ (χφ) is equiv-
alent to the magnitude of the topological derivative [60,61]. The derivative of
F̂ (χφ) can then be obtained as the derivative with respect to χφ, namely,

−dF̂ (χφ)/dχφ.
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2.6 Sensitivity Analysis

2.6.1 Two-dimensional case

Now, we consider the sensitivity analysis for a two-dimensional case, using the
Adjoint Variable Method (AVM). The Lagrangian of the optimization problem
is formulated as follows.

F̂ = F − ∑
ij=11,21,22

(
a1(Hz, H̃z,ij) + a2(Hz, H̃z,ij)− l(H̃z,ij)

)
+ λG, (52)

where H̃z,ij denotes the adjoint variables with respect to Sij. The level set
function is updated based on the gradient of the Lagrangian using a reaction
diffusion equation. The sensitivity of the Lagrangian is obtained using the
AVM, as follows.

〈
dF̂

dχφ

, χ̃φ

〉
=

∑
ij=11,21,22

〈
∂F

∂Sij

, S̃ij

〉〈
∂Sij

∂Hz

, H̃z

〉〈
∂Hz

∂χφ

, χ̃φ

〉

− ∑
ij=11,21,22

(〈
∂a1
∂Hz

, H̃z

〉〈
∂Hz

∂χφ

, χ̃φ

〉
+

〈
∂a2
∂Hz

, H̃z

〉〈
∂Hz

∂χφ

, χ̃φ

〉

+

〈
∂a1
∂χφ

, χ̃φ

〉
+

〈
∂a2
∂χφ

, χ̃φ

〉
−

〈
∂l

∂χφ

, χ̃φ

〉)

+ λ

〈
∂G

∂χφ

, χ̃φ

〉
, (53)

where
〈

∂a2
∂χφ

, χ̃φ

〉
= 0 and

〈
∂l
∂χφ

, χ̃φ

〉
= 0, since a2 and the incident field are

independent of the design variables. Arranging the above equation in order
to cancel out the 〈∂Hz/∂χφ, χ̃φ〉 term, the above equation is transformed as
follows.

〈
dF̂

dχφ

, χ̃φ

〉
=

∑
ij=11,21,22

(〈
∂F

∂Sij

, S̃ij

〉〈
∂Sij

∂Hz

, H̃z

〉

−
〈
∂a1
∂Hz

, H̃z

〉
−
〈
∂a2
∂Hz

, H̃z

〉)〈
∂Hz

∂χφ

, χ̃φ

〉

− ∑
ij=11,21,22

〈
∂a1
∂χφ

, χ̃φ

〉
+ λ

〈
∂G

∂χφ

, χ̃φ

〉
, (54)

where the adjoint variable H̃z,ij is obtained by solving the following equation.

a1(H̃z,ij, δHz) + a2(H̃z,ij , δHz) =

〈
∂F

∂Sij

, S̃ij

〉
(Sij(δHz) + δij)

for H̃z,ij ∈ U, ∀δHz ∈ U, (55)
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where δHz is the variation of Hz, and δij is the Kronecker delta such that
δ11 = δ22 = 1, δ21 = 0. The sensitivities are finally obtained using the following
equation.

〈
dF̂

dχφ

, χ̃φ

〉
= − ∑

ij=11,21,22

〈
∂a1(Hz, H̃z,ij)

∂χφ

, χ̃φ

〉
+ λ

〈
∂G

∂χφ

, χ̃φ

〉
(56)

We note that, although the objective function is separately formulated for the
two stages of the optimization, the sensitivities of the real and imaginary parts
of the effective permeability are obtained by sensitivity analysis of the complex

function. Therefore, the obtained sensitivity
〈

dF̂
dχφ

, χ̃φ

〉
is a complex function

where the sensitivities of the real and imaginary parts of the objective func-
tion are respectively obtained by the real and imaginary parts of the derived

sensitivity, namely, Re
(〈

dF̂
dχφ

, χ̃φ

〉)
and Im

(〈
dF̂
dχφ

, χ̃φ

〉)
. Additional details are

provided in Appendix B.

2.6.2 Three-dimensional case

The Lagrangian of the optimization problem for a three-dimension case is
formulated as follows.

F̂ = F − ∑
ij=11,21,22

(
a1(E, Ẽij) + a2(E, Ẽij)− l(Ẽij)

)
+ λG, (57)

where Ẽij denotes the adjoint variables with respect to Sij. The sensitivity of
the Lagrangian is obtained as follows.

〈
dF̂

dχφ

, χ̃φ

〉
=

∑
ij=11,21,22

〈
∂F

∂Sij

, S̃ij

〉〈
∂Sij

∂E
, Ẽ

〉

− ∑
ij=11,21,22

(〈
∂a1
∂E

, Ẽ

〉
+

〈
∂a2
∂E

, Ẽ

〉
+

〈
∂a1
∂χφ

, χ̃φ

〉)
+ λ

〈
∂G

∂χφ

, χ̃φ

〉

=
∑

ij=11,21,22

(〈
∂F

∂Sij

, S̃ij

〉〈
∂Sij

∂E
, Ẽ

〉
−

〈
∂a1
∂E

, Ẽ

〉
−

〈
∂a2
∂E

, Ẽ

〉)

− ∑
ij=11,21,22

〈
∂a1
∂χφ

, χ̃φ

〉
+ λ

〈
∂G

∂χφ

, χ̃φ

〉
, (58)

where the adjoint variable Ẽij is obtained by solving the following equation.

a1(Ẽij, δE) + a2(Ẽij, δE) =

〈
∂F

∂Sij

, S̃ij

〉
(Sij(δE) + δij)

for Ẽij ∈ U, ∀δE ∈ U, (59)
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where δE is the variation of E. The sensitivities are then obtained by the
following equation.

