Title	THE ORBIT DECOMPOSITION AND ORBIT TYPE OF THE AUTOMORPHISM GROUP OF CERTAIN EXCEPTIONAL JORDAN ALGEBRA AND ITS APPLICATIONS (Problems in Representation Theory and Harmonic Analysis)
Author(s)	NISHIO, Akihiro
Citation	数理解析研究所講究録 (2011), 1770: 1-19
Issue Date	2011-11
URL	http://hdl.handle.net/2433/171668
Right	
Type	Departmental Bulletin Paper
Textversion	publisher

Kyoto University
THE ORBIT DECOMPOSITION AND ORBIT TYPE OF THE AUTOMORPHISM GROUP OF CERTAIN EXCEPTIONAL JORDAN ALGEBRA AND ITS APPLICATIONS

Akihiro NISHIO
Graduate school of Engineering, University of Fukui

ABSTRACT. Let \mathcal{J}^{1} be the real form of complex simple Jordan algebra with the automorphism group $F_{4(-20)}$. The classification of $F_{4(-20)}$-orbits and the stabilizer groups of $F_{4(-20)}$-orbit on \mathcal{J}^{1} are determined. As applications, for $F_{4(-20)}$, the Bruhat and Gauss decomposition, the Iwasawa decomposition and also the Iwasawa decomposition with respect to K_{ϵ} in sense of T. Oshima and J. Sekiguchi are given concretely.

1. THE EXCEPTIONAL JORDAN ALGEBRA \mathcal{J}^{1} AND THE AUTOMORPHISM GROUP $F_{4(-20)}$.

Denote the cartesian n-power of a set X as $X^{n} := X \times \cdots \times X$ (n times). For $F = \mathbb{R}$ or \mathbb{C}, let V be a F-linear space, $GL_{F}(V)$ the group of F-linear automorphism of V, and $End_{F}(V)$ the linear space of F-linear endomorphisms on V. A subset C is said to be a cone if $x \in V$ and $\lambda > 0$ imply that $\lambda x \in C$. For a mapping $f : V \to V$ and $c \in F$, put $V_{f,c} := \{v \in V \mid f(v) = cv\}$ and $V_{f} := V_{f,1}$. Let G be a subgroup of $GL_{F}(V)$, ϕ an automorphism on G and $v, v_{i} \in V$. Then denote the subgroups $G^{\phi} := \{g \in G \mid \phi g = g\}$, the stabilizer of v as $G_{v} := \{g \in G \mid gv = v\}$ and $G_{v_{1}, \ldots, v_{n}} := \cap_{i=1}^{n}G_{v_{i}}$. And denote the G-orbit of v as $\text{Orb}_{G}(v) := \{gv \mid g \in G\}$.

For H (Quaternions), the O (Octonions) is defined as $O := H \oplus He = \{m + ae \mid m, a \in H\}$, the conjugation, the multiplication, the inner product and the quadratic form as $\overline{m + ae} := \overline{m} - ae$, $(m + ae)(n + be) := (mn - ba) + (a\overline{n} + b\overline{m})e$ (especially, $e^{2} = -1$), $(m + ae)(n + be) := (m|n) + (a|b)$ and $n(x) := (x|x)$, respectively. For $x \in O$, the scalar part and the vector part of x and the set $\text{Im}O$ are defined by $\text{Re}(x) := \frac{1}{2}(x + \overline{x})$, $\text{Im}(x) := \frac{1}{2}(x - \overline{x})$ and $\text{Im}O := \{x \in O \mid \overline{x} = -x\}$, respectively.

For $\xi = (\xi_{1}, \xi_{2}, \xi_{3}) \in \mathbb{R}^{3}$ and $x = (x_{1}, x_{2}, x_{3}) \in O^{3}$, denote

$$h^{1}(\xi; x) := \begin{pmatrix} \xi_{1} & \sqrt{-1}x_{3} & \sqrt{-1}\overline{x}_{2} \\ \sqrt{-1}\overline{x}_{3} & \xi_{2} & x_{1} \\ \sqrt{-1}x_{2} & \overline{x}_{1} & \xi_{3} \end{pmatrix}$$
and
\[J^1 := \{ h^1(\xi; x) | \xi \in \mathbb{R}^3, x \in O^3 \}. \]

The **Jordan product** is defined by
\[X \circ Y := \frac{1}{2}(XY + YX) \quad \text{for } X, Y \in J^1. \]

Then the identity element of the Jordan product is \(E := \text{diag}(1, 1, 1) \).

For \(X = h^1(\xi_1, \xi_2, \xi_3; x_1, x_2, x_3) \) and \(Y = h^1(\eta_1, \eta_2, \eta_3; y_1, y_2, y_3) \in J^1 \),
the **trace** and the **inner product** are defined as
\[\text{tr}(X) = \xi_1 + \xi_2 + \xi_3, \]
\[(X|Y) = \text{tr}(X \circ Y) = \left(\sum_{k=1}^{3} \xi_k \eta_k \right) + 2(x_1|y_1) - 2(x_2|y_2) - 2(x_3|y_3), \]
respectively. Hereafter we denote \(X \times Y := X \times X \). The **characteristic polynomial** \(\Phi_X(\lambda) \) of \(X \in J^1 \) is defined by
\[\Phi_X(\lambda) := \det(\lambda E - X) = \frac{1}{3}(\lambda E - X|\lambda E - X)^x_2) \]
\[= \lambda^3 - \text{tr}(X)\lambda^2 + \text{tr}(X^2)\lambda - \det(X). \]

For \(i \in \{1, 2, 3\} \) and \(x \in O \), denote
\[E_i := h^1(\delta_{i1}, \delta_{i2}, \delta_{i3}; 0, 0, 0), \quad F^1_i(x) := h^1(0, 0, 0; \delta_{i1}x, \delta_{i2}x, \delta_{i3}x), \]
\[P^+ := h^1(1, -1, 0; 0, 0, 1), \quad P^- := h^1(-1, 1, 0; 0, 0, 1), \]
\[Q^+(x) := h^1(0, 0, 0; x, \overline{x}, 0), \quad Q^-(x) := h^1(0, 0, 0; x, -\overline{x}, 0) \]
where \(\delta_{ij} \) is the Kronecker's delta. Then \(X \in J^1 \) can be expressed by
\[X = h^1(\xi_1, \xi_2, \xi_3; x_1, x_2, x_3) = \sum_{i=1}^{3} (\xi_i E_i + F^1_i(x_i)) \]
for some \(\xi_i \in \mathbb{R} \) and \(x_i \in O \), and denote
\[(X)_{E_i} := \xi_i = (X|E_i), \quad (X)_{F^1_i} := x_i. \]

Lemma 1.1. (cf. [25, Lemma 1.6 with \(J^1 \subset J^C \)]) For all \(X \in J^1 \),
\[(X^\times_2)^x_2 = \det(X)X. \]
The linear Lie group $F_{4(-20)}$ is defined by

$$F_{4(-20)} := \text{Aut}(\mathcal{J}^1) = \{g \in GL_{\mathbb{R}}(\mathcal{J}^1) \mid g(X \circ Y) = gX \circ gY\}.$$

The following result is proved after [34, 35], [39, Lemma 2.1.2, Proposition 2.1.3] and [33, p.159, Proposition 5.9.4, §5.10].

Proposition 1.2. (cf. [24, Theorem 1.4], [25, Proposition 0.1(1)])

$$F_{4(-20)} = \{g \in F_{4(-20)} \mid \text{tr}(gX) = \text{tr}(X)\} = \{g \in GL_{\mathbb{R}}(\mathcal{J}^1) \mid \det(gX) = \det(X), gE = E\} = \{g \in GL_{\mathbb{R}}(\mathcal{J}^1) \mid \Phi_{gX}(\lambda) = \Phi_X(\lambda)\} = \{g \in GL_{\mathbb{R}}(\mathcal{J}^1) \mid g(E \times Y) = gE \times gY\}.$$

A characteristic root of $X \in \mathcal{J}^1$ is said to be a solution of $\Phi_X(\lambda) = 0$ over \mathbb{C}. By Proposition 1.2, the trace, the inner product, the determinant, the identity element, the cross product and the characteristic polynomial are invariant under the action of $F_{4(-20)}$. Moreover the set of all characteristic roots and those multiplicities are invariant under the action of $F_{4(-20)}$.

