<table>
<thead>
<tr>
<th>Title</th>
<th>Collapsing behaviour of the logarithmic diffusion equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Hui, Kin Ming</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2012), 1779: 98-110</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2012-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/171804</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

京都大学学術情報リポジトリ
Kyoto University Research Information Repository
Collapsing behaviour of the logarithmic diffusion equation

Kin Ming Hui
Institute of Mathematics, Academia Sinica,
Nankang, Taipei, 11529, Taiwan, R. O. C.

June 11, 2011

Abstract

I will report my result on the collapsing behaviour of the maximal solution of the equation $u_t = \Delta \log u$ in $\mathbb{R}^2 \times (0, T)$, $u(x, 0) = u_0(x)$ in \mathbb{R}^2, near its extinction time $T = \int_{\mathbb{R}^2} u_0 dx / 4\pi$ without using the Hamilton-Yau Harnack inequality. This result extends the recent result of P. Daskalopoulos, M.A. del Pino and N. Sesum [DP2], [DS2].

In this report I will discuss my recent result [Hu5] on the collapsing behaviour of the maximal solution of the logarithmic diffusion equation:

\begin{equation}
\begin{cases}
 u_t = \Delta \log u, u > 0, & \text{in } \mathbb{R}^2 \times (0, T) \\
 u(x, 0) = u_0 & \text{in } \mathbb{R}^2.
\end{cases}
\end{equation} (0.1)

(0.1) arises in many physical and geometric models. For example P.L. Lions and Toscani [LT] have shown that (0.1) arises as the diffusive limit for finite velocity Boltzmann kinetic models and T.G. Kurtz [Ku] has proved that (0.1) is the limiting density distribution of two gases moving against each other and obeying the Boltzmann equation. In [G] P.G. de Gennes showed that (0.1) also appears in the model of viscous liquid film lying on a solid surface and subjecting to long range Van der Waals interactions with fourth order term neglected.

Recently K.M. Hui [Hu3], [Hu4] (for the case $m > 0$ and $m < 0$), and J.R. Esteban, A. Rodriguez, J.L. Vazquez [ERV] (for the case $m > 0$) have shown that the solution of the porous medium equation

\[u_t = \Delta \left(\frac{u^m}{m} \right) \]
converges to the maximal solution of (0.1) as $m \to 0$. In [W1], [W2], [H], Angenent, L. Wu and R. Hamilton showed that the equation also arises in the study of the conformally equivalent metric $g_{ij} = u\delta_{ij}$ on \mathbb{R}^2 under the Ricci flow

$$\frac{\partial}{\partial t} g_{ij} = -2R_{ij} \tag{0.2}$$

where R_{ij} is the Ricci curvature of the metric g_{ij}. Note that in \mathbb{R}^2 the scalar curvature R is given by

$$R = -\frac{\Delta \log u}{u} \tag{0.3}$$

and the Ricci curvature is given by

$$R_{ij} = \frac{1}{2} R g_{ij}. \tag{0.4}$$

By (0.3) and (0.4) the Ricci flow equation (0.2) is equivalent to the logarithmic diffusion equation:

$$u_t = \Delta \log u.$$

1 Existence and properties of solutions

The equation (0.1) has many properties different from the heat equation such as existence of infinite many solutions for any given initial L^1 data. There also does not exist any fundamental solution for (0.1) [Hu1] which suggests that conservation of mass does not hold. K.M. Hui [Hu2] by using approximation by Neumann solutions in bounded domains and P. Daskalaopoulos and M.A. del Pino [DP1] by using approximation by Dirichlet solutions in bounded domains proved independently that corresponding to each

$$0 \leq u_0 \in L^p(\mathbb{R}^2) \cap L^1(\mathbb{R}^2), p > 1, 2 \leq f \in L^1(0, \infty),$$

there exists a classical solution u of (0.1) in $\mathbb{R}^n \times (0, T)$ satisfying the mass loss equation,

$$\int_{\mathbb{R}^2} u(x, t) \, dx = \int_{\mathbb{R}^2} u_0 \, dx - 2\pi \int_0^t f(s) \, ds \quad \forall 0 \leq t < T \tag{0.5}$$

where $T = T(u_0, f) > 0$ given by

$$\int_{\mathbb{R}^2} u_0 \, dx = 2\pi \int_0^T f(s) \, ds \tag{0.6}$$

is the extinction time for the solution u. Hence the solution with flux f vanishes identically to zero at time T.