〈
dF̂

dχφ

, χ̃φ

〉
= − ∑

ij=11,21,22

〈
∂a1(Ẽij,E)

∂χφ

, χ̃φ

〉
+ λ

〈
∂G

∂χφ

, χ̃φ

〉
(60)

We note that in the three-dimensional case, the adjoint equation, Eq.(59),
can be solved efficiently, as described below. The left-hand side is the same
as that of the governing equation, Eq.(15). Considering the right-hand side,
the right-hand side of the adjoint equation is linearly proportional to that of
the governing equation for ij = 11. Therefore, the adjoint field is self-adjoint
and its solution is linearly proportional to that of the governing equation.
For ij = 21 and ij = 22, the solutions of the adjoint equation, Eq.(59), are
obtained by switching the location of the input and output boundaries. Further
details concerning this approach are given in [34].

3 Numerical implementations

3.1 Design variables

3.1.1 Two-dimensional case

The distribution of dielectric material inside the fixed design domain is ex-
pressed using the level set function. In our method, we use a reciprocal for-
mulation of the relative electric permittivity to stabilize the optimization cal-
culations, so εr in the fixed design domain is defined using the characteristic
function χφ as follows.

ε−1
r =

(
ε−1
1 − ε−1

0

)
χφ (φ) + ε−1

0 , (61)

where ε1 is the relative permittivity of the dielectric material and ε0 is the
relative permittivity of the background material. For the numerical imple-
mentation, the above characteristic function is approximated by the following
smoothed Heaviside function H (φ).

H (φ) =

⎧⎪⎪⎨
⎪⎪⎩
0 (φ < −w)
1
2
+ φ

w

(
15
16

− φ2

w2

(
5
8
− 3

16
φ2

w2

))
(−w ≤ φ < w)

1 (w ≤ φ) ,

(62)

where w is the transition width of the Heaviside function, which is set to a
sufficiently small value.
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In cases where the relative permittivity is represented using a linear formula-
tion, it is defined as follows.

εr = (ε1 − ε0)χφ(φ) + ε0. (63)

The
〈

∂a
∂χφ

, χ̃φ

〉
term used in the sensitivity analysis is given by the following

equation.

〈
∂a

∂χφ

, χ̃φ

〉
=

∫
D

−1

ε2r
(ε1 − ε0)∇Hz · ∇H̃zχ̃φdΩ (64)

In the above formulation, the −1/ε2r term is included in the equation. In level
set-based topology optimization methods, structural boundaries are clearly
represented by the level set function, so values of the relative permittivity εr
change drastically near these boundaries, assuming values between ε0 and ε1.
Thus, the sensitivity also changes drastically near the structural boundaries,
and the sensitivity distribution becomes discontinuous. On the other hand,
by using the reciprocal formulation, the

〈
∂a
∂χφ

, χ̃φ

〉
term used in sensitivity

analysis is given by following equation.

〈
∂a

∂χφ

, χ̃φ

〉
=

∫
D

(
ε−1
1 − ε−1

0

)
∇Hz · ∇H̃zχ̃φdΩ (65)

In this formulation, εr is not included in the equation, so the sensitivity distri-
bution remains continuous and optimization calculations are stable. We note
that the reciprocal formulation and the linear formulation respectively rep-
resent lower and upper theoretical bounds of the effective properties of the
composite materials investigated here [63], so the reciprocal formulation is
physically reasonable.

3.1.2 Three-dimensional case

In the three-dimensional case, the relative electric permittivity εr is simply
defined using the linear formulation in Eq.(63). In this case, the

〈
∂a
∂χφ

, χ̃φ

〉
term used in the sensitivity analysis is given by the following equation.

〈
∂a

∂χφ

, χ̃φ

〉
= −k2

0

∫
D
(ε1 − ε0) Ẽ · Eχ̃φdΩ (66)

In the above formulation, εr does not appear as a term in the sensitivity
analysis, so the sensitivity distribution remains continuous and optimization
calculations are stable.
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3.2 Optimization algorithm

3.2.1 Effective permeability minimization problem

As described in the previous section, for the problem to minimize the effective
permeability, a two-stage optimization procedure is used in which the imagi-
nary part of the effective permeability is first minimized and the real part of
the effective permeability is minimized during the second stage.

1st stage: Minimize imaginary part of effective permeability.
2nd stage: Minimize real part of effective permeability, using optimized con-

figuration obtained in first stage as initial configuration.

3.2.2 Effective permeability design problem

A two-stage optimization procedure is also used in the effective permeability
design problem. Assuming that the target permeability is set to a negative
value, such as occurs at the anti-resonance point, an optimized configuration
that achieves the target value cannot be obtained directly if the positive peak
lies between the initial antiresonance point and the target frequency. This
behavior is the same as that encountered in the permeability minimization
problem. Moreover, in the same manner as in the case when the target value
is set to a negative value, when the target permeability is set to a value much
larger than 1, such as occurs near the resonance point, an optimized con-
figuration that achieves the target value cannot be obtained directly if the
anti-resonance point lies between the initial resonance point and the target
frequency. Therefore, we again use a two-stage optimization procedure. The
imaginary part of the effective permeability is minimized in the first stage of
the optimization, and the square of the difference between the real part of the
effective permeability and the effective permeability target value is minimized
during the second stage.

1st stage: Minimize imaginary part of effective permeability.

2nd stage: Minimize square of difference between real part of effective per-
meability and target value, using optimized configuration ob-
tained in first stage as initial configuration.

3.2.3 Flowchart for each stage

The optimization flowchart for the 1st and 2nd stages described above, are
summarized as follows.
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1: Initialize level set function.
2: Solve equilibrium equation using the Finite Element Method (FEM) and

calculate the objective functional and constraint functional.
3: If objective functional has converged, terminate the optimization proce-

dure and if not, compute the sensitivities of the objective and constraint
functionals using the AVM.

4: Update the level set function using the reaction diffusion equation and
return to step 2 of the optimization procedure.