Proposition 1.3. ([39]) $F_{4(-20)}$ is a connected and simply connected non-compact simple real Lie group of type $F_{4(-20)}$.

2. **The Orbit Decomposition of $F_{4(-20)}$-Orbits on \mathcal{J}^1.**

The subset $\mathcal{H} \subset \mathcal{J}^1$ and the Cayley hyperbolic planes $\mathcal{H}(O)$ and $\mathcal{H}'(O)$ of \mathcal{J}^1 are defined as

$$\mathcal{H} := \{X \in \mathcal{J}^1 \mid X^2 = 0, \text{tr}(X) = 1\},$$

$$\mathcal{H}(O) := \{X \in \mathcal{J}^1 \mid X^2 = 0, \text{tr}(X) = 1, (X|E_1) \geq 1\},$$

$$\mathcal{H}'(O) := \{X \in \mathcal{J}^1 \mid X^2 = 0, \text{tr}(X) = 1, (X|E_1) \leq 0\},$$

respectively.

Proposition 2.1. (cf. [24, Propositions 1.6(1) and 2.10])

1. $\mathcal{H} = \mathcal{H}(O) \bigcup \mathcal{H}'(O)$.
2. $\mathcal{H}(O) = \text{Orb}_{F_{4(-20)}}(E_1)$.
3. $\mathcal{H}'(O) = \text{Orb}_{F_{4(-20)}}(E_2) = \text{Orb}_{F_{4(-20)}}(E_3)$.

The cone \mathcal{N} of \mathcal{J}^1 is defined by

$$\mathcal{N} = \{X \in \mathcal{J}^1 \mid \text{tr}(X) = \text{tr}(X^2) = \det(X) = 0\}.$$
Then using Lemma 1.1, \(\mathcal{N} \) contains the following cones:

\[
\mathcal{N}_{1}(O) := \{X \in \mathcal{J}^{1} | X^{x2} = 0, \text{tr}(X) = 0, X \neq 0\},
\]
\[
\mathcal{N}_{1}^{+}(O) := \{X \in \mathcal{J}^{1} | X^{x2} = 0, \text{tr}(X) = 0, (X|E_{1}) > 0\},
\]
\[
\mathcal{N}_{1}^{-}(O) := \{X \in \mathcal{J}^{1} | X^{x2} = 0, \text{tr}(X) = 0, (X|E_{1}) < 0\},
\]
\[
\mathcal{N}_{2}(O) := \{X \in \mathcal{J}^{1} | \text{tr}(X) = \text{tr}(X^{x2}) = \det(X) = 0, X^{x2} \neq 0\},
\]
\[
\mathcal{N}_{0}(O) := \{0\}.
\]

Proposition 2.2. (cf. [24, Propositions 1.6(2), 2.10(2) and 4.3(4)])

(1) \(\mathcal{N}_{1}(O) = \mathcal{N}_{1}^{+}(O) \setminus \mathcal{N}_{1}^{-}(O) \).

(2) \(\mathcal{N} = \mathcal{N}_{0}(O) \prod \mathcal{N}_{1}^{+}(O) U \mathcal{N}_{1}^{-}(O) \).

(3) \(\mathcal{N}_{1}^{+}(O) = \text{Orb}_{F_{4(-20)}}(P^{+}) \).

(4) \(\mathcal{N}_{1}^{-}(O) = \text{Orb}_{F_{4(-20)}}(P^{-}) \).

(5) \(\mathcal{N}_{2}(O) = \text{Orb}_{F_{4(-20)}}(Q^{+}(1)) \).

For \(X \in \mathcal{J}^{1} \), denote \(L^{x}(X) \in \text{End}_{\mathbb{R}}(\mathcal{J}^{1}) \) as

\[
L^{x}(X)Y := X \times Y \quad \text{for} \ Y \in \mathcal{J}^{1}
\]

and the minimal space of \(X \) as

\[
V_{X} := \{aX^{x2} + bX + cE | a, b, c \in \mathbb{R}\}.
\]

Then \(V_{X} \) is closed under the cross product ([25, Lemma 1.6(3)]). And for \(\lambda_{0} \in \mathbb{R} \), denote the elements \(p(X), E_{X,\lambda_{0}}, W_{X,\lambda_{0}} \in V_{X} \) as

\[
p(X) := X - \frac{1}{3} \text{tr}(X)E,
\]
\[
E_{X,\lambda_{0}} := \frac{1}{\text{tr}((\lambda_{0}E - X)^{x2})}(\lambda_{0}E - X)^{x2},
\]
\[
W_{X,\lambda_{0}} := X - (\lambda_{0}E_{X,\lambda_{0}} + \frac{\text{tr}(X) - \lambda_{0}}{2}(E - E_{X,\lambda_{0}}))
\]

respectively. If \(E_{X,\lambda_{1}} \) is well-defined (ie, \(\text{tr}((\lambda_{1}E - X)^{x2}) \neq 0 \)), then

\[
X = \lambda_{0}E_{X,\lambda_{0}} + \frac{\text{tr}(X) - \lambda_{0}}{2}(E - E_{X,\lambda_{0}}) + W_{X,\lambda_{0}}.
\]

For \(r \in \mathbb{R} \), consider the eigenspace \(\mathcal{J}^{1}_{L^{x}(2E_{\lambda_{1}}),r} \). Then we have the following two lemmas (cf. [24]):

Lemma 2.3. Let \(X \in \mathcal{J}^{1} \). Then for all \(g \in F_{4(-20)} \),

\[
g(V_{X}) = V_{gX}, \ gE_{X,\lambda_{1}} = E_{gX,\lambda_{1}}, \ gW_{X,\lambda_{1}} = W_{gX,\lambda_{1}}, \ gp(X) = p(gX).
\]

Lemma 2.4. Assume that \(X \in \mathcal{J}^{1} \) has a characteristic root \(\lambda_{1} \in \mathbb{R} \) of multiplicity \(1 \).

(1) \(E_{X,\lambda_{1}} \) is well-defined (ie, \(\text{tr}((\lambda_{1}E - X)^{x2}) \neq 0 \)), and \(E_{X,\lambda_{1}} \in \mathcal{H} \cap V_{X} \).
(2) $E_{X,\lambda_1} \in J^1_{L^*(2E_{X,\lambda_1}),0}$, $E - E_{X,\lambda_1} \in J^1_{L^*(2E_{X,\lambda_1}),1} \cap V_X$ and $W_{X,\lambda_1} \in J^1_{L^*(2E_{X,\lambda_1}),-1} \cap V_X$.

Main Theorem 1. ($F_{4(-20)}$-orbits on \mathcal{J}^1 [24, Main Theorem])

$F_{4(-20)}$-orbits on \mathcal{J}^1 are classified as follows.

(I) Assume that $X \in \mathcal{J}^1$ admits the characteristic roots $\lambda_1 > \lambda_2 > \lambda_3$. Then there exists the unique $i \in \{1, 2, 3\}$ such that $\mathcal{H}(O) \cap V_X = \{E_{X,\lambda_i}\}$ and $\mathcal{H}'(O) \cap V_X = \{E_{X,\lambda_{i+1}}, E_{X,\lambda_{i+2}}\}$ where $i, i+1, i+2$ are counted modulo 3. In this case, X can be transformed to one of the following canonical forms by $F_{4(-20)}$.

