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Abstract A bounded linear operator $T$ on a Hilbert space is said to be normaloid if
the operator norm $\Vert T\Vert$ of $T$ equals to the spectral radius $r(T)= \sup\{|z||z\in\sigma(T)\}$

of $T$ where $\sigma(T)$ denotes the spectrum of $T$ , and said to be $*$ -paranormal if $\Vert T^{*}x\Vert^{2}\leq$

$\Vert T^{2}x\Vert\Vert x\Vert$ for all $x\in \mathcal{H}$ . Also we say that $T$ belongs to the class $\mathfrak{P}(n)$ for an $n\in N$ if
$\Vert Tx\Vert^{n}\leq\Vert T^{n}x\Vert\Vert x\Vert^{n-1}$ for all $x\in \mathcal{H}$ . An operator $T$ in $\mathfrak{P}(n)$ is called n-paranormal.

In this talk, we introduce that, for every $*$ -paranormal operator $T,$ (1) $T$ is isoloid (2)
the Riesz idempotent $E_{\lambda}$ of $T$ w. r. t. any isolated point $\lambda$ of $\sigma(T)$ is self-adjoint with
the property that $E_{\lambda}\mathcal{H}=ker(T-\lambda)=ker(T-\lambda)^{*}(3)$ Weyl $s$ theorem holds for $T$ and
(4) $T$ satisfies the spectral property (I) hence $T$ has the single valued extension property
(SVEP) and Bishop’s property $(\beta)$ . We also show some parallel results for the class $\mathfrak{P}(n)$ .

1. Isoloidness of $\mathfrak{P}(n)$ operators.

There are many important classes of Hilbert space normaloid operators. For examples
normal, subnormal, hyponormal, paranormal are famous and important classes. We study
two claases of operators, $*$ -paranormal and the class $\mathfrak{P}(n)$ in this paper. These operators
are generalization of paranormal and expected to have same properties as paranormal
operators, e.g.,

Isoloidness, self-adjointness of Riesz idempotent w. r. t. a non-zero isolated point of
the spectmm, Weyl $s$ theorem, SVEP and Bishop’s priperty $(\beta)$ .

To show that $*$ -paranormal and $\mathfrak{P}(n)$ operators have these properties we need some
lemmas.

The following are well-known:
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To prove that every $T\in \mathfrak{P}(2)$ is isoloid, i.e., any isolated point of $\sigma(T)$ is an eigen value
of $T$ , we use the facts $T$ and $T^{-1}$ are normaloid and any restriction of $T$ to its invariant
subspace is in $\mathfrak{P}(2)$ and hence normaloid. From these facts, we have if $T\in \mathfrak{P}(2)$ and
$\sigma(T)\subset S^{1};=\{z\in \mathbb{C}||z|=1\}$ then $T$ is unitary. And it is easy to see that $TE=\lambda E$ for
any isolated point $\lambda$ of $\sigma(T)$ and the Riesz idempotent $E$ w. r. t. $\lambda$ and hence $\lambda\in\sigma_{p}(T)$ .
However, it is not necessarily true that $T^{-1}$ is normaloid for $\mathfrak{P}(n)(n\geq 3)$ . The next
theorem show that every $T\in$ as $(n)$ is isoloid.

we say that a class of operators has property A if every operator $T$ in the class such as
$\sigma(T)\subset S^{1}$ is unitary.

Proposition. Paranormal, i.e., the class $\mathfrak{P}(2)$ , has property A.

Though the inverse of an invertible paranormal operator is always paranormal hence
it is normaloid, however, it is known that there is an example of invertible $*$-paranormal
whose inverse is not normaloid. The following theorem implies the classes $\mathfrak{P}(n)$ have
property A and hence they are normaloid.

Theorem 1. If $T\in \mathfrak{P}(n)$ is invertible then
$\Vert T\Vert\leq r(T^{-1})^{\frac{\mathfrak{n}(n-1)}{2}}\cross r(T)^{\frac{(n-2)(n+1)}{2}}$

If $T\in \mathfrak{P}(n)$ satisfies $\sigma(T)\subset S^{1}$ then $T$ is unitary.

Corollary 1. Every $T\in \mathfrak{P}(n)$ is isoloid.