The volume constraint is handled using the augmented Lagrangian method
[64] by estimating the Lagrange multiplier λ at every iteration to satisfy
G(φ(t + Δt)) = 0. Further details are given in [60]. In the following numeri-
cal examples, the optimization terminates if the objective function does not
improve during 20 consecutive iterations. We use the FEM for solving the
equilibrium and adjoint equations for its ease of implementation in the level
set-based method we constructed, but other computational methods such as
the FDTD method could be applied. We note that the FEM is also stable
and fast, especially when applied to single frequency analysis such as in the
metamaterial design problems considered here.

4 Numerical examples

In this section, several numerical examples are provided to confirm the utility
and validity of the presented method for two- and three-dimensional negative
permeability dielectric metamaterial design problems.

4.1 Two-dimensional problems: the effect of positive peak position in the ini-
tial configuration

In the two-dimensional design problems, we first address effective permeability
minimization problems where the target frequencies are set either higher or
lower than that of the positive peak of the initial configuration, to examine
whether the optimization can successfully find optimized configurations that
demonstrates negative effective permeability, independent of the location of
the positive peak of the initial configuration. Figure 5 shows the design domain
and boundary conditions. The size of the analysis domain is set to 120μm ×
120μm and the size of the fixed design domain is set to 80μm × 80μm. The
analysis domain is discretized using 120 × 120 square elements. The relative
permittivity ε1 of the dielectric material is set to 100 − 1i and the relative
permittivity ε0 of the background material is set to 1. The transition width w
of the Heaviside function is set to 0.001.
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[Fig. 5 about here.]

4.1.1 Effective permeability minimization problem targeting 0.30THz

For the effective permeability minimization problem, the target frequency is
set to 0.30THz to examine a case where the target frequency is lower than
where the anti-resonance point of the initial configuration occurs. A circular
rod shape with a volume fraction of 40% is used as the initial configuration
and the upper limit of the volume fraction is set to 70%.

The initial configuration and optimized distribution obtained in the first stage,
i.e., the distribution after minimizing the imaginary part of the effective per-
meability, are shown in Fig. 6. The effective permeability curves for the initial
configuration and optimized distribution obtained in the first stage are shown
in Fig. 7. The frequency of the negative peak of the imaginary part of the effec-
tive permeability gradually decreases during the optimization procedure and
finally reaches the prescribed frequency. The value of the imaginary part of the
effective permeability of the initial configuration at 0.30THz is −0.01, and the
frequency of the negative peak of the imaginary part of the effective permeabil-
ity is approximately 0.41THz. The value of the imaginary part of the effective
permeability of the optimized configuration at 0.30THz is −13.23. Figure 8
shows the convergence history of the objective function. The objective func-
tion sharply decreased after iteration 170 because the negative peak of the
imaginary part of the effective permeability approached the target frequency,
and the objective function sharply decreases near this peak.

[Fig. 6 about here.]

[Fig. 7 about here.]

[Fig. 8 about here.]

During the second stage of the optimization, the real part of the effective per-
meability is minimized using the optimized configuration obtained in the first
stage as the initial configuration. Figure 9 shows the initial configuration and
the optimized configuration obtained in the second stage. The effective perme-
ability curves of the initial and optimized configurations obtained are shown in
Fig. 10. The anti-resonance point of the real part of the effective permeability
gradually decreases during the optimization procedure and finally reaches the
prescribed frequency at the end of the optimization procedure. The values of
the real part of the effective permeability of the initial configuration of the
first stage and the optimized configuration obtained in the second stage at
0.30THz are respectively 1.33 and −5.06, which shows that the optimization
successfully found an optimized solution that has negative effective permeabil-
ity, The values of the imaginary part of the effective permeability of the initial
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configuration used in the first stage of the optimization and the optimized con-
figuration obtained in the second stage at 0.30THz are respectively −0.01 and
−3.22. The volume fraction of the optimized configuration is 69.8%. Figure
11 shows the convergence history of the objective function during the second
stage of the optimization.

Figure 12 shows the magnetic field of the initial configuration for the first stage
of the optimization, and that of the optimized configuration obtained after the
second stage of the optimization. Note that the ranges in the color bars of the
two figures are different. The black arrows in these illustrations indicate the
electric field. It can be seen that a circular electric field is generated in the
center of the design domain of the optimized configuration, which induces a
significant opposing magnetic field along the z-axis, whereas the electric field of
the initial configuration lacks this feature. Although a comparison of methods
for obtaining effective permeabilities is beyond the scope of this paper, we
note that the effective permeability can be also obtained as follows, using the
method described in [3,27].

μeff =
1

d

∫
D Hz(x, y)dΩ

Hz(0, 0)
. (67)

Here, Hz(0, 0) is positive, so when
∫
D Hz(x, y)dΩ is negative, the effective per-

meability becomes negative. Thus, it is apparent that the strong opposing
magnetic field described above is responsible for the obtained negative perme-
ability in the metamaterial.

[Fig. 9 about here.]

[Fig. 10 about here.]

[Fig. 11 about here.]

[Fig. 12 about here.]

4.1.2 Effective permeability minimization problem targeting 0.45THz

For the second two-dimensional problem, the target frequency is set to 0.45THz
to examine a case where the target frequency is higher than that of the anti-
resonance point of the initial configuration. A circular rod shape with a volume
fraction of 50% is used as the initial configuration, but a volume constraint is
not applied.

