Notes on Nunokawa lemmas

Toshio Hayami, Hitoshi Shiraishi and Shigeyoshi Owa

Abstract

For analytic functions p(z) in the open unit disk \mathbb{U} with p(0)=1, Nunokawa has given two results which are called Nunokawa lemmas (Proc. Japan Acad. Ser. A Math. Sci. **68**(1992), 152–153; Proc. Japan Acad. Ser. A Math. Sci. **69**(1993), 234–237). But, since Nunokawa lemmas, nobody gives any examples for the lemmas. The object of the present paper is to consider some simple and interesting examples for Nunokawa lemmas.

1 Introduction

Let $\mathcal N$ denote the class of functions p(z) of the form

$$p(z) = 1 + \sum_{k=1}^{\infty} c_k z^k$$

which are analytic in the open unit disk $\mathbb{U}=\{z\in\mathbb{C}:|z|<1\}$. For functions $p(z)\in\mathcal{N}$, Nunokawa [3, 4] has shown the following lemmas.

Lemma 1 Let $p(z) \in \mathcal{N}$ and suppose that there exists a point $z_0 \in \mathbb{U}$ such that $\operatorname{Re}(p(z)) > 0$ $(|z| < |z_0|)$, $\operatorname{Re}(p(z_0)) = 0$ and $p(z_0) \neq 0$. Then, we have

$$\frac{z_0p'(z_0)}{p(z_0)}=ik$$

where k is real and $|k| \ge 1$.

Lemma 2 Let $p(z) \in \mathcal{N}$ with $p(z) \neq 0$ in \mathbb{U} and suppose that there exists a point $z_0 \in \mathbb{U}$ such that

$$|\arg(p(z))| < \frac{\pi \alpha}{2}$$
 for $|z| < |z_0|$

and

$$|\arg(p(z_0))| = \frac{\pi\alpha}{2}$$

where $\alpha > 0$. Then we have

$$\frac{z_0 p'(z_0)}{p(z_0)} = ik\alpha$$

where

2010 Mathematics Subject Classification: Primary 30C45.

Keywords and Phrases: Analytic function, Nunokawa lemma, Carathéodory function.

$$k \geqq rac{1}{2} \left(a + rac{1}{a}
ight) \qquad when \quad rg(p(z_0)) = rac{\pi lpha}{2}$$

and

$$k \le -\frac{1}{2}\left(a + \frac{1}{a}\right)$$
 when $\arg(p(z_0)) = -\frac{\pi\alpha}{2}$

where

$$p(z_0)^{\frac{1}{\alpha}} = \pm ia$$
 with $a > 0$.

The above lemmas have been called Nunokawa lemmas and applied to obtain a number of interesting results by many mathematicians (see, for example, [1], [5]). But, nobody enumerated concrete functions satisfying these lemmas. In this article, we obtain the simple and interesting examples of Lemma 1 and Lemma 2, respectively.

2 Examples of Lemma 1

At first, we consider the example for Lemma 1.

Example 1 Let us consider the function p(z) defined by

$$p(z) = 1 + \frac{z}{1 + iz}.$$

Then, it follows that $p(z) \in \mathcal{N}$, $\text{Re}(p(z)) > 0 \ (|z| < |z_0|)$, $\text{Re}(p(z_0)) = 0$ and $p(z_0) \neq 0$ for a point $z_0 = \frac{-2(1-2i)}{5+\sqrt{5}} \in \mathbb{U}\left(|z_0| = \frac{\sqrt{5}-1}{2} < 1\right)$. Furthermore, we know that

$$\frac{z_0 p'(z_0)}{p(z_0)} = \frac{5 + \sqrt{5}}{2}i \equiv ik$$

and

$$k = \frac{5 + \sqrt{5}}{2} = 3.618033 \dots \ge 1.$$

Thus, p(z) is the function satisfying Lemma 1. Indeed, p(z) maps the circular domain $\{z : |z| < |z_0|\}$ onto the following.

We next discuss an example of Lemma 1 for the case that p(z) maps the circular domain $\{z: |z| \leq |z_0|\}$ onto the domain which touches the imaginary axis with two points.