<table>
<thead>
<tr>
<th>Cases</th>
<th>The canonical forms of X</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $E_{X,\lambda_1} \in \mathcal{H}(O)$</td>
<td>$\text{diag}(\lambda_1, \lambda_2, \lambda_3)$</td>
</tr>
<tr>
<td>2. $E_{X,\lambda_2} \in \mathcal{H}(O)$</td>
<td>$\text{diag}(\lambda_2, \lambda_3, \lambda_1)$</td>
</tr>
<tr>
<td>3. $E_{X,\lambda_3} \in \mathcal{H}(O)$</td>
<td>$\text{diag}(\lambda_3, \lambda_1, \lambda_2)$</td>
</tr>
</tbody>
</table>

(II) Assume that $X \in \mathcal{J}^1$ admits the characteristic roots $\lambda_1 \in \mathbb{R}$, $p \pm \sqrt{-1}q$ with $p \in \mathbb{R}$ and $q > 0$. Then X can be transformed to the following canonical form by $F_{4(-20)}$.

<table>
<thead>
<tr>
<th>The characteristic roots of X</th>
<th>The canonical form of X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda_1 \in \mathbb{R}$, $p \pm \sqrt{-1}q$</td>
<td>$\text{diag}(p, p, \lambda_1) + F_3^1(q)$</td>
</tr>
</tbody>
</table>

(III) Assume that $X \in \mathcal{J}^1$ admits the characteristic roots λ_1 of multiplicity 1 and λ_2 of multiplicity 2. Then $W_{X,\lambda_1} \in \mathcal{N}_1(O) \coprod \{0\}$. In this case, X can be transformed to one of the following canonical forms by $F_{4(-20)}$.

<table>
<thead>
<tr>
<th>Cases</th>
<th>The canonical form of X</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. $E_{X,\lambda_1} \in \mathcal{H}(O)$</td>
<td>$\text{diag}(\lambda_1, \lambda_2, \lambda_2)$</td>
</tr>
<tr>
<td>6. $E_{X,\lambda_1} \in \mathcal{H}'(O)$, $W_{X,\lambda_1} = 0$</td>
<td>$\text{diag}(\lambda_2, \lambda_2, \lambda_1)$</td>
</tr>
<tr>
<td>7. $W_{X,\lambda_1} \in \mathcal{N}^+_1(O)$</td>
<td>$\text{diag}(\lambda_2, \lambda_2, \lambda_1) + P^+$</td>
</tr>
<tr>
<td>8. $W_{X,\lambda_1} \in \mathcal{N}_1^-(O)$</td>
<td>$\text{diag}(\lambda_2, \lambda_2, \lambda_1) + P^-$</td>
</tr>
</tbody>
</table>

(IV) Assume that $X \in \mathcal{J}^1$ admits the characteristic root of multiplicity 3. Then $p(X) \in \mathcal{N}$. In this case, X can be transformed to one of the following canonical forms by $F_{4(-20)}$.

<table>
<thead>
<tr>
<th>Cases</th>
<th>The canonical form of X</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. $p(X) = 0$</td>
<td>$\frac{1}{3}\text{tr}(X)E$</td>
</tr>
<tr>
<td>10. $p(X) \in \mathcal{N}_1^+(O)$</td>
<td>$\frac{2}{3}\text{tr}(X)E + P^+$</td>
</tr>
<tr>
<td>11. $p(X) \in \mathcal{N}_1^-(O)$</td>
<td>$\frac{1}{3}\text{tr}(X)E + P^-$</td>
</tr>
<tr>
<td>12. $p(X) \in \mathcal{N}_2(O)$</td>
<td>$\frac{2}{3}\text{tr}(X)E + Q^+(1)$</td>
</tr>
</tbody>
</table>

(V) By $F_{4(-20)}$, the above canonical forms cannot be transformed from each other.
3. The stabilizer groups of Spin group type.

Let G be a topological group with identity element 1. Then G^0 denotes the identity connected component. Denote the quadratic form $Q_{p,q}$ on $\mathbb{R}^{p,q}$ as $Q_{p,q}(x):=-(x_1^2+\cdots+x_p^2)+(x_{p+1}^2+\cdots+x_{p+q}^2)$ for $x=(x_1,\ldots,x_{p+q})$, the quadratic space as $(\mathbb{R}^{p,q},Q_{p,q})$, the set of all orthogonal transformations as $O(\mathbb{R}^{p,q},Q_{p,q})$ and $SO(\mathbb{R}^{p,q},Q_{p,q}) := \{g \in O(\mathbb{R}^{p,q},Q_{p,q})|\det(g)=1\}$ where $\det(g)$ is the determinant of $g \in \text{End}_\mathbb{R}(\mathbb{R}^{p,q})$. Then $O(\mathbb{R}^{p,q},Q_{p,q})$ and $SO(\mathbb{R}^{p,q},Q_{p,q})$ are linear Lie groups. Denote the quadratic form Q on J^1 as $Q(X) := -\text{tr}(X^{\times 2})$ for $X \in J^1$ and consider the subspace $J^1_{0,9}$, $J^1_{8,1}$ and $J^1_{7,1}$ of eigenspace of $L^x(2E_i)$ with eigenvalue -1 as

\[
J^1_{0,9} := J^1_{L^x(2E_1),-1}, \quad J^1_{8,1} := J^1_{L^x(2E_3),-1}, \quad J^1_{7,1} := \{X \in J^1_{8,1} | (F^1_3(1)|X)=0\}.
\]

Then $J^1_{0,9} = \{\xi(E_2-E_3)+F^1_1(x)|\xi \in \mathbb{R}, x \in O\}$, $J^1_{8,1} = \{\xi(E_1-E_2)+F^1_3(x)|\xi \in \mathbb{R}, x \in O\}$ and $J^1_{7,1} = \{\xi(E_1-E_2)+F^1_3(x)|\xi \in \mathbb{R}, x \in \text{Im}O\}$.

Since $Q(\xi(E_2-E_3)+F^1_1(x)) = \xi^2+n(x)$ and $Q(\xi(E_1-E_2)+F^1_3(x)) = \xi^2-n(x)$, we see that $(J^1_{0,9},Q)$, $(J^1_{8,1},Q)$ and $(J^1_{7,1},Q)$ are isomorphic to $(\mathbb{R}^8,|\cdot|^9)$, $(\mathbb{R}^8,1,Q_{8,1})$ and $(\mathbb{R}^7,1,Q_{7,1})$, respectively. Moreover, denote

\[
S^8 := \{X \in J^1_{0,9} | Q(X)=1\}, \quad S^8_{+} := \{X \in J^1_{8,1} | Q(X)=1, (E_3|X)>0\}, \quad S^7_{+} := \{X \in J^1_{7,1} | Q(X)=1, (E_3|X)>0\}.
\]

From now on, the groups $SO(8)$ and $SO(7)$ are identified with the groups $SO(8) = \{g \in \text{GL}_\mathbb{R}(O) | (gx|gy)=(x|y), \det(g)=1\}$ and $SO(7) = \{g \in SO(8) | g1=1\}$, respectively. The subgroup $T(O)$ of $SO(8)^3$ is defined as

\[
T(O) := \{(g_1,g_2,g_3) \in SO(8)^3 | (g_1x)(g_2y) = g_3(xy) \text{ for all } x,y \in O\}
\]

(cf. [2], [9, (2.4.6)], [22], [33], [43]), and the subgroup \tilde{D}_4 of $SO(8)^3$ as

\[
\tilde{D}_4 := \{(g_1,g_2,g_3) \in SO(8)^3 | (g_1x)(g_2y) = \overline{g_3(x\overline{y})} \text{ for all } x,y \in O\}.
\]

For $i \in \{1,2,3\}$, the homomorphism $p_i : \tilde{D}_4 \to SO(8)$ is defined by

\[
p_i(g_1,g_2,g_3) := g_i \text{ for } (g_1,g_2,g_3) \in \tilde{D}_4.
\]

The subgroup \tilde{B}_3 of \tilde{D}_4 is defined as

\[
\tilde{B}_3 := \{(g_1,g_2,g_3) \in \tilde{D}_4 | g_31=1\}
\]

and the homomorphism $q : \tilde{B}_3 \to SO(7)$ as $q := p_3|\tilde{B}_3$. Denote $\epsilon_i(j) := (-1)^{1+\delta_{ij}}$ where δ_{ij} is the Kronecker delta. Thus if $i=j$, then $\epsilon_i(j) = 1$, else $\epsilon_i(j) = -1$.