The initial configuration used in the first stage of the optimization and the
optimized configuration after the second stage of the optimization are shown
in Fig. 13, and the corresponding effective permeability curves for the initial
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and optimized configurations are shown in Fig. 14. The anti-resonance point
of the real part of the effective permeability gradually increases during the
optimization procedure and finally reaches the prescribed frequency. The real
part of the effective permeability of the initial configuration at 0.45THz is 0.64,
and the frequency at the anti-resonance point of the real part of the effective
permeability is approximately 0.37THz. The real part of the effective perme-
ability of the optimized configuration at 0.45THz is −2.45, which shows that
the optimization successfully found an optimized solution that exhibits neg-
ative effective permeability. The values of the imaginary part of the effective
permeability of the initial configuration used in the first stage and the opti-
mized configuration obtained in the second stage at 0.45THz are respectively
−0.01 and −2.26. Figure 15 shows the convergence histories of the objective
function during the first and second stages of the optimization, respectively.
Figure 16 shows the magnetic field of the initial configuration used in the first
stage of the optimization, and that of the optimized configuration obtained
after the second stage of the optimization. The black arrows in Fig.16 show
the electric field, and we again see that a circular electric field is generated
in the center of the design domain of the optimized configuration. A strong
opposing magnetic field is also induced in the optimized configuration, which
generates the negative permeability.

[Fig. 13 about here.]

[Fig. 14 about here.]

[Fig. 15 about here.]

[Fig. 16 about here.]

4.2 Effective permeability design problem

Next, we consider an effective permeability design problem to find an opti-
mized dielectric distribution that exhibits a prescribed value of the effective
permeability. The numerical settings of the optimization problem are the same
as those used in the previous subsection. The target frequency is set to 0.30THz
and the target value for the effective permeability is set to −3.0. A circular
rod shape with a volume fraction of 40% is used as the initial configuration.
The upper limit of the volume fraction is set to 70%. During the first stage
of the optimization, the imaginary part of the effective permeability is mini-
mized, as described in subsection 4.1.1. The square of the difference between
the effective permeability and a prescribed value is then minimized during the
second stage of the optimization.

The initial configuration used in the first stage of the optimization and the
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optimized configuration after the second stage of the optimization are shown
in Fig. 17, and the corresponding effective permeability curves for the initial
and optimized configurations are shown in Fig. 18. The real part of the effec-
tive permeability of the optimized configuration at 0.30THz is −3.00, which
indicates that the optimization successfully found an optimized configuration
that has a desirable value for the effective permeability at the target frequency.
The values of the imaginary part of the effective permeability of the initial
configuration used in the first stage and the optimized configuration obtained
in the second stage at 0.30THz are respectively −0.01 and −7.44. Figure 19
shows the convergence history of the objective function during the second
stage of the optimization. Figure 20 shows the magnetic field of the initial
configuration used in the first stage of the optimization, and that of the opti-
mized configuration obtained after the second stage of the optimization. The
black arrows in Fig.20 show the electric field, and we again see that a strong
opposing magnetic field is induced in the center of the design domain of the
optimized configuration, which generates the negative permeability.

[Fig. 17 about here.]

[Fig. 18 about here.]

[Fig. 19 about here.]

[Fig. 20 about here.]

4.3 Two-dimensional problems: high dielectric constant material

To further verify the usefulness of the present method, we provide effective per-
meability minimization problems for materials with a high dielectric constant.
The numerical settings of the optimization problems are the same as those
used in subsection 4.1. The relative permittivity ε1 of the dielectric material
is set to 200− 5i and the relative permittivity ε0 of the background material
is set to 1. A configuration filled with dielectric material is used as the initial
configuration, since we do not consider the effect of the positive peak position
here. A volume constraint is not applied in the following examples.

4.3.1 Effective permeability minimization problem targeting 0.30THz

Here, the target frequency is set to 0.30THz. The initial configuration used in
the first stage of the optimization and the optimized configuration after the
second stage of the optimization are shown in Fig. 21, and the correspond-
ing effective permeability curves for the initial and optimized configurations

23



are shown in Fig. 22. The anti-resonance point of the real part of the effec-
tive permeability gradually increases during the optimization procedure and
finally reaches the prescribed frequency. The real part of the effective perme-
ability of the initial configuration at 0.30THz is 0.70, and the frequency at the
anti-resonance point of the real part of the effective permeability is approxi-
mately 0.19THz. The real part of the effective permeability of the optimized
configuration at 0.30THz is −2.89, which shows that the optimization success-
fully found an optimized solution that exhibits negative effective permeability.
The values of the imaginary part of the effective permeability of the initial
configuration used in the first stage and the optimized configuration obtained
in the second stage at 0.30THz are respectively 0.00 and −2.26. Figure 23
shows the convergence histories of the objective function during the first and
second stages of the optimization. Figure 24 shows the magnetic field of the
initial configuration used in the first stage of the optimization, and that of
the optimized configuration obtained after the second stage of the optimiza-
tion. Once more, a strong opposing magnetic field is induced in the left and
right-center areas of the optimized configuration, which generates the negative
permeability.

[Fig. 21 about here.]

[Fig. 22 about here.]

[Fig. 23 about here.]

[Fig. 24 about here.]

4.3.2 Effective permeability minimization problem targeting 0.45THz

Next, the target frequency is set to 0.45THz. The initial configuration used in
the first stage of the optimization and the optimized configuration after the
second stage of the optimization are shown in Fig. 25, and the correspond-
ing effective permeability curves for the initial and optimized configurations
are shown in Fig. 26. Again, the anti-resonance point of the real part of the
effective permeability gradually increases during the optimization procedure
and finally reaches the prescribed frequency. The real part of the effective
permeability of the initial configuration at 0.45THz is 0.22, and the frequency
at the anti-resonance point of the real part of the effective permeability is
approximately 0.43THz. The real part of the effective permeability of the
optimized configuration at 0.45THz is −0.58, which shows that the optimiza-
tion successfully found an optimized solution that exhibits negative effective
permeability. The values of the imaginary part of the effective permeability of
the initial configuration used in the first stage and the optimized configuration
obtained in the second stage at 0.45THz are respectively −0.08 and −1.18.
Figure 27 shows the convergence histories of the objective function during the
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first and second stages of the optimization. Figure 28 shows the magnetic field
of the initial configuration used in the first stage of the optimization, and the
optimized configuration obtained after the second stage of the optimization.
Although a strong magnetic field is induced in the center of the optimized
configuration, a strong opposing magnetic field is induced in areas around the
center, generating a negative permeability overall.

