Univalency of analytic functions associated with Schwarzian derivative

Mamoru Nunokawa, Neslihan Uyanik and Shigeyoshi Owa

The authors would like to dedicate this paper to the late Professor Shigeo Ozaki

1 Introduction

Let \mathcal{A} denote the class of functions f(z) of the form

(1.1)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$. For $f(z) \in \mathcal{A}$, the following differential operator

(1.2)
$$\{f(z), z\} = \left(\frac{f''(z)}{f'(z)}\right)' - \frac{1}{2} \left(\frac{f''(z)}{f'(z)}\right)^2 \\ = \frac{f'''(z)}{f'(z)} - \frac{3}{2} \left(\frac{f''(z)}{f'(z)}\right)^2$$

is said to be the Schwarzian derivative of f(z) or the Schwarzian differential operator of f(z). For the Schwarzian derivative of $f(z) \in \mathcal{A}$, the following results by Nehari [2] are well-known.

Theorem A If $f(z) \in A$ is univalent in U, then

(1.3)
$$|\{f(z), z\}| \leq \frac{6}{(1-|z|^2)^2} \quad (z \in \mathbb{U}).$$

The equality is attained by Koebe function f(z) given by

(1.4)
$$f(z) = \frac{z}{(1-z)^2}$$

and its rotation.

Theorem B If $f(z) \in \mathcal{A}$ satisfies

2010 Mathematics Subject Classification: Primary 30C45

Key Words and Phrases: Analytic function, Univalent function, Schwarzian derivative

(1.5)
$$|\{f(z), z\}| \leq \frac{2}{(1-|z|^2)^2} \quad (z \in \mathbb{U}),$$

then f(z) is univalent in U.

For Theorem B, Hille [1] has noticed that 2 in (1.5) is the best possible constant. Let us define the function g(z) by

(1.6)
$$g(z) = \frac{f'(x)(1-|x|^2)}{f\left(\frac{z+x}{1+\overline{x}z}\right) - f(x)}$$
$$= \frac{1}{z} + \overline{x} - \frac{1}{2}(1-|x|^2)\frac{f''(x)}{f'(x)} - \frac{1}{6}(1-|x|^2)^2 \left\{ \left(\frac{f''(x)}{f'(x)}\right)' - \frac{1}{2}\left(\frac{f''(x)}{f'(x)}\right)^2 \right\} z + \cdot$$
$$= \frac{1}{z} + h(z,x)$$

for $f(z) \in \mathcal{A}$ and some complex x such that |x| < 1, where

$$(1.7) \quad h(z,x) = \overline{x} - \frac{1}{2}(1 - |x|^2)\frac{f''(x)}{f'(x)} - \frac{1}{6}(1 - |x|^2)^2 \left\{ \left(\frac{f''(x)}{f'(x)}\right)' - \frac{1}{2}\left(\frac{f''(x)}{f'(x)}\right)^2 \right\} z + \cdots$$

Then, it is easy to see that g(z) is univalent in \mathbb{U} if and only if f(z) is univalent in \mathbb{U} . On the other hand, Ozaki and Nunokawa [3] have given the following result.

Theorem C If $f(z) \in A$ is univalent in U, then

(1.8)
$$|h'(0,x)| \leq \frac{(1-|x|^2)^2}{6} |\{f(x),x\}| \leq 1 \quad (|x|<1).$$

If $f(z) \in \mathcal{A}$ satisfies

(1.9)
$$|h'(0,x)| \leq \frac{1}{3}$$
 $(|x| < 1),$

then f(z) is univalent in U.

To discuss the univalency for our problem, we have to recall here the following result which is called Darboux theorem.

Lemma 1 Let \mathbb{E} be a domain covered by Jordan curve C and let w = f(z) be analytic in \mathbb{E} . If a point z moves on C in the positive direction, then w also moves on the Jordan curve $\Gamma = f(C)$ in the positive direction. Let Δ be the inside of the curve Γ . Then w = f(z)is univalent in \mathbb{E} and maps \mathbb{E} onto Δ conformally. **Proof** Let $w_0 \in \Delta$ and $\phi(z) = w - w_0 = f(z) - w_0$. Then $\phi(z)$ is analytic in $\mathbb{E}, \phi(z) \neq 0$ on C, and

(1.10)
$$\frac{1}{2\pi} \int_C d\arg\phi(z) = \frac{1}{2} \int_{\Gamma} d\arg(w - w_0).$$

From the argument theorem, the left hand side of (1.10) shows that the number of zeros of $\phi(z)$ in \mathbb{E} and the right hand side of (1.10) shows the argument momentum when w moves on Γ in the positive direction. Therefore, the right hand side of (1.10) should be just one. This shows us that $\phi(z) = f(z) - w_0$ has one zero in \mathbb{E} .

