Some Distortion Theorems for Starlike Log-Harmonic Functions

Emel YAVUZ DUMAN

Abstract

In this paper, we consider univalent log-harmonic mappings of the form $f(z) = zh(z)\overline{g(z)}$ defined on the unit disk $\mathbb D$ which are starlike. Some distortion theorems are obtained.

1 Introduction

Let $\mathcal{H}(\mathbb{D})$ be the linear space of all analytic functions defined on the open unit disc $\mathbb{D} = \{z \in \mathbb{C} | |z| < 1\}$. A log-harmonic mapping is a solution of the non-linear elliptic partial differential equation

$$\overline{f_{\bar{z}}} = w f_z \left(\frac{\overline{f}}{f}\right), \tag{1.1}$$

where the second dilatation function $w \in \mathcal{H}(\mathbb{D})$ is such that |w(z)| < 1 for all $z \in \mathbb{D}$. It has been shown that if f is non-vanishing log-harmonic mapping in \mathbb{D} , then f can be expressed as

$$f(z) = h(z)\overline{g(z)},\tag{1.2}$$

where h(z) and g(z) are analytic in \mathbb{D} with the normalization $h(0) \neq 0$, g(0) = 1. On the other hand if f vanishes at z = 0, but not identically zero then f admits the following representation

$$f(z) = z|z|^{2\beta}h(z)\overline{g(z)}, \tag{1.3}$$

Key words and phrases: Starlike functions, starlike log-harmonic mappings, two point distortion theorem, distortion theorem.

²⁰⁰⁰ Mathematics Subject Classification: 30C45, 30C55.

where $\text{Re}\beta > -1/2$, h(z) and g(z) are analytic in \mathbb{D} with the normalization $h(0) \neq 0$, g(0) = 1 ([4]). We also note that univalent log-harmonic mappings have been studied extensively in [1], [2], [3], [4], [5], [6] and the class of all univalent log-harmonic mappings is denoted by \mathcal{S}_{LH} .

The Jacobian of a logharmonic function of the form $f(z) = zh(z)\overline{g(z)}$ is defined by

$$J_f(z) = |f(z)|^2 \left(\left| rac{1}{z} + rac{h'(z)}{h(z)}
ight|^2 - \left| rac{g'(z)}{g(z)}
ight|^2
ight) = |f_z(z)|^2 - |f_{ar{z}}(z)|^2.$$

for all z in \mathbb{D} .

Let $f(z) = zh(z)\overline{g(z)}$ be a univalent log-harmonic mapping. We say that f is a starlike log-harmonic mapping if

$$\frac{\partial}{\partial \theta}(\arg f(re^{i\theta})) = \operatorname{Re}\left(\frac{zf_z - \bar{z}f_{\bar{z}}}{f}\right) > 0 \tag{1.4}$$

for every $z \in \mathbb{D}$. The class of all starlike log-harmonic mappings is denoted by \mathcal{S}_{LH}^* ([3]).

Let Ω be the family of functions $\phi(z)$ which are analytic in \mathbb{D} and satisfying the conditions $\phi(0) = 0$, $|\phi(z)| < 1$ for all $z \in \mathbb{D}$, and let $s_1(z) = z + a_2 z^2 + \cdots$, $s_2(z) = z + b_2 z^2 + \cdots$ be analytic functions in \mathbb{D} . We say that $s_1(z)$ is subordinate to $s_2(z)$ if there exist $\phi(z) \in \Omega$ such that $s_1(z) = s_2(\phi(z))$ and it is denoted by $s_1(z) \prec s_2(z)$.

Let $\varphi(z)$ be analytic function in \mathbb{D} with the normalization $\varphi(0) = 0$, $\varphi'(0) = 1$. If $\varphi(z)$ satisfies the condition

$$\operatorname{Re}\left(z\frac{\varphi'(z)}{\varphi(z)}\right) > 0\tag{1.5}$$

for every $z \in \mathbb{D}$, then $\varphi(z)$ is called starlike function. The class of all starlike functions is denoted by \mathcal{S}^* .

In our proofs we need following theorems.

Theorem 1.1. [7] Let $\varphi(z)$ be an element of S^* , then

$$\frac{1-r}{1+r} \le \left| z \frac{\varphi'(z)}{\varphi(z)} \right| \le \frac{1+r}{1-r} \quad (|z|=r<1). \tag{1.6}$$

Theorem 1.2. [3] $f(z) = zh(z)\overline{g(z)}$ be a log-harmonic function on \mathbb{D} , $0 \notin hg(\mathbb{D})$. Then $f \in \mathcal{S}_{LH}^*$ if and only if $\varphi(z) = \left(z\frac{h(z)}{g(z)}\right) \in \mathcal{S}^*$.