Lemma 3.1.
(1) ([43, Theorems 1.15.1 and 1.16.1]) \tilde{D}_4 and \tilde{B}_3 are connected.
(2) (The principle of triality: [2], [9, (2.4.6)], cf. [43, Theorem 1.14.2])
The following sequence is exact:
$$1 \rightarrow \{(1,1,1), (\epsilon_i(1), \epsilon_i(2), \epsilon_i(3))\} \rightarrow \tilde{D}_4 \xrightarrow{p_i} \text{SO}(8) \rightarrow 1.$$
(3) ([43, Theorem 1.15.2])
The following sequence is exact:
$$1 \rightarrow \{(1,1,1), (-1,-1,1)\} \rightarrow \tilde{B}_3 \xrightarrow{q} \text{SO}(7) \rightarrow 1.$$

By Lemma 3.1, we see that \tilde{D}_4 is connected and a two-fold covering group of SO(8), and \tilde{B}_3 is connected and a two-fold covering group of SO(7). So denote
$$\text{Spin}(8) := \tilde{D}_4, \quad \text{Spin}(7) := \tilde{B}_3.$$

Lemma 3.2. ([22], cf. [43, Theorem 2.7.1], [26, lemma 3.2])
The following homomorphisms are group isomorphisms:
(1) $\varphi_0 : \text{Spin}(8) \rightarrow (F_{4(-20)})_{E_1,E_2,E_3};$
$$\varphi_0(g_1,g_2,g_3)(\sum (\xi_i E_i + F^1_i(x_i))) = \sum (\xi_i E_i + F^1_i(g_i x_i)),$$
(2) $\varphi_0 : \text{Spin}(7) \rightarrow (F_{4(-20)})_{E_1,E_2,F_3^1(1)};\quad \varphi_0 \simeq \varphi_0|_{\text{Spin}(7)}.$$

Hereafter $\text{Spin}(8)$ and $\text{Spin}(7)$ are identified with $(F_{4(-20)})_{E_1,E_2,E_3}$ and $(F_{4(-20)})_{E_1,E_2,F_3^1(1)}$ via φ_0, respectively.

Lemma 3.3. ([38], [39], cf. [26, Lemmas 3.9 and 3.12])

(1) $(F_{4(-20)})_{E_1}/\text{Spin}(8) \simeq S^8_1,$
(2) $(F_{4(-20)})_{E_3}/\text{Spin}(8) \simeq S^8_{+1},$
(3) $(F_{4(-20)})_{F_3^1(1)}/\text{Spin}(7) \simeq S^7_{+1}.$

Furthermore, $(F_{4(-20)})_{E_1}, (F_{4(-20)})_{E_3}$ and $(F_{4(-20)})_{F_3^1(1)}$ are connected.

Lemma 3.4. ([38], [39], cf. [26, Lemmas 3.10 and 3.13])

(1) The following sequence is exact.
$$1 \rightarrow \mathbb{Z}_2 \rightarrow (F_{4(-20)})_{F_3^1(1)} \xrightarrow{f} O^0(J^1_{7,1},Q) \rightarrow 1$$
where $f(g) = g|_{J^1_{7,1}}.$
(2) The following sequence is exact.
$$1 \rightarrow \mathbb{Z}_2 \rightarrow (F_{4(-20)})_{E_1} \xrightarrow{f} \text{SO}(J^1_{0,9},Q) \rightarrow 1$$
where $f(g) = g|_{J^1_{0,9}}.$
(3) The following sequence is exact.
$$1 \rightarrow \mathbb{Z}_2 \rightarrow (F_{4(-20)})_{E_3} \xrightarrow{f} O^0(J^1_{8,1},Q) \rightarrow 1$$
where $f(g) = g|_{J^1_{8,1}}.$
Since Lemmas 3.3, 3.4 and \(\pi_1(\SO(n)) = \mathbb{Z}_2 = \pi_1(\O^0(n, 1)) \) \((n \geq 3)\), we can put

\[
\Spin^0(7, 1) := (F_{4(-20)})_{F_3^0(1)}, \quad \Spin(9) := (F_{4(-20)})_{E_1},
\]

\[
\Spin^0(8, 1) := (F_{4(-20)})_{E_3} \cong (F_{4(-20)})_{E_2}.
\]

The element \(\sigma_i \in F_{4(-20)} \) is defined by

\[
\sigma_i \left(\sum_{j=1}^{3} (\xi_j E_j + F_j^1(x_j)) \right) := \sum_{j=1}^{3} (\xi_j E_j + \epsilon_i(j) F_j^1(x_j))
\]

[38] (cf. [39]) where indices are counted modulo 3. The involutive automorphism \(\tilde{\sigma}_i \) of \(F_{4(-20)} \) is defined as

\[\tilde{\sigma}_i(g) := \sigma_i g \sigma_i \quad \text{for} \quad g \in F_{4(-20)},\]

and the subgroup \(K \) of \(F_{4(-20)} \) as

\[K := (F_{4(-20)})_{\sigma_1} = \{ g \in F_{4(-20)} \mid \sigma_1 g = g \sigma_1 \}.
\]

Proposition 3.5. ([38, Theorem 8],[39, Theorem 2.4.4], cf. [26, Proposition 3.16]).

1. \((F_{4(-20)})_{\tilde{\sigma}_1} = (F_{4(-20)})_{E_1} \).
2. \(K = (F_{4(-20)})_{E_1} = \Spin(9). \)
3. \((F_{4(-20)})_{\overline{\sigma}_2} = (F_{4(-20)})_{E_2} \cong \Spin^0(8, 1). \)

4. **THE STABILIZER GROUPS OF SEMIDIRECT PRODUCT GROUP TYPE.**

Denote the Lie algebras \(\mathfrak{o}(8) = \text{Lie}(\O(8)) \) and \(f_{4(-20)} = \text{Lie}(F_{4(-20)}) \). Since \(\varphi_0 : D_4 \rightarrow (F_{4(-20)})_{E_1,E_2,E_3} \) is an isomorphism by Lemma 3.2, the Lie subalgebra \(\mathfrak{o}_4 \) of \(f_{4(-20)} \) is defined by

\[
\mathfrak{o}_4 := \left\{ d\varphi_0(D_1, D_2, D_3) \mid \begin{array}{c}
(D_1, D_2, D_3) \in \mathfrak{o}(8)^3, \\
(D_1 x)y + x(D_2 y) = D_3(xy)
\end{array} \right\}.
\]

Then

\[d\varphi_0(D_1, D_2, D_3)(\sum (\xi_i E_i + F_i^1(x_i))) = \sum F_i^1(D_i x_i).
\]

For \(a \in \O \), denote

\[
A_1^1(a) := \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & a \\ 0 & -\overline{a} & 0 \end{pmatrix}, \quad A_2^1(a) := \begin{pmatrix} 0 & 0 & \sqrt{-1}a \\ 0 & 0 & 0 \\ -\sqrt{-1}a & 0 & 0 \end{pmatrix},
\]

\[
A_3^1(a) := \begin{pmatrix} 0 & -\sqrt{-1}a & 0 \\ \sqrt{-1}a & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.
\]

\(\tilde{A}_i^1(a) \in \text{End}_\mathbb{R}(\mathcal{J}^1) \) is defined as

\[\tilde{A}_i^1(a) := [A_i^1(a), X] \quad \text{for} \quad X \in \mathcal{J}^1.
\]
and the subspaces u_{i}^{1} of $\text{End}_{\mathbb{R}}(\mathcal{J}^{1})$ as $u_{i}^{1} := \{ \tilde{A}_{i}^{1}(a) \mid a \in \mathcal{O} \}$. The differential $d\tilde{\sigma}_{i}$ of the involutive automorphism $\tilde{\sigma}_{i}$ is written by same letter $\tilde{\sigma}_{i}$. Then $\tilde{\sigma}_{i}(\phi) = \sigma_{i}\phi\sigma_{i}$ for $\phi \in f_{4(-20)}$.

Lemma 4.1.