2. Self-adjointness of Riesz idempotent for $\mathfrak{P}(n)$ operators.

For $a*$-paranormal operator $T$ and an isolated point $\lambda$ of its spectrum the Riesz idem-
potent $E= \frac{1}{2\pi i}\int_{\partial D_{\lambda}}(z-T)^{-1}dz$ satisfies $E_{\lambda}\mathcal{H}\subset ker(T-\lambda)$ , where $D_{\lambda}$ is a closed disk

with center $\lambda$ and small enough radius $r$ such as $D_{\lambda}\cap\sigma(T)=\{\lambda\}$ . Since $ker(T-\lambda)\subset E_{\lambda}\mathcal{H}$

is trivial and $ker(T-\lambda)$ reduces $T$ we have the following theorem.
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Since eigen space of a $\mathfrak{P}(n)$ operator is not necessarily reducing, similarly result does
not hold for the class $\mathfrak{P}(n)$ without some additional conditions. Let $n\in N,$ $\lambda\in$ C. The
polynomial

$F_{n,\lambda}(z):=-(n-1)\lambda^{n-1}+\lambda^{n-2}z+\lambda^{n-3}z^{2}\cdots+\lambda z^{n-2}+z^{n-1}$

is important to study the class $\mathfrak{P}(n)$ .

Theorem 2’. Let $T\in \mathfrak{P}(n)$ for an $n\geq 3,$ $\lambda$ be a non-zero isolated point of $\in\sigma_{p}(T)$ . Put

$T=(\begin{array}{ll}\lambda S0 A\end{array})$ on $\mathcal{H}=ker(T-\lambda)\oplus(ker(T-\lambda))^{\perp}$ . Then $S(\lambda^{n-1}+\lambda^{n-2}A+\cdots+\lambda A^{n-2}+$

$A^{n-1})=n\lambda^{n-1}S$ . In particular, if $\sigma(T)\cap\{z\in \mathbb{C}|F_{n,\lambda}(z)=0\}=\{\lambda\}$ , then the Riesz
idempotent $E_{\lambda}$ with respect to $\lambda$ is self-adjoint which satisfies

$E_{\lambda}\mathcal{H}=ker(T-\lambda)=ker(T-\lambda)^{*}$ .

3. Weyl’s theorem, SVEP and Bishop’s property $(\beta)$ .

We say that Weyl $s$ theorem holds for an operator $T\in \mathcal{B}(\mathcal{H})$ , or $T$ satisfies Weyl $s$

theorem, iff
$\sigma(T)\backslash w(T)=\pi_{00}(T)$ ,

where $w(T)$ $:=$ { $z\in \mathbb{C}|T-z$ is not a Fredholm operator with index $0$ } (Weyl spectrum
of $T)$ and $\pi_{00}(T);=$ { $z\in\sigma_{p}(T)|z$ is isolated in $\sigma(T)$ and dim ker$(T-z)<\infty$ }.

By using Riesz idempotent and Fredholm theory, we extend this result to the case where
$\mathfrak{P}(n)(n\geq 3)$ as follows.

Theorem 3. If $T\in \mathfrak{P}(n)$ then $T$ satisfies Weyl $s$ theorem.

An operator $T\mathcal{B}(\mathcal{H})$ is said to have SVEP at $\lambda\in \mathbb{C}$ if for any open nbd $\mathcal{U}$ of $\lambda$ and
analytic function $f$ : $\mathcal{U}arrow \mathcal{H}$ the zero function is the only analytic solution of the equation
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$(T-z)f(z)=0$ for all $z\in \mathcal{U}$ . And $T$ is said to have SVEP iff $T$ has SVEP at any $\lambda\in \mathbb{C}$ .
Also, $T$ is said to have Bishop’s property $(\beta)$ iff for any open set $\mathcal{D}\subset \mathbb{C}$ and any sequence
of analytic functions $f_{n}$ : $\mathcal{D}arrow \mathcal{H}$ such as 1 $(T-z)f_{n}(z)\Vertarrow 0$ uniformly on every compact
subset of $\mathcal{D}$ then $f_{n}arrow 0$ uniformly on every compact subset of $D$ .

The following theorem implies every $T\in \mathfrak{P}(n)$ has SVEP.

Theorem 4. If $T\in \mathfrak{P}(n)$ and $\lambda,$ $\mu\in \mathbb{C}(\lambda\neq\mu)$ then $ker(T-\lambda)\perp ker(T-\mu)$ .

If $f$ : $\mathcal{U}arrow \mathcal{H}$ satisfies $(T-z)f(z)\equiv 0$ then $\langle f(z),$ $f(w)\}=0$ if $z/x$ . Hence

$\Vert f(z)\Vert^{2}=\lim_{warrow z}\langle f(z),$ $f(w)\rangle=0$ , $f\equiv 0$ .

To prove that every $T\in \mathfrak{P}(n)$ has Bishop’s property $(\beta)$ , we use the following theorem.

For $*$-paranormal operators and $\mathfrak{P}(n)$ operators we have the following.

Theorem 5. If $T$ is $*$-paranormal then $T$ has the property (I).
If $T\in \mathfrak{P}(n)$ then $T$ has the property (II).
Hence, if $T$ is $*$-paranormal or $T\in \mathfrak{P}(n)$ then $T$ has SVEP and Bishop’s property
$(\beta)$ .
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