Theorem 1.3. [3] Let $f(z) = zh(z)\overline{g(z)} \in \mathcal{S}_{LH}^*$, with w(0) = 0. Then we have

$$re^{-\frac{4r}{1+r}} \le |f(z)| \le re^{\frac{4r}{1-r}}$$
 (1.7)

for all |z| = r < 1. The equalities occur if and only if $f(z) = \overline{\zeta} f_0(\zeta z)$, $|\zeta| = 1$, where

$$f_0(z) = z \left(\frac{1-\bar{z}}{1-z}\right) e^{Re\frac{4z}{1-z}}.$$

2 Main Results

Lemma 2.1. Let $f(z) = zh(z)\overline{g(z)}$ be an element of \mathcal{S}_{LH}^* , then

$$\frac{\varphi'(z)/\varphi(z)}{f_z/f} \prec 1 - z \quad and \quad \frac{\overline{f_z}/\overline{f}}{\varphi'(z)/\varphi(z)} \prec \frac{z}{1-z}$$
 (2.1)

where $\varphi(z) = z \frac{h(z)}{g(z)} \in \mathcal{S}^*$ for all $z \in \mathbb{D}$.

Proof. Since $f(z) = zh(z)\overline{g(z)}$ is the solution of the non-linear elliptic partial differential equation

$$\overline{f_{ar{z}}} = w(z) f_z \left(rac{\overline{f}}{f}
ight),$$

then we have

$$w(z) = \frac{\overline{f_{\bar{z}}}/\overline{f}}{f_z/f} = \frac{z\frac{g'(z)}{g(z)}}{1 + z\frac{h'(z)}{h(z)}}.$$

Therefore we have w(0) = 0. This shows that the second dilatation function satisfies the conditions of Schwarz Lemma and

$$1 - w(z) = \frac{\varphi'(z)/\varphi(z)}{f_z/f}, \quad \frac{w(z)}{1 - w(z)} = \frac{\overline{f_{\bar{z}}}/\overline{f}}{\varphi'(z)/\varphi(z)}.$$
 (2.2)

Using the subordination principle, the equalities (2.2) can be written in the following form

$$\frac{\varphi'(z)/\varphi(z)}{f_z/f} \prec 1-z \text{ and } \frac{\overline{f_{\overline{z}}}/\overline{f}}{\varphi'(z)/\varphi(z)} \prec \frac{z}{1-z}.$$

Theorem 2.2. Let $f(z) = zh(z)\overline{g(z)} \in \mathcal{S}_{LH}^*$, then

$$e^{-\frac{4r}{1+r}} \frac{1-r}{(1+r)^2} \le |f_z| \le e^{\frac{4r}{1-r}} \frac{1+r}{(1-r)^2},$$
 (2.3)

$$0 \le |f_{\bar{z}}| \le e^{\frac{4r}{1-r}} \frac{r(1+r)}{(1-r)^2} \tag{2.4}$$

for all |z| = r < 1.

Proof. Since the transformations $w_1(z) = 1 - z$ and $w_2(z) = \frac{z}{1-z}$ map |z| = r onto the discs with the centers $C_1(r) = (1,0)$, $C_2(r) = \left(\frac{r^2}{1-r^2},0\right)$ and radius $\rho_1(r) = r$, $\rho_2(r) = \frac{r}{1-r^2}$ respectively. Using Lemma 2.1 and subordination principle then we can write

$$\left|\frac{\varphi'(z)/\varphi(z)}{f_z/f} - 1\right| \le r \text{ and } \left|\frac{\overline{f_{\bar{z}}}/\overline{f}}{\varphi'(z)/\varphi(z)} - \frac{r^2}{1 - r^2}\right| \le \frac{r}{1 - r^2}.$$
 (2.5)

Using Theorem 1.1, Theorem 1.2, Theorem 1.3 and inequalities (2.5) and after the straightforward calculations we obtain (2.3) and (2.4).

As a consequence of Theorem 2.2 we have the following corollary:

Corollary 2.3. Let $f(z) = zh(z)\overline{g(z)}$ be element of S_{LH}^* , then

$$e^{-rac{8r}{1+r}}rac{(1-r)^2}{(1+r)^4}-e^{rac{8r^2}{1-r^2}}rac{r}{(1-r^2)}\leq J_f(z)\leq e^{rac{8r}{1-r}}rac{(1+r)^3}{(1-r)^4}.$$

for all |z|=r<1.