Example 2 Let the function p(z) be given by

$$p(z) = 1 + m\left(z + \frac{1}{2}z^2\right) \qquad \left(\frac{4}{3} < m < \frac{8}{3}\right).$$

For $z = re^{i\theta}$ $(0 < r < 1, \ \theta \in \mathbb{R})$, we have that

$$Re(p(re^{i\theta})) = 1 + mr\cos\theta + \frac{1}{2}mr^2\cos 2\theta$$
$$= mr^2\cos^2\theta + mr\cos\theta + 1 - \frac{1}{2}mr^2.$$

Setting $F(t) \equiv mr^2t^2 + mrt + 1 - \frac{1}{2}mr^2$ $(-1 \le t = \cos\theta \le 1)$ and m is positive, we know that

$$F'(t_0) = mr(2rt_0 + 1) = 0$$
 for $t_0 = -\frac{1}{2r} < 0$.

(i) For $0 < r \le \frac{1}{2}$ (i.e. $t_0 \le -1$), since $F'(t) \ge 0$ in [-1, 1],

$$F(t) \ge F(-1) = \frac{1}{2}mr^2 - mr + 1 = 0$$

for $r = \frac{m - \sqrt{m(m-2)}}{m} \le \frac{1}{2}$. It follows from $m(m-2) \ge 0$ and $r \le \frac{1}{2}$ that $m \ge \frac{8}{3}$. Then, we obtain that $p(z_0) = 0$ for $z_0 = -\frac{m - \sqrt{m(m-2)}}{m}$. This is unsuitable for the example of the lemma.

(ii) For $\frac{1}{2} < r < 1$ (i.e. $-1 < t_0 < 0$), we derive that

$$F(t) \ge F(t_0) = -\frac{1}{2}mr^2 + 1 - \frac{1}{4}m$$

and $F(t_0) = 0$ for $r = \sqrt{\frac{4-m}{2m}} \left(t_0 = -\sqrt{\frac{m}{2(4-m)}} \right)$. Noting that $\frac{1}{2} < r = \sqrt{\frac{4-m}{2m}} < 1$, we see that $\frac{4}{3} < m < \frac{8}{3}$. Therefore, it follows that $\text{Re}(p(z_0)) = 0$ $(p(z_0) \neq 0)$ and

$$\operatorname{Re}(p(z)) > 0$$
 $\left(|z| < |z_0| = \sqrt{\frac{4-m}{2m}}\right)$

for $z_0 = -\frac{1}{2} \pm \frac{1}{2} \sqrt{\frac{8-3m}{m}}i$. Furthermore, simple computations give us that

$$p(z_0) = \pm rac{\sqrt{m(8-3m)}}{4}i$$

and

$$z_0p'(z_0) = mz_0(1+z_0) = -\frac{4-m}{2},$$

that is, that

$$\frac{z_0 p'(z_0)}{p(z_0)} = \pm \frac{2(4-m)}{\sqrt{m(8-3m)}} i \equiv ik^{\pm} \qquad \left(\left| k^{\pm} \right| = \frac{2(4-m)}{\sqrt{m(8-3m)}} \ge 1 \right).$$

This means that p(z) is an example of Lemma 1. Indeed, taking m=2, we have $p(z)=1+2z+z^2$ which satisfies

$$p(z_0) = \pm \frac{1}{2}i \neq 0$$
 (Re $(p(z_0)) = 0$),

$$\operatorname{Re}(p(z)) > 0$$
 $\left(|z| < |z_0| = \frac{1}{\sqrt{2}} \right)$

and

$$\frac{z_0 p'(z_0)}{p(z_0)} = \pm 2i \qquad (|k| = 2 \ge 1)$$

for
$$z_0 = -\frac{1}{2} \pm \frac{1}{2}i$$
.

3 Examples of Lemma 2

In this section, we consider a function p(z) satisfying Lemma 2 for every α (0 < α < 1).

Example 3 A function

$$(3.1) p(z) = \frac{1+z}{1-z}$$

is an example of Lemma 2 for every α (0 < α < 1). Since p(z) satisfies

$$\left| p(z) - \frac{1+r^2}{1-r^2} \right| = \frac{2r}{1-r^2} \qquad (|z| = r < 1)$$

which shows that p(z) maps the circle $\{z : |z| = r\}$ onto the circle of center $\frac{1+r^2}{1-r^2}$ and radius $\frac{2r}{1-r^2}$, we know that

$$\operatorname{Re}(p(z)) > 0$$
 $(z \in \mathbb{U})$

as $r \to 1^-$ and therefore, $p(z) \neq 0$ in \mathbb{U} . Let θ be the angle between the real axis and the tangent line of the above circle passing through the origin, and let $p(z_0)$ be the point of contact. Then, we establish

$$\theta = \pm \sin^{-1}\left(\frac{2r}{1+r^2}\right) \qquad \left(|\theta| = \sin^{-1}\left(\frac{2r}{1+r^2}\right) \equiv \frac{\pi\alpha}{2}\right)$$

and

$$|p(z_0)| = \sqrt{\left(\frac{1+r^2}{1-r^2}\right)^2 - \left(\frac{2r}{1-r^2}\right)^2} = 1$$

for all r (0 < r < 1). Namely, $p(z_0)$ can be written by

$$p(z_0) = e^{i\theta} \qquad \left(|\theta| < \frac{\pi}{2} \right).$$

Thus, every point $p(z_0)$ is on the right-side of the unit circle.