[Fig. 25 about here.]

[Fig. 26 about here.]

[Fig. 27 about here.]

[Fig. 28 about here.]

4.4 Three-dimensional problems

We now consider two three-dimensional effective permeability minimization
problems where the target frequencies are either higher or lower than that of
the positive peak of the initial configuration, to show that the optimization
can successfully find optimized configurations that demonstrates negative ef-
fective permeability, regardless of the location of the positive peak of the initial
configuration. Figure 29 shows the design domain and boundary conditions.
The size of the analysis domain is set to 120μm × 120μm × 150μm and the
size of the fixed design domain is set to 80μm × 80μm × 110μm. The anal-
ysis domain is discretized using 48 × 48 × 60 square elements. The relative
permittivity ε1 of the dielectric material is set to 100 − 1i and the relative
permittivity ε0 of the background material is set to 1. The transition width w
of the Heaviside function is set to 0.001.

[Fig. 29 about here.]

4.4.1 Effective permeability minimization problem targeting 0.30THz

The effective permeability minimization problem where the target frequency
is set to 0.30THz examines a case where the target frequency is lower than
that of the anti-resonance point of the initial configuration. A spherical shape
with a volume fraction of 25% is used as the initial configuration. The upper
limit of the volume fraction is set to 90%. The initial configuration used in
the first stage of the optimization and the optimized configuration after the
second stage of the optimization are shown in Fig. 30, and the corresponding
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effective permeability curves are shown in Fig. 31. The anti-resonance point
of the real part of the effective permeability gradually decreases during the
optimization procedure and finally reaches the prescribed frequency. The real
part of the effective permeability of the initial and optimized configurations
at 0.30THz are respectively 1.06 and −3.48, which shows that the optimiza-
tion can successfully find an optimized solution that demonstrates negative
effective permeability. The values of the imaginary part of the effective per-
meability used in the initial configuration of the first stage and the optimized
configuration obtained in the second stage at 0.30THz are respectively 0.00
and −2.68. The volume fraction of the optimized configuration is 90.0%. Fig-
ure 32 shows the convergence histories of the objective function during the
first and second stages of the optimization.

[Fig. 30 about here.]

[Fig. 31 about here.]

[Fig. 32 about here.]

4.4.2 Effective permeability minimization problem targeting 0.45THz

The effective permeability minimization problem where the target frequency
is set to 0.45THz now examines a case where the target frequency is higher
than that of the anti-resonance point of the initial configuration. A spheri-
cal shape with a volume fraction of 40% is used as the initial configuration,
and a volume constraint is not applied. The initial configuration used in the
first stage of the optimization and the optimized configuration after the second
stage of the optimization are shown in Fig. 33, and the corresponding effective
permeability curves are shown in Fig. 34. The anti-resonance point of the real
part of the effective permeability gradually increases during the optimization
procedure and finally reaches the prescribed frequency. The real part of the
effective permeability of the initial and optimized configuration at 0.45THz
are respectively 0.64 and −1.61, which shows that the optimization can suc-
cessfully find an optimized solution that has negative effective permeability.
The values of the imaginary part of the effective permeability of the initial
configuration used in the first stage and the optimized configuration obtained
in the second stage at 0.45THz are respectively −0.01 and −1.99. Figure 35
shows the convergence histories of the objective function during the first and
second stages.

[Fig. 33 about here.]

[Fig. 34 about here.]

[Fig. 35 about here.]
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5 Conclusions

This paper presented a level set-based topology optimization method for the
design of negative permeability dielectric metamaterials. We achieved the fol-
lowing:

(1) The optimization problems for both two- and three-dimensional problems
were formulated to minimize the effective permeability, and to obtain a pre-
scribed effective permeability at a target frequency. A level set-based boundary
expression was applied to obtain clear boundaries, and an S-parameter-based
approach was applied to compute the effective permeability of the metamate-
rials.

(2) Based on the formulation of the optimization problem, an optimization
algorithm was constructed. The FEM was used to solve the electromagnetic
wave problems and update the level set function, and the Adjoint Variable
Method was used when computing sensitivity analyses.

(3) Several numerical examples for both two- and three-dimensional problems
were provided to examine the validity of the presented method. We can confirm
that our method successfully finds optimized configurations that minimize the
effective permeability, and also finds optimized configurations that achieve a
prescribed degree of effective permeability. Finally, we also confirm that the
presented method obtains smooth and clear optimized configurations for all
the presented cases.
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A Derivation of weak formulation

A.1 Two-dimensional case

Here, the weak formulation of the governing equation is derived for the two-
dimensional case. Multiplying Eq.(1) by a test function H̃z, and integrating
over domain D, we have,

∫
D
H̃z

[
∇ ·

(
ε−1
r ∇Hz

)]
dΩ +

∫
D
H̃z

(
k2
0Hz

)
dΩ = 0. (A.1)

The first term on the left-hand side of above equation can be transformed as
follows, applying the method of integration by parts.

∫
D
H̃z

[
∇ ·

(
ε−1
r ∇Hz

)]
dΩ =

∫
D
∇ ·

(
H̃zε

−1
r ∇Hz

)
dΩ−

∫
D
∇H̃z ·

(
ε−1
r ∇Hz

)
dΩ.

(A.2)
Moreover, the first term on the right-hand side of the above equation can be
expressed by a boundary integral, using Gauss’s theorem, as follows.

∫
D
∇ ·

(
H̃zε

−1
r ∇Hz

)
dΩ =

∫
Γ
H̃z

[
n ·

(
ε−1
r ∇Hz

)]
dΓ. (A.3)

Substituting the above two equations into Eq.(A.1), we obtain,

∫
Γ
H̃z

[
n ·

(
ε−1
r ∇Hz

)]
dΓ−

∫
D
∇H̃z ·

(
ε−1
r ∇Hz

)
dΩ+k2

0

∫
D
H̃zHzdΩ = 0. (A.4)

Substituting the boundary conditions expressed in Eqs.(2)-(4) into the bound-
ary integral of the above equation, we obtain the following weak formulation.