1. ([9], cf. [24, Proposition 2.1]) $f_{4(-20)} = \mathfrak{d}_{4} \oplus u_{1}^{1} \oplus u_{2}^{1} \oplus n_{3}^{1}$.

2. ([43], cf. [26, Lemma 4.2]) $\tilde{\sigma}_{1}$ is a Cartan involution.

3. If $f_{4(-20)} = \mathfrak{t} \oplus \mathfrak{p}$ is a Cartan decomposition with respect to $\tilde{\sigma}_{1}$, then

$$\mathfrak{t} = \mathfrak{d}_{4} \oplus u_{1}^{1}, \quad \mathfrak{p} = u_{2}^{1} \oplus u_{3}^{1}.$$

Now $\tilde{A}_{3}^{1}(1) \in \mathfrak{p}$. Let us define the abelian subspace a of \mathfrak{p}, the 1-parameter subgroup A, and $\alpha \in a^{*}$ as

$$a := \{ t\tilde{A}_{3}^{1}(1) \mid t \in \mathbb{R} \}, \quad A := \{ \exp(t\tilde{A}_{3}^{1}(1)) \mid t \in \mathbb{R} \}, \quad \alpha(\tilde{A}_{3}^{1}(1)) := 1$$

respectively. Denote

$$\mathfrak{g}_{\lambda} := \{ \phi \in f_{4(-20)} \mid [H, \phi] = \lambda(H)\phi \text{ for all } H \in a \},$$

$$\Sigma := \{ \lambda \in a^{*} \mid \lambda \neq 0, \mathfrak{g}_{\lambda} \neq \{0\} \},$$

and the centralizer a of the group K and its Lie algebra as

$$M := Z_{K}(a) = \{ k \in K \mid k\tilde{A}_{3}^{1}(1)k^{-1} = \tilde{A}_{3}^{1}(1) \},$$

$$m := Z_{\mathfrak{e}}(a) = \{ \phi \in \mathfrak{e} \mid [\phi, \tilde{A}_{3}^{1}(1)] = 0 \}$$

respectively. For $p \in \text{ImO}$, $l_{p}, r_{p}, t_{p} \in \text{End}_{\mathbb{R}}(\mathcal{O})$ are defined by

$$l(p)x := px, \quad r(p)(x) := xp, \quad t(p)x := px + xp$$

for $x \in \mathcal{O}$ respectively. Then we see that

$$\delta(p) := d\varphi_{0}(l_{p}, r_{p}, t_{-p}) \in \mathfrak{d}_{4}.$$

For $p \in \text{ImO}$ and $x \in \mathcal{O}$, denote

$$G_{1}(x) := \tilde{A}_{1}^{1}(x) + \tilde{A}_{2}^{1}(-\overline{x}), \quad G_{2}(p) := -\tilde{A}_{3}^{1}(p) - \delta(p),$$

$$G_{-1}(x) := \tilde{A}_{1}^{1}(x) + \tilde{A}_{2}^{1}(\overline{x}), \quad G_{-2}(p) := \tilde{A}_{3}^{1}(p) - \delta(p)$$

For $i = \pm 1$ and $j = \pm 2$, denote the subspaces \mathfrak{g}_{i} and \mathfrak{g}_{j} as $f_{4(-20)}$

$$\mathfrak{g}_{i} := \{ G_{i}(p) \mid p \in \text{ImO} \}, \quad \mathfrak{g}_{j} := \{ G_{j}(x) \mid x \in \mathcal{O} \}$$

respectively.

Proposition 4.2. (cf. [26, Proposition 4.4])

$$M = (F_{4(-20)})_{E_{1},F_{3}^{1}(1)} = (F_{4(-20)})_{E_{2},F_{3}^{1}(1)} = (F_{4(-20)})_{E_{1},E_{2},E_{3},F_{3}^{1}(1)} = \varphi_{0}(\text{Spin}(7)).$$
Lemma 4.3. (cf. [26, Lemma 4.5])

a is a maximal abelian subspace of p,

$g_{\pm \alpha} = g_{\pm 1}, \ g_{\pm 2} = g_{\pm 2}$ (resp),

and $(f_{4(-20)}, a)$-root space decomposition of $f_{4(-20)}$ is given by

$f_{4(-20)} = g_{-2} \oplus g_{-\alpha} \oplus a \oplus m \oplus g_{\alpha} \oplus g_{2} = g_{-2} \oplus g_{-1} \oplus a \oplus m \oplus g_{1} \oplus g_{2}$.

So the nilpotent subalgebras n^{\pm} are defined as

$n^{+} := g_{2} \oplus g_{\alpha} = \{G_{2}(p) + G_{1}(x) \mid p \in \text{Im}O, x \in O\},$

$n^{-} := g_{-2} \oplus g_{-\alpha} = \{G_{-2}(p) + G_{-1}(x) \mid p \in \text{Im}O, x \in O\}$ (resp).

Then

$[n^{+}, [n^{+}, n^{+}]] = [n^{-}, [n^{-}, n^{-}]] = 0.$

And the nilpotent subgroups N^{\pm} of $F_{4(-20)}$ are defined as

$N^{+} := \exp n^{+} = \{\exp(G_{2}(p) + G_{1}(x)) \mid p \in \text{Im}O, x \in O\},$

$N^{-} := \exp n^{-} = \{\exp(G_{-2}(p) + G_{-1}(x)) \mid p \in \text{Im}O, x \in O\}$ (resp).

Lemma 4.4.

(1) $\exp G_{2}(p) \exp G_{1}(x) = \exp(G_{2}(p) + G_{1}(x)) = \exp G_{1}(x) \exp G_{2}(p)$.

(2) $\bar{\sigma}_{1} n^{+} = n^{-}$ and $\bar{\sigma}_{1} n^{-} = n^{+}$. Furthermore,

$\bar{\sigma}_{1}(G_{\pm 2}(p) + G_{\pm 1}(x)) = G_{\mp 2}(p) + G_{\mp 1}(x)$ (resp).

(3) $\bar{\sigma}_{1}(N^{+}) = N^{-}$ and $\bar{\sigma}_{1}(N^{-}) = N^{+}$. Furthermore,

$\bar{\sigma}_{1}(\exp(G_{\pm 2}(p) + G_{\pm 1}(p))) = \exp(G_{\mp 2}(p) + G_{\mp 1}(p))$ (resp).

Lemma 4.5. ([26, Lemma 5.3])

Let $g = (g_{1}, g_{2}, g_{3}), h \in \text{Spin}(7), p, q \in \text{Im}O, x, y \in O$.

$\exp(G_{2}(p) + G_{1}(x))\varphi_{0}(g) \exp(G_{2}(q) + G_{1}(y))\varphi_{0}(h)$

$= \exp(G_{2}(p + g_{3}q + \text{Im}(x\overline{(g_{1}y)})) + G_{1}(x + g_{1}y))\varphi_{0}(gh)$.

