<table>
<thead>
<tr>
<th>Title</th>
<th>Problem session (Geometric and analytic approaches to representations of a group and representation spaces)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Sakuma, Makoto</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2012), 1777: 110-112</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2012-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/171770</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Problem session

Makoto Sakuma (Hiroshima University)*

I. Finite representations of knot groups.

The method of mapping knot groups onto finite groups is a very effective method for distinguishing the groups (see [10, 11, 3]). So, it is natural to ask if this method is always successful at distinguishing the groups (see [11, Page 30]).

Problem 1 (1) Can we distinguish knot groups by counting the numbers of transitive representations of the knot groups to the symmetric group S_n of degree n? To be precise, for a knot group G and a positive integer n, let $R(G;n)$ be the set of transitive representations of G to S_n modulo post composition of inner automorphisms of S_n. Then its cardinality $|R(G;n)|$ is of course an invariant of the knot group. Is the family of invariants, $\{|R(G;n)|\}_n$, a complete invariant of the knot group? Namely, for two non-isomorphic knot groups G_1 and G_2, can we always find a positive integer n such that $|R(G_1;n)| \neq |R(G_2;n)|$?

(2) When a meridian, μ, of G is specified, we can refine $R(G;n)$ as follows. Let (n_1, n_2, \ldots, n_k) be a sequence of positive integers such that $n_1 + n_2 + \cdots + n_k = n$ and $n_1 \leq n_2 \leq \cdots \leq n_k$. Let $R(G, \mu; n_1, n_2, \ldots, n_k)$ be the subset of $R(G;n)$ consisting of those representations which map μ to a product of mutually disjoint cyclic permutations of length n_1, n_2, \ldots, n_k. Then is the family of the invariants, $\{|R(G, \mu; n_1, n_2, \ldots, n_k)|\}$, a complete invariant of (G, μ)?

(3) We can also consider the homology of branched/unbranched coverings associated with transitive representations of G to finite symmetric groups. Is the combination of the invariants $\{|R(G;n)|\}_n$ (resp. $\{|R(G, \mu; n_1, n_2, \ldots, n_k)|\}$) and the homology of associate finite branched/unbranched coverings a complete invariant of G (resp. (G, μ))?

Remark 2 In [3], we had to distinguish various pairs of mutants, and this was carried out by using the above methods with the help of Kodama's software [2].

Problem 1 motivates the following problem.

Problem 3 Is it true that two non-isomorphic knot groups have non-isomorphic profinite completions?

II. Simple loops on bridge spheres.

We present variations of the problems on Heegaard splittings of 3-manifolds raised by Y. Minsky [1, Question 5.4]. For a knot K in the 3-sphere S^3, let $(S^3, K) = (B^3_1, t_1) \cup (B^3_2, t_2)$ be an n-bridge decomposition of K and set $S := \partial B^3_1 \setminus t_1 = \partial B^3_2 \setminus t_2$.

Problem 4 (1) Which essential simple loop in S is null-homotopic in $S^3 \setminus K$?

(2) Which essential simple loops in S are mutually homotopic in $S^3 \setminus K$?

Let $\mathcal{M}(S)$ and $\mathcal{M}(B^3_i, t_i)$ ($i = 1, 2$), respectively, be the mapping class groups $\pi_0\text{Diff}(S)$ and $\pi_0\text{Diff}(B^3_i, t_i)$. For each $i = 1, 2$, let $\mathcal{M}_0(B^3_i, t_i)$ be the subgroup of

*e-mail: sakuma@math.hiroshima-u.ac.jp
\[\mathcal{M}(B_i^3, t_i) \] which consists of elements which induce the identity element in the outer-automorphism group \(\text{Out}(\pi_1(B_i^3 \setminus t_i)) \). Let \(\Gamma \) be the subgroup of \(\mathcal{M}(S) \) generated by \(\mathcal{M}_0(B_i^3, t_i) \cup \mathcal{M}_0(B_i^3, t_2) \). Let \(\Delta_i \) \((i = 1, 2)\) be the set of essential simple loops in \(S \) which bounds a disk in \(B_i^3 \setminus t_i \), and let \(\Delta \) be the union of \(\Delta_1 \) and \(\Delta_2 \). Note that \(\Delta \) is a subcomplex of the curve complex \(C^{(0)}(S) \) of \(S \).

Observation 5 Any simple loop in \(\Gamma \Delta \) is null-homotopic.

Problem 6 Is the converse true if the bridge decomposition is “complicated enough”?

Let \(\mathcal{PML}(S) \) be the projective measured lamination space of \(S \). Though the action of \(\mathcal{M}(S) \) on \(\mathcal{PML}(S) \) is ergodic, the action of \(\mathcal{M}_0(B_i^3, t_i) \) on \(\mathcal{PML}(S) \) would have a non-empty domain of discontinuity for each \(i = 1, 2 \) (see Masur [9]).

Problem 7 If the bridge decomposition of \(K \) is “complicated enough”, then does the action of \(\Gamma(\subset \mathcal{M}(S)) \) on \(\mathcal{PML}(S) \) have a nonempty domain of discontinuity?

Problem 8 Is \(\Gamma \) isomorphic to the free product of \(\mathcal{M}_0(B_i^3, t_i) \) and \(\mathcal{M}_0(B_i^3, t_2) \)?

Problem 9 Let \(\Omega(\Gamma) \) be the domain of discontinuity of the action of \(\Gamma \) on \(\mathcal{PML}(S) \). If a loop \(c \) on \(S \) belongs to the intersection of \(\Omega(\Gamma) \) and \(C^{(0)}(S) \), then is \(c \) not null-homotopic in \(S^3 \setminus K \)?

Problem 10 Can we find an open set \(U \) in \(\mathcal{PML}(S) \) such that any loop which belongs to the intersection of \(U \) and \(C^{(0)}(S) \) is not null-homotopic in \(S^3 \setminus K \)?

Let \(\Delta^* \) be the closure in \(\mathcal{PML}(S) \) of the set of loops in \(C^{(0)}(S) \) which is null-homotopic in \(S^3 \setminus K \).

Problem 11 Does \(\Delta^* \) have measure 0?

Remark 12 For 2-bridge spheres of 2-bridge links, Problems 4 - 11 are solved affirmatively (see [4, 5, 6, 7, 8]). In particular, for a 2-bridge link \(K(r) \), the action of \(\Gamma \) on \(\mathcal{PML}(S) \) has the domain of discontinuity, and the union of two intervals \(I_1 \cup I_2 \) in Figure 1 forms a fundamental domain.
References