Since

$$p(z_0) = \frac{1+z_0}{1-z_0} = e^{i\theta}$$
 $\left(\theta = \frac{\pi\alpha}{2} \text{ or } \theta = -\frac{\pi\alpha}{2}\right)$

for some α (0 < α < 1), we obtain that

$$z_0 = rac{-1 + e^{i heta}}{1 + e^{i heta}} = rac{1 - \cos heta}{\sin heta} i \quad ext{and} \quad |z_0| = rac{1 - \cos heta}{|\sin heta|}.$$

Furthermore, we also derive that

$$rac{z_0 p'(z_0)}{p(z_0)} = i \sin heta \equiv i k lpha \qquad \left(k = rac{\pi \sin heta}{2| heta|}
ight)$$

and

$$p(z_0)^{\frac{1}{\alpha}} = e^{i\frac{\pi}{2} \cdot \frac{\theta}{|\theta|}} = \pm i \equiv \pm ia$$
 $(a=1).$

Then, it follows that

$$k = \frac{\pi \sin \theta}{2|\theta|} \ge 1 = \frac{1}{2} \left(a + \frac{1}{a} \right) \qquad \left(0 < \theta < \frac{\pi}{2} \right)$$

$$k = \frac{\pi \sin \theta}{2|\theta|} \le -1 = -\frac{1}{2} \left(a + \frac{1}{a} \right) \qquad \left(-\frac{\pi}{2} < \theta < 0 \right).$$

Therefore, p(z) satisfies Lemma 2. Putting $\alpha = \frac{1}{3}$, we see that

$$\theta = \pm \frac{\pi}{6} = \arg(p(z_0^{\pm})), \quad p(z_0^{\pm}) = \frac{\sqrt{3} \pm i}{2}, \quad z_0^{\pm} = \pm (2 - \sqrt{3})i$$

and

$$\frac{z_0^{\pm}p'(z_0^{\pm})}{p(z_0^{\pm})} = i\left(\pm\frac{3}{2}\right)\frac{1}{3} \equiv ik^{\pm}\alpha \qquad \text{(double sign corresponds)}$$

$$\left(k^{+} = \frac{3}{2} \left(\arg(p(z_{0}^{+})) = \frac{\pi}{6}\right), \quad k^{-} = -\frac{3}{2} \left(\arg(p(z_{0}^{-})) = -\frac{\pi}{6}\right)\right).$$

Finally, we note that

$$p(z_0^{\pm})^{\frac{1}{\alpha}} = \pm i \equiv \pm ia$$
 $(a=1),$

$$k^{+} = \frac{3}{2} \ge 1 = \frac{1}{2} \left(a + \frac{1}{a} \right)$$

and

$$k^{-} = -\frac{3}{2} \le -1 = -\frac{1}{2} \left(a + \frac{1}{a} \right).$$

4 Appendix

For some real parameters A and B $(-1 \le B < A \le 1)$, we introduce the following function

$$(4.1) p(z) = \frac{1 + Az}{1 + Bz}$$

which is analytic and univalent in \mathbb{U} . This function p(z) has been studied by Janowski [2] as the generalization function of (3.1) and therefore, it is said to be the Janowski function. The Janowski function p(z) given by (4.1) satisfies the following equation

$$\left| p(z) - \frac{1 - ABr^2}{1 - B^2r^2} \right| = \frac{(A - B)r}{1 - B^2r^2} \qquad (|z| = r < 1)$$

which implies that p(z) maps the circle $\{z: |z| = r\}$ onto the circle of center $\frac{1 - ABr^2}{1 - B^2r^2}$ and radius $\frac{(A - B)r}{1 - B^2r^2}$ and

$$\operatorname{Re}(p(z)) > \frac{1-A}{1-B} \ge 0 \qquad (z \in \mathbb{U}).$$

Thus, we discuss the same things of Example 3 in this section. We first consider the case that $A \neq 0$ and $B \neq 0$.