Let us consider $G := \text{Spin}(7) \times \text{Im}O \times O$ in which multiplication is defined by

$(g, p, x)(h, q, y) := (gh, p + g_{3}q + \text{Im}(x\overline{(g_{1}y)}), x + g_{1}y)$

where $p, q \in \text{Im}O, x, y \in O$ and $g = (g_{1}, g_{2}, g_{3}), h \in \text{Spin}(7)$. Denote

$H := \{(g, 0, 0) \mid g \in \text{Spin}(7)\},$

$N := \{(1, p, x) \mid p \in \text{Im}O, x \in O\},$

$G' := \{(g, p, 0) \mid g \in \text{Spin}(7), p \in \text{Im}O\}, \ N_{1} := \{(1, p, 0) \mid p \in \text{Im}O\},$

$G'' := \{(g, p, q) \mid g \in G_{2}, p, q \in \text{Im}O\},$

$H'' := \{(g, 0, 0) \mid g \in G_{2}\}, \ N_{2} := \{(1, p, q) \mid p, q \in \text{Im}O\}.$
Lemma 4.6. ([26, Lemma 5.2])
(1) G is a group with respect to the multiplication.
(2) H, N, G', N_1, G'', H'' and N_2 are subgroups of G.
(3) We have
\[G = H \ltimes N, \quad G' = H \ltimes N_1, \quad G'' = H'' \ltimes N_2. \]

Denote $\text{Spin}(7) := H$, $\text{Im}O \times O := N$, $\text{Im}O = N_1$, $G_2 := H''$ and $\text{Im}O \times \text{Im}O := N''$ so that
\[\text{Spin}(7) \ltimes (\text{Im}O \times O) = G, \quad \text{Spin}(7) \ltimes \text{Im}O = G'. \]

The homomorphisms $\varphi : \text{Spin}(7) \times (\text{Im}O \times O) \to (F_{4(-20)})_{P-}$, $\varphi_1 : \text{Spin}(7) \times \text{Im}O \to (F_{4(-20)})_{E_3,P-}$ and $\varphi_2 : G_2 \times (\text{Im}O \times \text{Im}O) \to (F_{4(-20)})_Q$ are defined as
\[\varphi(g, p, x) = \exp(G_2(p) + G_1(x)) \varphi(g), \quad \varphi_1(g, p) = \exp(G_2(p)) \varphi(g) \]
\[\varphi_2(g, p, q) = \exp(G_2(p) + G_1(q)) \varphi(g) \quad \text{for} \ p, q \in \text{Im}O \text{ and } x \in O \]
respectively.

Proposition 4.7. ([26, Proposition 5.6])
(1) φ_1 is an isomorphism onto $(F_{4(-20)})_{E_3,P-}$.
(2) φ is an isomorphism onto $(F_{4(-20)})_{P-}$.
(3) φ_2 is an isomorphism onto $(F_{4(-20)})_Q$.

The key of proof of (2): By direct calculation,
\[\text{Orb}_{N^+}(E_3) = \{ X \in J^{1} | P^- \times X = -\frac{1}{2}P^-, X^{x^2} = 0, \text{tr}(X) = 1 \}. \]

Then this equation deduces $\text{Orb}_{N^+}(E_3) = \text{Orb}_{(F_{4(-20)})_{P-}}(E_3)$.

The mappings $\psi_1 : F_{4(-20)} \to \text{O}_1$, $\psi_2 : F_{4(-20)} \to \text{Im}O$ and $\psi_3 : F_{4(-20)} \to F_{4(-20)}$ are defined as for $g \in F_{4(-20)}$,
\[\psi_1(g) := \frac{1}{2}((gE_3)_{F_1} + (gE_3)_{F_2}), \]
\[\psi_2(g) := -\frac{1}{2} \text{Im} \left((g(-E_1 + E_2))_{F_3} \right), \]
\[\psi_3(g) := \exp(-G_1(\psi_1(g)) - G_2(\psi_2(g))) g \]
respectively.

Proposition 4.8. ([26, Proposition 5.7])
(1) Let $g \in (F_{4(-20)})_{P-}$. Then $\psi_3(g) \in M$ and
\[g = \exp(G_1(\psi_1(g)) + G_2(\psi_2(g))) \psi_3(g) \in N^+M. \]
(2) We have
\[(F_{4(-20)})_{P-} = N^+M = MN^+. \]
5. The Orbit Types of $F_{4(-20)}$-Orbits on \mathcal{J}^{1}.

Main Theorem 2. (The orbit types of $F_{4(-20)}$-orbits on \mathcal{J}^{1} [26, Main Theorem 1])

The orbit types of $F_{4(-20)}$-orbits on \mathcal{J}^{1} are given as follows.

1. Assume that $X \in \mathcal{J}^{1}$ admits the characteristic roots $\lambda_1 > \lambda_2 > \lambda_3$. Then X can be transformed to the following canonical forms by $F_{4(-20)}$ with the following type of stabilizer group.

 \[
 \begin{array}{ll}
 \text{The canonical forms of } X & \text{The type of stabilizer group} \\
 1. \, \text{diag}(\lambda_1, \lambda_2, \lambda_3) & \text{Spin}(8) \\
 2. \, \text{diag}(\lambda_2, \lambda_3, \lambda_1) & \text{Spin}(8) \\
 3. \, \text{diag}(\lambda_3, \lambda_1, \lambda_2) & \text{Spin}(8) \\
 \end{array}
 \]

2. Assume that $X \in \mathcal{J}^{1}$ admits the characteristic roots $\lambda_1 \in \mathbb{R}$, $p \pm \sqrt{-1}q$ with $p \in \mathbb{R}$ and $q > 0$. Then X can be transformed to the following canonical form by $F_{4(-20)}$ with the following type of stabilizer group.

 \[
 \begin{array}{ll}
 \text{The canonical forms of } X & \text{The type of stabilizer group} \\
 4. \, \text{diag}(p, p, \lambda_1) + F_{3}^{1}(q) & \text{Spin}^0(7, 1) \\
 \end{array}
 \]

3. Assume that $X \in \mathcal{J}^{1}$ admits the characteristic roots λ_1 of multiplicity 1 and λ_2 of multiplicity 2. Then X can be transformed to the following canonical forms by $F_{4(-20)}$ with the following types of stabilizer group.

 \[
 \begin{array}{ll}
 \text{The canonical forms of } X & \text{The type of stabilizer group} \\
 5. \, \text{diag}(\lambda_1, \lambda_2, \lambda_2) & \text{Spin}(9) \\
 6. \, \text{diag}(\lambda_2, \lambda_2, \lambda_1) & \text{Spin}^0(8, 1) \\
 7. \, \text{diag}(\lambda_2, \lambda_2, \lambda_1) + P^+ & \text{Spin}(7) \ltimes \text{ImO} \\
 8. \, \text{diag}(\lambda_2, \lambda_2, \lambda_1) + P^- & \text{Spin}(7) \ltimes \text{ImO} \\
 \end{array}
 \]

4. Assume that $X \in \mathcal{J}^{1}$ admits the characteristic root of multiplicity 3. Then X can be transformed to the following canonical forms by $F_{4(-20)}$ with the following types of stabilizer group.

 \[
 \begin{array}{ll}
 \text{The canonical forms of } X & \text{The type of stabilizer group} \\
 9. \, \frac{1}{3}\text{tr}(X)E & F_{4(-20)} \\
 10. \, \frac{1}{3}\text{tr}(X)E + P^+ & \text{Spin}(7) \ltimes (\text{ImO} \times \text{O}) \\
 11. \, \frac{1}{3}\text{tr}(X)E + P^- & \text{Spin}(7) \ltimes (\text{ImO} \times \text{O}) \\
 12. \, \frac{1}{3}\text{tr}(X)E + Q^+(1) & G_2 \ltimes (\text{ImO} \times \text{ImO}) \\
 \end{array}
 \]

Let G be a linear connected semisimple Lie group with its Lie algebra \mathfrak{g} over \mathbb{R}. Let θ be a Cartan involution of \mathfrak{g}, $\mathfrak{g} = \mathfrak{t} \oplus \mathfrak{p}$ a Cartan decomposition, \mathfrak{a} is a maximal abelian subspace of \mathfrak{p}, $\mathfrak{m} = Z_\theta(\mathfrak{a})$. \mathfrak{a}^*
denotes the dual space of \mathfrak{a}. For any element $\lambda \in \mathfrak{a}^*$, let $\mathfrak{g}_\lambda := \{X \in \mathfrak{g} \mid [H, X] = \lambda(H)X \text{ for all } H \in \mathfrak{a}\}$. λ is called a root of $(\mathfrak{g}, \mathfrak{a})$ if $\lambda \neq 0$ and $\mathfrak{g}_\lambda \neq \{0\}$. The set of roots of $(\mathfrak{g}, \mathfrak{a})$ is denoted by Σ. Then $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{m} \oplus \sum_{\lambda \in \Sigma} \mathfrak{g}_\lambda$ follows. Denote by Σ^+ a set of positive root of $(\mathfrak{g}, \mathfrak{a})$ with respect to the same ordering in \mathfrak{a}^*, $\Sigma^- := \{-\lambda \mid \lambda \in \Sigma^+\}$, $\mathfrak{n}^+ := \sum_{\lambda \in \Sigma^+} \mathfrak{g}_\lambda$ and $\mathfrak{n}^- := \sum_{\lambda \in \Sigma^-} \mathfrak{g}_\lambda$. Then \mathfrak{n}^+ and \mathfrak{n}^- are nilpotent subalgebras, $\theta \mathfrak{n}^\pm = \mathfrak{n}^\mp$ (resp), and $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{a} \oplus \mathfrak{m} \oplus \mathfrak{n}^+$ follow. Suppose that there exists an involutive automorphism Θ on G such that the differential $d\Theta = \theta$, and the center $Z(G)$ of G is finite. Denote the subgroup $K := G^\Theta$ of G. Then $\text{Lie}(K) = \mathfrak{t}$ and K is connected, closed, and K is a maximal compact subgroup of G since $Z(G)$ of G is finite.