Theorem 2.4. Let $f(z) = zh(z)\overline{g(z)}$ be an element of \mathcal{S}_{LH}^* , then

$$|h(z)| \le e^{\frac{2}{1-r}} \frac{1}{1-r},$$
 (2.6)

$$|g(z)| \le (1-r)e^{\frac{2}{1-r}},$$
 (2.7)

for all |z| = r < 1.

Proof. Using standart inequalities for complex numbers, we can write

$$\operatorname{Re}\left(\frac{zf_z}{f}\right) \le \left|\frac{zf_z}{f}\right|$$
 (2.8)

and

$$\operatorname{Re}\left(\frac{\overline{z}f_{\overline{z}}}{f}\right) \le \left|\frac{\overline{z}f_{\overline{z}}}{f}\right| \tag{2.9}$$

for all $z \in \mathbb{D}$. On the other hand,

$$\operatorname{Re}\left(\frac{zf_z}{f}\right) = \operatorname{Re}\left(1 + z\frac{h'(z)}{h(z)}\right) = 1 + \operatorname{Re}\left(z\frac{h'(z)}{h(z)}\right) = 1 + r\frac{\partial}{\partial r}\log|h(z)|$$
(2.10)

and

$$\operatorname{Re}\left(\frac{\overline{z}f_{\overline{z}}}{f}\right) = \operatorname{Re}\left(\overline{z}\frac{\overline{g'(z)}}{\overline{g(z)}}\right) = \operatorname{Re}\left(z\frac{g'(z)}{g(z)}\right) = r\frac{\partial}{\partial r}\log|g(z)| \tag{2.11}$$

for all $z \in \mathbb{D}$.

Using Theorem 2.2 and the inequalities (2.8), (2.9), (2.10) and (2.11), we find

$$\frac{\partial}{\partial r}\log|h(z)| \le \frac{1+r}{r(1-r)^2} - \frac{1}{r} \tag{2.12}$$

and

$$\frac{\partial}{\partial r} \log |g(z)| \le \frac{1+r}{r(1-r)^2}.$$
 (2.13)

Integrating from zero to r we obtain (2.6) and (2.7).

Theorem 2.5. If $f(z) = zh(z)\overline{g(z)}$ is in S_{LH}^* and a is in \mathbb{D} , then

$$\varphi_*(z) = \frac{zg(a)h\left(\frac{z+a}{1+\bar{a}z}\right)}{h(a)(1+\bar{a}z)^2g\left(\frac{z+a}{1+\bar{a}z}\right)} \quad (z \in \mathbb{D})$$

is likewise in S^* .

Proof. For ρ real, $0 < \rho < 1$, let

$$\varphi_{\rho}(z) = \frac{zg(\rho a)h\left(\rho\left(\frac{z+a}{1+\bar{a}z}\right)\right)}{h(\rho a)(1+\bar{a}z)^2g\left(\rho\left(\frac{z+a}{1+\bar{a}z}\right)\right)} \quad (z \in \mathbb{D}),$$

then

$$z\frac{\varphi_{\rho}'(z)}{\varphi_{\rho}(z)} = \frac{1 - \bar{a}z}{1 + \bar{a}z} + (1 - |a|^2) \frac{z}{(1 + \bar{a}z)(z + a)} \cdot \left[\rho \left(\frac{z + a}{1 + \bar{a}z} \right) \frac{h'\left(\rho\left(\frac{z + a}{1 + \bar{a}z}\right)\right)}{h\left(\rho\left(\frac{z + a}{1 + \bar{a}z}\right)\right)} - \rho \left(\frac{z + a}{1 + \bar{a}z} \right) \frac{g'\left(\rho\left(\frac{z + a}{1 + \bar{a}z}\right)\right)}{g\left(\rho\left(\frac{z + a}{1 + \bar{a}z}\right)\right)} \right].$$

$$(2.14)$$

Letting $z=e^{i\theta},\ a=|a|e^{i\phi}$ and $\nu=\rho\left(\frac{e^{i\theta}+a}{1+\bar{a}e^{i\theta}}\right)$ and after the simple calculations we get

$$z\frac{\varphi_{\rho}'(z)}{\varphi_{\rho}(z)} = \frac{1 - |a|^2}{|1 + ae^{-i\theta}|^2} \left(1 + \nu \frac{h'(\nu)}{h(\nu)} - \nu \frac{g'(\nu)}{g(\nu)}\right) + i \frac{2|a|\sin(\phi - \theta)}{|1 + ae^{-i\theta}|^2}.$$

