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Univalency of analytic functions associated
with Schwarzian derivative

Mamoru Nunokawa, Neslihan Uyanik and Shigeyoshi Owa

The authors would like to dedicate this paper to the late Professor Shigeo Ozaki

1 Introduction

Let A denote the class of functions f(z) of the form

(1.1) f(z)=2+ ianz"

n=2

which are analytic in the open unit disk U = {z € C : |z| < 1}. For f(z) € A, the following
differential operator

12) e = (58 1 (L9
_ ") 3 (_fﬁ)
f(z) 2\ f(2)

is said to be the Schwarzian derivative of f(z) or the Schwarzian differential operator of
f(z). For the Schwarzian derivative of f(z) € A, the following results by Nehari [2] are
well-known.

Theorem A If f(z) € A is univalent in U, then

(13) |{f(2), 2} < (—I:GTZ-I—)— (z € V).

The equality is attained by Koebe function f(z) given by
z
(1.4) f(z)= T

and its rotation.

Theorem B If f(2) € A satisfies
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(15) 1{f(2),2}] < (—1%217 (zeU),

then f(z) is univalent in U.

For Theorem B, Hille {1] has noticed that 2 in (1.5) is the best possible constant.
Let us define the function g(z) by

(1.6 ats) = 20
f(1+fz) — @
_l _ 2 f"(:z:) 1 22 f”(:l)) __]; ﬂ_(ﬂ ’
=-+7-3 Il)f,() 51 ”){(f(z)) 2(f’($)) }z+
=§+h(z,m)

for f(z) € A and some complex z such that |z| < 1, where

o=zt @ Ly e (F@Y 1@V,
(A7) hzz) =7 - 30~ HEE - 2a ||>{( @y (f,(z))}w

Then, it is easy to see that g(z) is univalent in U if and only if f(z) is univalent in U.
On the other hand, Ozaki and Nunokawa [3] have given the following result.

Theorem C If f(z) € A is univalent in U, then

(1.8) w9 s S ey <1 (el <),
If f(2) € A satisfies

(lz] < 1),

O =

(1.9) (0, 2)] <
then f(z) is univalent in U.

To discuss the univalency for our problem, we have to recall here the following result
which is called Darboux theorem.

Lemma 1 Let E be a domain covered by Jordan curve C and let w = f(z) be analytic
in E. If a point z moves on C in the positive direction, then w also moves on the Jordan
curve I' = f(C) in the positive direction. Let A be the inside of the curve . Then w = f(z)
s univalent in E and maps E onto A conformally.
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Proof Let wg € A and ¢(z) = w—wp = f(z) —wp. Then ¢(z) is analytic in E, ¢(z) # 0
on C, and

(1.10) %Ldargcﬁ(z) = %/rdarg(w ~ wp).

From the argument theorem, the left hand side of (1.10) shows that the number of zeros of
¢(z) in E and the right hand side of (1.10) shows the argument momentum when w moves
on I in the positive direction. Therefore, the right hand side of (1.10) should be just one.

This shows us that ¢(z) = f(2) — wp has one zero in E.
Let us put wp = f(z). Then there exists only one point z5 € E for an arbitrary wp € A.

This means that f(z) is univalent in E.
For the case of wp ¢ A, we obtain that

(1.11) /Cdarg(w —wp) =0,

which gives us that ¢(z) = f(z) — wp has no zero in E. This completes the proof of the
lemma.

We note that we owe the proof of Lemma 1 by Tsuji [4].

2 Univalency of functions associated
with Schwarzian derivative

An application for Lemma 1 derives

Theorem 1 If f(z) € A satisfies
(2.1) Reh'(z2,z) > (€ )

for some real a (a > 1) and for all |z| < 1, then f(z) is univalent in U, where h(z,z) is
given by (1.7).

Proof Let us put 0 < |z| < 1 and |z| < 1. Then, using g(z) and h(z,z) given by (1.7),
we have that

1
22) 9(z) ~ - = h(z,2)
is analytic in U. Note that f(z) is univalent in U if and only if g(z) is univalent in U. We
know that
1 1 % (dh(z,z
ey (s -2) - (st - 1) = o) - an) = [ (Fe) s
% 21 ” dz

where the integral is taken on the line segment z;2; such that z; # 2z and 0 < |2;| = |2z2| =
7 < 1. Letting
2=z +(z—2)t (0st<£),
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we have that

2.4) / (dh(z w)) — (a—2) / (dh(z :1:))

Therefore, we obtain that

9(22) — gln) + 2= = (5 — ) / W(z, z)dt.

This gives us that

9(z) — g(z1) / )
25 W(z,z)dt — ——
(2.5) P (z,2)dt — —
1
= % — — | dt.
/o ( () 2122)
If there exist two points 2; and 2, such that z, # 2, and |z;| = |22| = r < 1 for which

9(z1) = g(22), then we have that

1 2 i
/Re(h’(zx)_J_)dt>/ (a— 1 )dt________arz .
2122 0 |2122| r

Therefore, letting r — 1~, we see that

1
/ Re (h’(z, z)— ——1-—-) dt > 0.
) 2129

This is the contradiction and shows that there exist no points z; and z, such that 2, # 29
and g(z;) = g(z;) in U. Since g(z) is univalent in U, using Lemma 1, we conclude that f(z)
is univalent in U.
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