Let θ be the angle between the real axis and the tangent line of the circle passing through the origin, and let $p(z_0)$ be the point of contact. Then, we see that

$$\theta = \pm \sin^{-1}\left(\frac{(A-B)r}{1-ABr^2}\right) \qquad \left(0 < |\theta| \equiv \frac{\pi\alpha}{2} < \frac{\pi}{2}\right)$$

which leads us that

$$r = \frac{-(A-B) + \sqrt{(A-B)^2 + 4AB\sin^2\theta}}{2AB|\sin\theta|}$$

where r is positive whether or not AB is positive. Furthermore, it follows that

$$p(z_0) = \frac{1 + Az_0}{1 + Bz_0} = \sqrt{\frac{1 - A^2r^2}{1 - B^2r^2}} e^{i\theta} \equiv Ce^{i\theta} \qquad \left(z_0 = \frac{-1 + Ce^{i\theta}}{A - BCe^{i\theta}}\right).$$

We next need the description of C without r, so that

$$C^{2} = \frac{A^{2}}{B^{2}} \cdot \frac{-2B\sin^{2}\theta - (A - B) + \sqrt{(A - B)^{2} + 4AB\sin^{2}\theta}}{2A\sin^{2}\theta - (A - B) + \sqrt{(A - B)^{2} + 4AB\sin^{2}\theta}}$$

$$= \frac{A^2}{B^2} \cdot \frac{-2B\sin^2\theta - (A-B) + \sqrt{(A-B)^2 + 4AB\sin^2\theta}}{2A\sin^2\theta - (A-B) + \sqrt{(A-B)^2 + 4AB\sin^2\theta}}$$

$$\frac{2A\sin^{2}\theta - (A - B) - \sqrt{(A - B)^{2} + 4AB\sin^{2}\theta}}{2A\sin^{2}\theta - (A - B) - \sqrt{(A - B)^{2} + 4AB\sin^{2}\theta}}$$

$$= \left(\frac{(A+B) - \sqrt{(A-B)^2 + 4AB\sin^2\theta}}{2B\cos\theta}\right)^2$$

which equivalent to

$$C = \frac{\left| (A+B) - \sqrt{(A-B)^2 + 4AB\sin^2\theta} \right|}{2|B|\cos\theta}$$

If $A + B \leq 0$, then

$$\left| (A+B) - \sqrt{(A-B)^2 + 4AB\sin^2\theta} \right| = -(A+B) + \sqrt{(A-B)^2 + 4AB\sin^2\theta}.$$

Conversely, because if A + B > 0, then

$$(A+B)^{2} - \{(A-B)^{2} + 4AB\sin^{2}\theta\} = 4AB\cos^{2}\theta,$$

we can deduce that

$$(A+B) - \sqrt{(A-B)^2 + 4AB\sin^2\theta} > 0$$
 $(AB > 0)$

and

$$-(A+B) + \sqrt{(A-B)^2 + 4AB\sin^2\theta} > 0 \qquad (AB < 0).$$

Although we have to consider three cases (i) 0 < B < A, (ii) B < 0 < A, (iii) B < A < 0, by virtue of the above facts, we obtain that

$$C = \frac{(A+B) - \sqrt{(A-B)^2 + 4AB\sin^2\theta}}{2B\cos\theta}$$

in any case. We also derive that

$$\frac{z_0 p'(z_0)}{p(z_0)} = \frac{(A-B)z_0}{(1+Az_0)(1+Bz_0)} = \frac{(-e^{-i\theta}+C)(A-BCe^{i\theta})}{(A-B)C}$$

and put $D \equiv (-e^{-i\theta} + C)(A - BCe^{i\theta})$. Then, we have that

$$Re(D) = -A\cos\theta + (A+B)C - BC^2\cos\theta$$

$$= -A\cos\theta + \frac{(A+B)^2 - (A+B)\sqrt{(A-B)^2 + 4AB\sin^2\theta}}{2B\cos\theta}$$

$$-\frac{(A+B)^2 + (A-B)^2 + 4AB\sin^2\theta - 2(A+B)\sqrt{(A-B)^2 + 4AB\sin^2\theta}}{4B\cos\theta} = 0$$

and

$$Im(D) = (A - BC^{2})\sin\theta = \frac{4AB\cos^{2}\theta - (A + B)^{2} + (A + B)\sqrt{(A - B)^{2} + 4AB\sin^{2}\theta}}{2B\cos^{2}\theta}\sin\theta.$$