Therefore for |z| = 1, we have

$$\operatorname{Re}\left(z\frac{\varphi_{\rho}'(z)}{\varphi_{\rho}(z)}\right) = \frac{1 - |a|^{2}}{|1 + ae^{-i\theta}|^{2}}\operatorname{Re}\left(1 + \nu\frac{h'(\nu)}{h(\nu)} - \nu\frac{g'(\nu)}{g(\nu)}\right)$$

$$= \frac{1 - |a|^{2}}{|1 + ae^{-i\theta}|^{2}}\operatorname{Re}\left(\frac{\nu f_{\nu} - \overline{\nu} f_{\overline{\nu}}}{f}\right) > 0$$
(2.15)

and we conclude that $\varphi_{\rho}(z)$ is in \mathcal{S}^* for admissible ρ . From the compactness of \mathcal{S}^* and (2.15) we infer that $\varphi_*(z) = \lim_{\rho \to 1} \varphi_{\rho}(z)$ is in \mathcal{S}^* .

We also note that if we take a = v, $u = \frac{z+a}{1+\bar{a}z} = \frac{z+v}{1+\bar{v}z} \Leftrightarrow z = \frac{u-v}{1-\bar{v}u}$ and using Theorem 2.5 and after simple calculations we obtain the following two point distortion inequalities.

Corollary 2.6. Let $f(z) = zh(z)\overline{g(z)}$ be an element of S_{LH}^* , then

$$e^{\frac{-4|u-v|}{|1-\bar{v}u|+|u-v|}} \frac{|1-\bar{v}u|(|1-\bar{v}u|-|u-v|)}{(|1-\bar{v}u|+|u-v|)^2} \le |f_z|$$

$$\le e^{\frac{4|u-v|}{|1-\bar{v}u|-|u-v|}} \frac{|1-\bar{v}u|(|1-\bar{v}u|+|u-v|)}{(|1-\bar{v}u|-|u-v|)^2},$$

and

$$0 \leq |f_{\bar{z}}| \leq e^{\frac{4|u-v|}{|1-\bar{v}u|-|u-v|}} \frac{|u-v|(|1-\bar{v}u|+|u-v|)}{(|1-\bar{v}u|-|u-v|)^2},$$

and

$$e^{-\frac{8|u-v|}{|1-\bar{v}u|+|u-v|}} \frac{|1-\bar{v}u|^2(|1-\bar{v}u|-|u-v|)^2}{(|1-\bar{v}u|+|u-v|)^4}$$

$$-e^{\frac{8|u-v|^2}{|1-\bar{v}u|^2-|u-v|^2}} \frac{|1-\bar{v}u||u-v|}{|1-\bar{v}u|^2-|u-v|^2} \le J_f(z)$$

$$\le e^{\frac{8|u-v|}{|1-\bar{v}u|-|u-v|}} \frac{|1-\bar{v}u|(|1-\bar{v}u|+|u-v|)^3}{(|1-\bar{v}u|-|u-v|)^4}.$$

References

- [1] Z. Abdulhadi, Close-to-starlike log-harmonic mappings, *Internat. J. Math. and Math. Sci.*, **19**(3) (1996), 563-574.
- [2] Z. Abdulhadi, Typically real logharmonic mappings, *Internat. J. Math. and Math. Sci.*, **31**(1) (2002), 1-9.
- [3] Z. Abdulhadi and Y. Abu Muhanna, Starlike Log-harmonic Mappings of Order α, J. Inequal. Pure and Appl. Math., 7(4) (2006), Article 123.
- [4] Z. Abdulhadi and D. Bshouty, Univalent functions in $H\overline{H}$, Tran. Amer. Math. Soc., **305**(2) (1988), 841-849.
- [5] Z. Abdulhadi and W. Hengartner, Spirallike logharmonic mappings, Complex Variables Theory Appl., 9(2-3) (1987), 121-130.
- [6] Z. Abdulhadi and W. Hengartner, One pointed univalent logharmonic mappings, J. Math. Anal. Appl., 203(2) (1996), 333-351.
- [7] A.W. Goodman, *Univalent Functions*, Vol 1, Mariner Publishing Comp. Inc., Washington, New Jersey, 1983.

e.yavuz@iku.edu.tr

Department of Mathematics and Computer Science İstanbul Kültür University, 34156 İstanbul, Turkey.