∫
D
∇H̃z·

(
ε−1
r ∇Hz

)
dΩ−k2

0

∫
D
H̃zHzdΩ+jk0

∫
Γ1∪Γ2

H̃zHzdΓ = 2jk0

∫
Γ1

H i
zH̃zdΓ,

(A.5)
where the boundary integral for ΓPEC in Eq.(A.4) assumes a value of 0 due to
the PEC condition, n · (ε−1

r ∇Hz) = 0.

A.2 Three-dimensional case

Next, the weak formulation of the governing equation is derived for the three-
dimensional case. Multiplying Eq.(10) by a test function Ẽ, and integrating
over domain D, we have,

∫
D
Ẽ · [∇× (∇× E)] dΩ−

∫
D
Ẽ ·

(
k2
0εrE

)
dΩ = 0. (A.6)
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Invoking the following vector identity,

Ẽ · [∇× (∇× E)] =
(
∇× Ẽ

)
· (∇× E)−∇ ·

[
Ẽ× (∇× E)

]
, (A.7)

and using Gauss’s theorem, we obtain,

∫
D
∇ ·

[
Ẽ× (∇× E)

]
dΩ =

∫
Γ
n ·

[
Ẽ× (∇× E)

]
dΓ (A.8)

= −
∫
Γ
Ẽ · [n× (∇× E)] dΓ, (A.9)

where the vector identity a · (b× c) = b · (c× a) is applied in the second line
of the above equation. Substituting the above two equations into Eq.(A.6), we
obtain,

∫
D

(
∇× Ẽ

)
· (∇× E) dΩ +

∫
Γ
Ẽ · [n× (∇× E)] dΓ−

∫
D
Ẽ ·

(
k2
0εrE

)
dΩ = 0.

(A.10)
Substituting the boundary conditions described in Eqs.(11)-(14) into the bound-
ary integral of the above equation,

∫
D

(
∇× Ẽ

)
· (∇× E) dΩ− k2

0

∫
D
εrẼ · EdΩ + jk0

∫
Γ1∪Γ2

Ẽ · [n× (E× n)] dΓ

= 2jk0

∫
Γ1

Ẽ · EidΓ. (A.11)

Applying the vector identities a ·(b× c) = b ·(c× a) and (a× b) = − (b× a)
for the third term on the left-hand side of the above equation, we obtain the
following weak formulation.

∫
D

(
∇× Ẽ

)
· (∇× E) dΩ− k2

0

∫
D
εrẼ · EdΩ + jk0

∫
Γ1∪Γ2

(
n× Ẽ

)
· (n× E) dΓ

= 2jk0

∫
Γ1

Ẽ · EidΓ (A.12)

We note that the boundary integral in Eq.(A.10) for ΓPMC assumes a value of 0
because n×H = 0. That is, n×(∇× E) = 0, based on the relationship∇×E =
−jωμH, which is derived from Faraday’s law of Maxwell equations, ∇×E =
−∂(μH)/∂t, replacing ∂/∂t with jω for time-harmonic electromagnetic fields.
We also note that the same is true for ΓPEC when the Galerkin finite element
method is used, where n×Ẽ = 0 holds on ΓPEC. The integrand of the boundary
integral in Eq.(A.10) can be transformed as Ẽ · [n× (∇× E)] =

(
n× Ẽ

)
·

(∇× E), applying the vector identity. Thus, the boundary integral for ΓPEC

assumes a value of 0 [62].
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B Sensitivity analysis of a complex function using Adjoint Variable
Method

In subsection 2.6, the sensitivities for the real and the imaginary parts of
the objective function are derived simultaneously using the AVM. In this ap-
pendix, we show that these sensitivities are equivalent to the sensitivities of
the real and imaginary parts obtained individually using the AVM. Although
we use the strong form here to clarify the derivation, the equivalence of the
sensitivities would be the same for a derivation using the weak form.

Let Ψ be the objective function that has complex values, namely, Ψ = Ψ′+iΨ′′.
The sensitivities for the real and imaginary parts can be simultaneously ob-
tained following the standard AVM in the following procedure. First, an ad-
ditional term is added to the original objective function Ψ, as follows.

Ψ̂ = Ψ(φ,u) + λT (Su− f) , (B.1)

where φ is the design variables, λ is the adjoint variables, S is the stiffness
matrix, and f is the load vector. The sensitivity of the objective function is
then given as,

dΨ̂

dφ
=

∂Ψ

∂φ
+

∂Ψ

∂u

∂u

∂φ
+ λT

(
∂S

∂φ
u+ S

∂u

∂φ
− ∂f

∂φ

)

=
∂Ψ

∂φ
+ λT

(
∂S

∂φ
u− ∂f

∂φ

)
+

(
∂Ψ

∂u
+ λTS

)
∂u

∂φ
. (B.2)

The sensitivity can then be written as,

dΨ̂

dφ
=

∂Ψ

∂φ
+ λT

(
∂S

∂φ
u− ∂f

∂φ

)
, (B.3)

where the adjoint variable λ satisfies the following adjoint equation.

Sλ = −
(
∂Ψ

∂u

)T

. (B.4)

The sensitivities of the real and imaginary parts of the objective function can
be obtained by the real and imaginary parts of the obtained sensitivity, re-
spectively.

Next, we consider the sensitivities for the real and imaginary parts of the ob-
jective function Ψ individually, and show that the obtained sensitivities are the
same as the real and imaginary parts of the sensitivity obtained by Eq.(B.3).
First, we derive the sensitivity for the real part of the objective function Ψ′.
Following the AVM, two extra terms are added to the original objective func-
tion in order to cancel out the imaginary part, as follows [65,66], in the case
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where the response of the governing equation u is a complex function, namely
u = u′ + iu′′.