Since
$$(A-B)C = \frac{(A-B)\left\{(A+B) - \sqrt{(A-B)^2 + 4AB\sin^2\theta}\right\}}{2B\cos\theta}$$
,

$$\frac{z_0 p'(z_0)}{p(z_0)} = i \left(\frac{4AB\cos^2\theta - (A+B)^2 + (A+B)\sqrt{(A-B)^2 + 4AB\sin^2\theta}}{(A-B)\left\{ (A+B) - \sqrt{(A-B)^2 + 4AB\sin^2\theta} \right\}} \tan\theta \right) \equiv ik\alpha$$

$$\left(k = \frac{\pi}{2|\theta|} \cdot \frac{4AB\cos^2\theta - (A+B)^2 + (A+B)\sqrt{(A-B)^2 + 4AB\sin^2\theta}}{(A-B)\left\{(A+B) - \sqrt{(A-B)^2 + 4AB\sin^2\theta}\right\}} \tan\theta\right).$$

Finally, we know that

$$p(z_0)^{\frac{1}{\alpha}} = \pm iC^{\frac{1}{\alpha}} \equiv \pm ia$$

and consequently

$$a = C^{\frac{1}{\alpha}} = \left(\frac{(A+B) - \sqrt{(A-B)^2 + 4AB\sin^2\theta}}{2B\cos\theta}\right)^{\frac{\pi}{2|\theta|}} > 0.$$

Now, it is clear that p(z) satisfies the conditions of Lemma 2. Thus, we expect that

$$k \ge \frac{1}{2} \left(a + \frac{1}{a} \right) \qquad \left(0 < \theta < \frac{\pi}{2} \right)$$

and

$$k \le -\frac{1}{2} \left(a + \frac{1}{a} \right) \qquad \left(-\frac{\pi}{2} < \theta < 0 \right).$$

But it is hard that we check it by the manual calculation for the general case.

In the same manner, we derive that

$$rac{z_0 p'(z_0)}{p(z_0)} = i an heta \equiv i k lpha \qquad \left(k = rac{\pi}{2| heta|} an heta
ight)$$

and

$$p(z_0)^{\frac{1}{\alpha}} = \pm i(\cos\theta)^{\frac{\pi}{2|\theta|}} \equiv \pm ia$$
 $\left(a = (\cos\theta)^{\frac{\pi}{2|\theta|}}\right)$

for the case B = 0 (0 < $A \leq 1$), and

$$rac{z_0 p'(z_0)}{p(z_0)} = i an heta \equiv i k lpha \qquad \left(k = rac{\pi}{2| heta|} an heta
ight)$$

$$p(z_0)^{\frac{1}{\alpha}} = \pm i(\cos\theta)^{-\frac{\pi}{2|\theta|}} \equiv \pm ia$$
 $\left(a = (\cos\theta)^{-\frac{\pi}{2|\theta|}}\right)$

for the case A=0 $(-1 \le B < 0)$. For these case, we can prove that

$$k \ge \frac{1}{2} \left(a + \frac{1}{a} \right) \qquad \left(0 < \theta < \frac{\pi}{2} \right)$$

and

$$k \le -\frac{1}{2}\left(a + \frac{1}{a}\right) \qquad \left(-\frac{\pi}{2} < \theta < 0\right).$$

by using Mathematica.

For the particular case B = -A (0 < $A \le 1$), we readily arrive at the same result of Example 3.

References

- [1] N. E. Cho, I. H. Kim and J. A Kim, Angular estimations of certain integral operators, Int. J. Math. Sci. 21(1998), 369-374.
- [2] W. Janowski, Extremal problem for a family of functions with positive real part and for some related families, Ann. Polon. Math. 23(1970), 159-177.
- [3] M. Nunokawa, On properties of Non-Carathéodory functions, Proc. Japan Acad. Ser. A Math. Sci. 68(1992), 152–153.
- [4] M. Nunokawa, On the order of strongly starlikeness of strongly convex functions, Proc. Japan Acad. Ser. A Math. Sci. **69**(1993), 234–237.
- [5] S. Owa, O. S. Kwon and N. E. Cho, Some inequalities involving meromorphically multivalent functions, J. Math. Anal. Appl. 212(1997), 375–380.

Toshio Hayami
School of Science and Technology
Kwansei Gakuin University
Sanda, Hyogo 669-1337
Japan

 $E\text{-}mail:\ ha_ya_to112@hotmail.com$

Hitoshi Shiraishi, Shigeyoshi Owa
Department of Mathematics
Kinki University
Higashi-Osaka, Osaka 577-8502
Japan
E-mail: shiraishi@math.kindai.ac.jp
owa@math.kindai.ac.jp