Set $A := \exp \mathfrak{a}$, $M := Z_K(\mathfrak{a}) = \{k \in K \mid kXk^{-1} = X \text{ for all } X \in \mathfrak{a}\}$ and $N^\pm := \exp \mathfrak{n}^\pm$ (resp). Then the identity connected component M^0 of M is the analytic subgroup corresponding to \mathfrak{m}, and $\Theta N^\pm = N^\mp$ (resp). Denote the normalizer of \mathfrak{a} of the group K as $M^\ast := N_K(\mathfrak{a}) = \{k \in K \mid kak^{-1} \subset \mathfrak{a}\}$ and the finite factor group $W := M^\ast/M$.

For all $w \in W$, we fix a representative $\bar{w} \in M^\ast$. Then the following decompositions:

\[(1) \quad G = \coprod_{w \in W} MAN^+ \bar{w}N^- \quad \text{(Bruhat decomposition)}, \]
\[(1)' \quad G = MAN^+ N^- \quad \text{(Gauss decomposition)}, \]
\[(2) \quad G = KAN^+ \quad \text{(Iwasawa decomposition)}. \]

(cf. [15],[18], [27],[23]). In (1)', the set $MAN^+ N^-$ is open dense in G, and so almost any $g \in G$ can be expressed by

\[g = m_G(g)a_G(g)n_G(g)\bar{n}_G(g) \]

for some $m_G(g) \in M, \quad a_G(g) \in A, \quad n_G(g) \in N^+$ and $\bar{n}_G(g) \in N^-$ with uniquely determined factors. In (2), any $g \in G$ can be uniquely expressed by

\[g = k(g)(\exp H(g))n(g) \]

for some $k(g) \in K, H(g) \in \mathfrak{a}$ and $n(g) \in N$.

A signature of roots is defined by the mapping ϵ of Σ to $\{-1, 1\}$ such that ϵ satisfies the conditions:

(i) $\epsilon(\lambda) = \epsilon(-\lambda)$ \hspace{1cm} for all $\lambda \in \Sigma$,

(ii) $\epsilon(\lambda + \mu) = \epsilon(\lambda)\epsilon(\mu)$ \hspace{1cm} if $\lambda, \mu, \lambda + \mu \in \Sigma$

[27, Definition 1.1]. For the Cartan involution θ and any signature ϵ of roots, let us define an involutive automorphism θ_ϵ of \mathfrak{g} such that

(i) $\theta_\epsilon(X) := \epsilon(\lambda)\theta(X)$ \hspace{1cm} for all $\lambda \in \Sigma$ and $X \in \mathfrak{g}_\lambda$,

(ii) $\theta_\epsilon(X) := \theta(X)$ \hspace{1cm} for all $X \in \mathfrak{a} \oplus \mathfrak{m}$

[27, Definition 1.2]. θ_ϵ is called the (θ, ϵ)-involutive of \mathfrak{g}. Set

\[\mathfrak{t}_\epsilon := \{X \in \mathfrak{g} \mid \theta_\epsilon X = X\}, \quad \mathfrak{p}_\epsilon := \{X \in \mathfrak{g} \mid \theta_\epsilon X = -X\}. \]
Then \(g = \mathfrak{t}_\epsilon \oplus \mathfrak{p}_\epsilon \). Let \((K_\epsilon)_0\) be the analytic subgroup of \(G \) with the Lie algebra \(\mathfrak{t}_\epsilon \) and the subgroup \(K_\epsilon \) of \(G \) as \(K_\epsilon := (K_\epsilon)_0 M \). In fact, since all elements of \(M \) normalize \((K_\epsilon)_0\) by [27, Lemma 1.4(i)], \(K_\epsilon \) is a subgroup of \(G \). Denote \(M^*_\epsilon := K_\epsilon \cap M^* \) and \(W_\epsilon := M^*_\epsilon \backslash M \).

Proposition 6.1. (Iwasawa decomposition with respect to \(K_\epsilon \) in sense of T. Oshima and J. Sekiguchi [27, Proposition 1.10])

Let the factor set \(W_\epsilon \backslash W = \{w_1 = 1, w_2, \cdots, w_r\} \) where \(r = [W : W_\epsilon] \).

Fix representatives \(\overline{w}_1 = 1, \overline{w}_2, \cdots, \overline{w}_r \in M^*_\epsilon = K_\epsilon \cap M^* \) for \(w_1 = 1, w_2, \cdots, w_r \). Then the decomposition \(G \supset \bigcup_{i=1}^{r} K_\epsilon \overline{w}_i A N^+ \)

has the following properties.

1. If \(k \overline{w}_i a n = k' \overline{w}_j a' n' \) with \(k, k' \in K_\epsilon, a, a' \in A \) and \(n, n' \in N^+ \), then \(k = k', i = j, a = a' \) and \(n = n' \).

2. The map \((k, a, n) \mapsto k \overline{w}_i a n \) defines an analytic diffeomorphism of the product manifold \(K_\epsilon \times A \times N^+ \) onto the open submanifold \(K_\epsilon \overline{w}_i A N^+ \) of \(G \) (\(i = 1, \cdots r \)).

3. The submanifolds \(\bigcup_{i=1}^{r} K_\epsilon \overline{w}_i A N^+ \) is open dense in \(G \).

7. **The Gauss decomposition of \(F_{4(-20)} \)**

We have

\[\mathcal{N}_1^{-}(O) = \text{Orb}_{F_{4(-20)}}(P^-) \cong F_{4(-20)}/(F_{4(-20)})_{P^-} = F_{4(-20)}/N^+ M. \]

So considering \(AN^- \)-orbits on \(\mathcal{N}_1^{-}(O) \), we obtain:

Main Theorem 3. (The Bruhat and Gauss decomposition of \(F_{4(-20)} \)[26, Main Theorem 2])

1. Assume that \(g \in F_{4(-20)} \) and \((gP^+ | P^-) \neq 0 \). Let

\[t := -\frac{1}{2} \log \left(\frac{1}{4} (gP^+ | P^-) \right) \in \mathbb{R}, \]

\[a_G(g) := \exp(t \tilde{A}_3^1(1)) \in A, \]

\[\overline{n}_G(g) = \tilde{\sigma}_1(\exp(-\mathcal{G}_1(\frac{\sigma_1 g^{-1}P_F - (\sigma_1 g^{-1}P^-)_{F_3}^-}{gP^+ | P^-})) - \mathcal{G}_2(\frac{\text{Im}((\sigma_1 g^{-1}P^-)_{F_3}^-)}{(gP^+ | P^-)} I)) \in N^- , \]

\[n_G(g) := \exp(t(\mathcal{G}_1(\tilde{\psi}_1(a_G(g) \overline{n}_G(g)) g^{-1}))) + 2 \mathcal{G}_2(\psi_2(a_G(g) \overline{n}_G(g) g^{-1}))) \in N^+ , \]

\[m_G(g) := \psi_3(a_G(g) \overline{n}_G(g) g^{-1})^{-1}. \]

Then
(i) \((gP^+|P^-) < 0\), and \(\alpha_G(g), \, n_G(g), \, m_G(g)\) are well-defined,