Ψ̂′ = Ψ′(φ,u′,u′′) + λT
R (Su− f) + λ̄T

R

(
S̄ū− f̄

)
, (B.5)

where λR is the adjoint variable and subscript R indicates the correspondence
to the real part of objective function. λ̄R denotes the complex conjugate of
λR. The sensitivity of the objective function is then given as,

dΨ̂′

dφ
=

∂Ψ′

∂φ
+

∂Ψ′

∂u′
∂u′

∂φ
+

∂Ψ′

∂u′′
∂u′′

∂φ

+ λT
R

(
∂S

∂φ
u′ + S

∂u′

∂φ
+ i

∂S

∂φ
u′′ + iS

∂u′′

∂φ
− ∂f

∂φ

)

+ λ̄T
R

(
∂S̄

∂φ
u′ + S̄

∂u′

∂φ
− i

∂S̄

∂φ
u′′ − iS̄

∂u′′

∂φ
− ∂ f̄

∂φ

)
. (B.6)

Rearranging the above equation, we obtain following.

dΨ̂′

dφ
=

∂Ψ′

∂φ
+ λT

R

(
∂S

∂φ
u′ + i

∂S

∂φ
u′′ − ∂f

∂φ

)
+ λ̄T

R

(
∂S̄

∂φ
u′ − i

∂S̄

∂φ
u′′ − ∂ f̄

∂φ

)

+

(
∂Ψ′

∂u′ + λT
RS+ λ̄T

RS̄

)
∂u′

∂φ
+

(
∂Ψ′

∂u′′ + iλT
RS− iλ̄T

RS̄

)
∂u′′

∂φ
(B.7)

To delete the ∂u′
∂φ

and ∂u′′
∂φ

terms, the following two equations must be satisfied.

λT
RS+ λ̄T

RS̄ = −∂Ψ′

∂u′ (B.8)

iλT
RS− iλ̄T

RS̄ = −∂Ψ′

∂u′′ (B.9)

From the above equations, the following two adjoint equations are obtained.

SλR = −1

2

(
∂Ψ′

∂u′ − i
∂Ψ′

∂u′′

)T

(B.10)

S̄λ̄R = −1

2

(
∂Ψ′

∂u′ + i
∂Ψ′

∂u′′

)T

(B.11)

The above two adjoint equations are equivalent, so λR can be obtained by
solving Eq.(B.10). Finally, the sensitivity for the real part is obtained as fol-
lows.

dΨ̂′

dφ
=

∂Ψ′

∂φ
+ λT

R

(
∂S

∂φ
u− ∂f

∂φ

)
+ λ̄T

R

(
∂S̄

∂φ
ū− ∂ f̄

∂φ

)
, (B.12)
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where

SλR = −1

2

(
∂Ψ′

∂u′ − i
∂Ψ′

∂u′′

)T

. (B.13)

Following the same procedure, the sensitivity for the imaginary part of the
objective function is obtained as follows.

dΨ̂′′

dφ
=

∂Ψ′′

∂φ
+ λT

I

(
∂S

∂φ
u− ∂f

∂φ

)
+ λ̄T

I

(
∂S̄

∂φ
ū− ∂ f̄

∂φ

)
, (B.14)

where λI is the adjoint variable that corresponds to the imaginary part of the
objective function, and

SλI = −1

2

(
∂Ψ′′

∂u′ − i
∂Ψ′′

∂u′′

)T

. (B.15)

Multiplying Eq.(B.14) by i and adding the result to Eq.(B.12), we obtain

dΨ̂′

dφ
+ i

dΨ̂′′

dφ
=

∂Ψ′

∂φ
+ i

∂Ψ′′

∂φ

+ (λR + iλI)
T

(
∂S

∂φ
u− ∂f

∂φ

)
+

(
λ̄R + iλ̄I

)T (
∂S̄

∂φ
ū− ∂ f̄

∂φ

)
.

(B.16)

Considering the conjugate form of Eq.(B.13) and Eq.(B.15),

S̄λ̄R = −1

2

(
∂Ψ′

∂u′ + i
∂Ψ′

∂u′′

)T

(B.17)

S̄λ̄I = −1

2

(
∂Ψ′′

∂u′ + i
∂Ψ′′

∂u′′

)T

. (B.18)

Multiplying Eq.(B.18) by i and adding the result to Eq.(B.17), we obtain the
following.

S̄
(
λ̄R + iλ̄I

)
= −1

2

((
∂Ψ′

∂u′ + i
∂Ψ′

∂u′′

)
+ i

(
∂Ψ′′

∂u′ + i
∂Ψ′′

∂u′′

))T

= −1

2

((
∂Ψ′

∂u′ + i
∂Ψ′′

∂u′

)
+ i

(
∂Ψ′

∂u′′ + i
∂Ψ′′

∂u′′

))T

= −1

2

(
∂Ψ

∂u′ + i
∂Ψ

∂u′′

)T

(B.19)
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When Ψ can be expressed explicitly using u (without using u′ and/or u′′), the
following relationships hold.