Let us put $w_0 = f(z_0)$. Then there exists only one point $z_0 \in \mathbb{E}$ for an arbitrary $w_0 \in \Delta$. This means that f(z) is univalent in \mathbb{E} .

For the case of $w_0 \notin \Delta$, we obtain that

(1.11)
$$\int_C d \arg(w - w_0) = 0,$$

which gives us that $\phi(z) = f(z) - w_0$ has no zero in \mathbb{E} . This completes the proof of the lemma.

We note that we owe the proof of Lemma 1 by Tsuji [4].

2 Univalency of functions associated with Schwarzian derivative

An application for Lemma 1 derives

Theorem 1 If $f(z) \in A$ satisfies

(2.1) $\operatorname{Re} h'(z,x) > \alpha \quad (z \in \mathbb{U})$

for some real α ($\alpha > 1$) and for all |x| < 1, then f(z) is univalent in U, where h(z,x) is given by (1.7).

Proof Let us put 0 < |z| < 1 and |x| < 1. Then, using g(z) and h(z, x) given by (1.7), we have that

(2.2)
$$g(z) - \frac{1}{z} = h(z, x)$$

is analytic in U. Note that f(z) is univalent in U if and only if g(z) is univalent in U. We know that

(2.3)
$$\left(g(z_2)-\frac{1}{z_2}\right)-\left(g(z_1)-\frac{1}{z_1}\right)=h(z_2,x)-h(z_1,x)=\int_{z_1}^{z_2}\left(\frac{dh(z,x)}{dz}\right)dz,$$

where the integral is taken on the line segment z_1z_2 such that $z_1 \neq z_2$ and $0 < |z_1| = |z_2| = r < 1$. Letting

$$z = z_1 + (z_2 - z_1)t$$
 $(0 \le t \le 1),$

we have that

(2.4)
$$\int_{z_1}^{z_2} \left(\frac{dh(z,x)}{dz}\right) dz = (z_2 - z_1) \int_0^1 \left(\frac{dh(z,x)}{dz}\right) dz.$$

Therefore, we obtain that

$$g(z_2) - g(z_1) + \frac{z_2 - z_1}{z_1 z_2} = (z_2 - z_1) \int_0^1 h'(z, x) dt$$

This gives us that

(2.5)
$$\frac{g(z_2) - g(z_1)}{z_2 - z_1} = \int_0^1 h'(z, x) dt - \frac{1}{z_1 z_2}$$
$$= \int_0^1 \left(h'(z, x) - \frac{1}{z_1 z_2} \right) dt.$$

If there exist two points z_1 and z_2 such that $z_1 \neq z_2$ and $|z_1| = |z_2| = r < 1$ for which $g(z_1) = g(z_2)$, then we have that

$$0 = \int_0^1 \operatorname{Re}\left(h'(z,x) - \frac{1}{z_1 z_2}\right) dt > \int_0^1 \left(\alpha - \frac{1}{|z_1 z_2|}\right) dt = \frac{\alpha r^2 - 1}{r^2}.$$

Therefore, letting $r \to 1^-$, we see that

$$\int_0^1 \operatorname{Re}\left(h'(z,x) - \frac{1}{z_1 z_2}\right) dt > 0.$$

This is the contradiction and shows that there exist no points z_1 and z_2 such that $z_1 \neq z_2$ and $g(z_1) = g(z_2)$ in U. Since g(z) is univalent in U, using Lemma 1, we conclude that f(z)is univalent in U.

References

- [1] E. Hille, Remarks on a paper by Zeev Nehari, Bull. Amer. Math. Soc. 55(1949), 552-553
- [2] Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55(1949), 545-552
- [3] S. Ozaki and M. Nunokawa, The Schwarzian derivative and univalent functions, Proc. Amer. Math. Soc. 33(1972), 392-393
- [4] M. Tsuji, Complex Functions Theory (Japanese), Maki Book Company, Tokyo, 1978

Mamoru Nunokawa

Emeritus Professor of University of Gunma Hoshikuki 798-8, Chuou-Ward, Chiba 260-0808, Japan E-mail : mamoru_nuno@doctor.nifty.jp

Neslihan Uyanik

Department of mathematics Kazim Karabekir Faculty of Education Atatürk University 25240 Erzurum, Turkey E-mail : nesuyan@yahoo.com

Shigeyoshi Owa

Department of Mathematics Kinki University Higashi-Osaka, Osaka 577-8502, Japan E-mail : owa@math.kindai.ac.jp