(ii) \(m_G(g) \in M\) and
\[
g = m_G(g)\alpha_G(g)n_G(g)\overline{n}_G(g) \in MAN^+N^-.
\]

(2) Assume \(g \in F_4(-20)\) and \((gP^+|P^-) = 0\). Let
\[
t := -\frac{1}{2}\log(-(gE_1|P^-)) \in \mathbb{R},
\]
\[
a'(g) = \exp(t\tilde{A}^1_3(1)) \in A,
\]
\[
n'(g) := \exp(t(\mathcal{G}_1(\psi_1(\sigma_1 a'(g)g^{-1}) + 2\mathcal{G}_2(\psi_2(\sigma_1 a'(g)g^{-1})))) \in N^+,
\]
\[
m'(g) := \psi_3(\sigma_1 a'(g)g^{-1})^{-1}.
\]

Then
(i) \((gE_1|P^-) < 0\), and \(a'(g), \, n'(g), \, m'(g)\) are well-defined,
(ii) \(m'(g) \in M\) and
\[
g = m'(g)a'(g)n^l(g)\sigma_1 \in MAN^+\sigma_1 = MAN^+\sigma_1N^-.
\]

(3) The following equations hold.
\[
MAN^+N^- = \{g \in F_4(-20) \mid (gP^+|P^-) \neq 0\} \\
= \{g \in F_4(-20) \mid (gP^+|P^-) < 0\} \neq \emptyset,
\]
\[
MAN^+\sigma_1 = MAN^+\sigma_1N^- \\
= \{g \in F_4(-20) \mid (gP^+|P^-) = 0\} \neq \emptyset.
\]

Especially,
\[
F_4(-20) = MAN^+N^- \coprod MAN^+\sigma_1N^- \quad \text{(Bruhat decomposition)}
\]
\[
= MAN^+N^- \coprod MAN^+\sigma_1
\]

(4) \(MAN^+N^-\) is open dense in \(F_4(-20)\). Especially
\[
F_4(-20) = MAN^+N^- \quad \text{(Gauss decomposition)}.
\]

8. The Iwasawa decomposition of \(F_4(-20)\).

We have
\[
\mathcal{H}(O) = Orb_{F_4(-20)}(E_1) \simeq F_4(-20)/(F_4(-20))E_1 = F_4(-20)/K.
\]

So considering \(AN^+\)-orbits on \(\mathcal{H}(O)\), we obtain:

Main Theorem 4. (The Iwasaws decomposition of \(F_4(-20)[26, \text{Main Theorem 3}]\))
For any $g \in F_{4(-20)}$, let
\[
H(g) := \frac{1}{2} \log(-(gP^{-}|E_{1}))A_{3}^{1}(1) \in a,
\]
\[
n(g) := \exp(G_{1}\left(\frac{(g^{-1}E_{1})_{F_{1}} - (g^{-1}E_{1})_{F_{2}}}{(gP^{-}|E_{1})}\right) + G_{2}\left(\frac{{\rm Im}((g^{-1}E_{1})_{F_{3}})}{(gP^{-}|E_{1})}\right)) \in N^{+}
\]
\[
k(g) := gn(g)^{-1}\exp(-H(g)).
\]

Then
(1) $(gP^{-}|E_{1}) < 0$. Especially $H(g)$, $n(g)$ and $k(g)$ is well-defined.
(2) $k(g) \in K$ and
\[
g = k(g)(\exp H(g))n(g) \in KAN^{+}.
\]

9. THE IWASAWA DECOMPOSITION WITH RESPECT TO K_{ϵ}.

For $G = F_{4(-20)}$, let ϵ be a signature of root defined by
\[
\epsilon(\alpha) = \epsilon(-\alpha) := -1, \; \epsilon(2\alpha) = \epsilon(-2\alpha) := 1.
\]

Denote the $(\tilde{\sigma}_{1}, \epsilon)$-involution by $(\tilde{\sigma}_{1})_{\epsilon}$, and use same notations K_{ϵ}, $(K_{\epsilon})_{0}$, K_{ϵ}, M^{*}, M_{ϵ}^{*}, W and W_{ϵ} corresponding to notations of general G respectively.

Proposition 9.1. ([26, Lemma 6.2])

(1) $(\tilde{\sigma}_{1})_{\epsilon} = \tilde{\sigma}_{2}$.
(2) $K_{\epsilon} = (F_{4(-20)})_{E_{2}}$.
(3) $M^{*} = M \bigsqcup \sigma_{1} M$. Especially $W = \{M, \sigma_{1} M\} \cong \mathbb{Z}_{2}$.
(4) $M_{\epsilon}^{*} = M \bigsqcup \sigma_{1} M$. Especially $W_{\epsilon} = \{M, \sigma_{1} M\}$ and $[W : W_{\epsilon}] = 1$.

We have
\[
\mathcal{H}'(O) = Orb_{F_{4(-20)}}(E_{2}) \simeq F_{4(-20)}/(F_{4(-20)})_{E_{2}} = F_{4(-20)}/K_{\epsilon}.
\]

So considering AN^{+}-orbits on $\mathcal{H}'(O)$. we obtain:

Main Theorem 5. (The Iwasawa decomposition with respect to K_{ϵ}[26, Main Theorem 4])

Let \mathcal{D} be the domain of $F_{4(-20)}$ defined by
\[
\mathcal{D} := \{g \in F_{4(-20)} \mid (gP^{-}|E_{2}) > 0\}.
\]
For any $g \in \mathcal{D}$, let
\[
H_\epsilon(g) := \frac{1}{2} \log((gP^{-}|E_2))\tilde{A}_3^1(1) \in a,
\]
\[
n_\epsilon(g) := \exp(G_1 \left(\frac{(g^{-1}E_2)_{F_1} - (g^{-1}E_2)_{F_2}}{(gP^{-}|E_2)} \right) + G_2 \left(\frac{\text{Im}((g^{-1}E_2)_{F_3})}{(gP^{-}|E_2)} \right)) \in N^+.
\]
\[
k_\epsilon(g) := gn_\epsilon(g)^{-1} \exp(-H_\epsilon(g)).
\]

Then
(1) $k_\epsilon(g) \in K_\epsilon$ and
\[
g = k_\epsilon(g)(\exp H_\epsilon(g))n_\epsilon(g) \in K_\epsilon AN^+.
\]

(2) $\mathcal{D} = K_\epsilon AN^+ = \{g \in F_{4(-20)} \mid (gP^{-}|E_2) \neq 0\}$. Furthermore, \mathcal{D} is open dense in $F_{4(-20)}$.

Moreover we have:

Theorem 9.2. ([26, Theorem 9.6])
(1) The following equations hold.
\[
K_\epsilon MAN^+ = \{g \in F_{4(-20)} \mid (gP^{-}|E_2) \neq 0\}
= \{g \in F_{4(-20)} \mid (gP^{-}|E_2) > 0\} = K_\epsilon AN^+.
\]

(2) $K_\epsilon \exp \left(-\tilde{A}_1^1(\frac{\pi}{2}) \right) MAN^+ = \{g \in F_{4(-20)} \mid (gP^{-}|E_2) = 0\}.$

(3) $F_{4(-20)} = K_\epsilon MAN^+ \coprod K_\epsilon \exp \left(-\tilde{A}_1^1(\frac{\pi}{2}) \right) MAN^+.$

Remark 9.3. Theorem 9.2(3) is a special case of [21, Theorems 3], so the decomposition in Theorem 9.2(3) is called a Matsuki decomposition of $F_{4(-20)}$.

REFERENCES

I. Yokota, Realizations of involutive automorphisms σ and G^σ, of exceptional linear Lie groups G, Part I, $G = G_2$, F_4, and E_6 Tsukuba J. Math. 14-1 (1990), 185–223.

I. Yokota, Groups and Topology, Shokabo, Tokyo, 1971. (Japanese)

Graduate school of Engineering, University of Fukui, Fukui-shi, 910-8507, Japan
E-mail address: nishio@quantum.apphy.u-fukui.ac.jp