∂Ψ

∂u′ =
∂Ψ

∂u

∂u

∂u′ =
∂Ψ

∂u
(B.20)

∂Ψ

∂u′′ =
∂Ψ

∂u

∂u

∂u′′ = i
∂Ψ

∂u
(B.21)

Substituting the above equations into Eq.(B.19),

S̄
(
λ̄R + iλ̄I

)
= −1

2

(
∂Ψ

∂u
− ∂Ψ

∂u

)T

= 0. (B.22)

Therefore, λ̄R + iλ̄I = 0, because the stiffness matrix S is a full-rank matrix.
Substituting this into Eq.(B.16), we obtain,

dΨ̂

dφ
=

∂Ψ

∂φ
+ λT

(
∂S

∂φ
u− ∂f

∂φ

)
, (B.23)

where λ = λR + iλI . Eq.(B.23) is equivalent to Eq.(B.3). In addition, the
adjoint variable λ is obtained as follows. Multiplying Eq.(B.13) by i and adding
the result to Eq.(B.15), we have,

S (λR + iλI) = −1

2

((
∂Ψ′

∂u′ − i
∂Ψ′

∂u′′

)
+ i

(
∂Ψ′′

∂u′ − i
∂Ψ′′

∂u′′

))T

= −1

2

(
∂Ψ

∂u′ − i
∂Ψ

∂u′′

)T

. (B.24)

Using the same relationships for Eqs.(B.20) and (B.21),

Sλ = −
(
∂Ψ

∂u

)T

. (B.25)

Thus, Eq.(B.25) is equivalent to Eq.(B.4).
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(b) 

Example 1 Target frequency 0.3THz 1st

(a) 

Fig. 6. Comparison of configurations from 1st optimization stage for two-dimen-
sional effective permeability minimization problem targeting 0.30THz: (a) initial;
(b) optimized.
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Fig. 7. Effective permeability curves of 1st optimization stage for two-dimensional
effective permeability minimization problem targeting 0.30THz.
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Fig. 8. Convergence history of objective function of 1st optimization stage for two-di-
mensional effective permeability minimization problem targeting 0.30THz.
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(b) 

Example 1 Target frequency 0.3THz 2nd

(a) 

Fig. 9. Comparison of configurations from 2nd optimization stage for two-dimen-
sional effective permeability minimization problem targeting 0.30THz: (a) initial;
(b) optimized.
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Fig. 10. Effective permeability curves for 2nd optimization stage for two-dimensional
effective permeability minimization problem targeting 0.30THz.
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Fig. 11. Convergence history of objective function of 2nd stage for two-dimensional
effective permeability minimization problem targeting 0.30THz.
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Fig. 12. Magnetic and electric field distributions for two-dimensional effective per-
meability minimization problem targeting 0.30THz: (a) initial; (b) optimized.
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Example 2 Target frequency 0.45THz

(b) (a) 

Fig. 13. Comparison of configurations for two-dimensional effective permeability
minimization problem targeting 0.45THz: (a) initial; (b) optimized.
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Fig. 14. Effective permeability curves for two-dimensional effective permeability
minimization problem targeting 0.45THz.
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Fig. 16. Magnetic and electric field distributions for two-dimensional effective per-
meability minimization problem targeting 0.45THz: (a) initial; (b) optimized.
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Example 2 Target frequency 0.45THz

(b) (a) 

Fig. 17. Comparison of configurations for two-dimensional effective permeability
design problem: (a) initial; (b) optimized.
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Fig. 18. Effective permeability curves for two-dimensional effective permeability
design problem.
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Fig. 19. Convergence history of objective function of 2nd optimization stage for
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Example 1 Target frequency 0.3THz 2nd
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Fig. 20. Magnetic and electric field distributions for two-dimensional effective per-
meability minimization problem targeting 0.30THz: (a) initial; (b) optimized.
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Example 200 Target frequency 0.30THz 

(b) (a) 

Fig. 21. Comparison of configurations for two-dimensional effective permeability
minimization problem targeting 0.30THz: (a) initial; (b) optimized.
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Fig. 22. Effective permeability curves for two-dimensional effective permeability
minimization problem targeting 0.30THz.
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Fig. 23. Convergence histories of objective function for two-dimensional effective
permeability minimization problem targeting 0.30THz: (a) 1st optimization stage;
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Example 1 Target frequency 0.3THz 2nd
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Fig. 24. Magnetic and electric field distributions for two-dimensional effective per-
meability minimization problem targeting 0.30THz: (a) initial; (b) optimized.

65



Example 200 Target frequency 0.30THz 

(b) (a) 

Fig. 25. Comparison of configurations for two-dimensional effective permeability
minimization problem targeting 0.45THz: (a) initial; (b) optimized.
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Fig. 26. Effective permeability curves for two-dimensional effective permeability
minimization problem targeting 0.45THz.
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Fig. 27. Convergence histories of objective function for two-dimensional effective
permeability minimization problem targeting 0.45THz: (a) 1st optimization stage;
(b) 2nd optimization stage.
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Example 1 Target frequency 0.3THz 2nd
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Fig. 28. Magnetic and electric field distributions for two-dimensional effective per-
meability minimization problem targeting 0.45THz: (a) initial; (b) optimized.

69



1
2

0
µ

m

PMCΓ

PMCΓ
E

H
k

PECΓ

2Γ
1Γ PECΓ

Fixed design domain D

Non-design domain80µm

120µm

8
0
µ

m

Fig. 29. Design domain and boundary conditions for three-dimensional design prob-
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(b) (a) 

Fig. 30. Comparison of configurations for three-dimensional effective permeability
minimization problem targeting 0.30THz: (a) initial; (b) optimized.
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Fig. 31. Effective permeability curves for three-dimensional effective permeability
minimization problem targeting 0.30THz.
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Fig. 32. Convergence histories of objective function for three-dimensional effective
permeability minimization problem targeting 0.30THz: (a) 1st optimization stage;
(b) 2nd optimization stage of the optimization.
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(b) (a) 

Fig. 33. Comparison of configurations for three-dimensional effective permeability
minimization problem targeting 0.45THz: (a) initial; (b) optimized.
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Fig. 34. Effective permeability curves for three-dimensional effective permeability
minimization problem targeting 0.45THz.

75



O
b

je
c
ti

v
e

Iteration

O
b

je
c
ti

v
e

Iteration
(a) (b)

4

0 20 100

2

-4

-2

40 60 800 20

2

0

-2

-4

40 60
-6

0

80

Fig. 35. Convergence histories of objective function for three-dimensional effective
permeability minimization problem targeting 0.45THz: (a) 1st optimization stage;
(b) 2nd optimization stage.
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