Note that the maximal solution of (0.1) is the solution of (0.1) that corresponds to flux $f = 2$ which satisfies

$$\int_{\mathbb{R}^2} u(x, t) \, dx = \int_{\mathbb{R}^2} u_0 \, dx - 4\pi t \quad \forall 0 \leq t < T$$

with

$$T = \frac{1}{4\pi} \int_{\mathbb{R}^2} u_0 \, dx.$$

For any $2 < f \in C(0, T)$ the solution u with flux f satisfies the following decay condition at infinity:

$$\lim_{|x| \to \infty} \frac{\log u}{\log |x|} = -f$$

uniformly on $[a, b] \quad \forall 0 < a < b < T$

or equivalently

$$\lim_{|x| \to \infty} \frac{ru_r}{u} = -f$$

uniformly on $[a, b] \quad \forall 0 < a < b < T$.

One would like to ask what is the asymptotic behaviour of the solution with constant flux $f = \gamma \geq 2$? When $\gamma > 2$, S.Y. Hsu [Hs1], [Hs2], by using the lap number method of Matano [M], V.A. Galaktionov and L.A. Peletier [GP], proved that if the initial value is radially symmetric and monotone decreasing and u is the solution with flux $\gamma > 2$, then there exist unique constants $\alpha > 0$, $\beta > -1/2$, $\alpha = 2\beta + 1$, depending only on γ such that the rescaled function

$$v(y, s) = \frac{u(y/(T-t)^{\beta}, t)}{(T-t)^{\alpha}}, \quad s = -\log (T-t),$$

converges uniformly on every compact subset of \mathbb{R}^2 to $\phi_{\lambda, \beta}(y)$ for some constant $\lambda > 0$ as $s \to \infty$ where $\phi_{\lambda, \beta}(y) = \phi_{\lambda, \beta}(|y|)$ is radially symmetric and satisfies the following O.D.E.:

$$\frac{1}{r} \left(\frac{r \phi'}{\phi} \right)' + \alpha \phi + \beta r \phi' = 0 \quad \text{in } (0, \infty)$$

with

$$\phi(0) = 1/\lambda, \phi'(0) = 0.$$

In particular for $\gamma = 4$, the rescaled solution

$$v(x, s) = \frac{u(x, t)}{T-t'}, \quad s = -\log(T-t),$$

converges uniformly on every compact subsets of \mathbb{R}^2 to the function

$$\frac{8\lambda}{(\lambda + |x|^2)^2}.$$
as $s \to \infty$ for some constant $\lambda > 0$. What this said is that for solution with flux $f = 4$,

$$u(x,t) \approx \frac{8\lambda(T-t)}{(\lambda + |x|^2)^2} \quad \text{as } t \nearrow T$$

which corresponds to contracting spheres Ricci flow solution on S^2.

What about the asymptotic behaviour of the solution with flux $f = 2$? J.R. King [K] by using inner and outer asymptotic expansion and matching asymptotic method showed that if u is the solution of the logarithmic diffusion equation (0.1) with flux $f = 2$ then as t approaches the extinction time T the vanishing behaviour for solution is very different from the vanishing behaviour for the case $f \equiv \gamma > 2$. J.R. King found that for compactly supportly finite mass initial value the maximal solution behaves like

$$\frac{(T - t)^2}{\frac{1}{2}|x|^2 + e^{\frac{2T}{(T-t)}}}$$

in the inner region $(T - t) \log |x| \leq T$ and behaves like

$$\frac{2t}{|x|^2(\log |x|)^2}$$

in the outer region $(T - t) \log |x| \geq T$ as $t \nearrow T$. In [DP2] P. Daskalopoulos and M.A. del Pino gave a rigorous proof of an extension of this formal result for radially symmetric initial value $u_0(r) \geq 0$ satisfying the conditions,

$$u_0(x) = u_0(|x|)$$

is decreasing on $r = |x| \geq r_1$ for some constant $r_1 > 0$,

$$u_0(x) = \frac{2\mu}{|x|^2(\log |x|)^2}(1 + o(1)) \quad \text{as } |x| \to \infty,$$

for some constant $\mu > 0$ and

$$R_0(x) := -\frac{\Delta \log u_0}{u_0} \geq -\frac{1}{\mu} \quad \text{on } \mathbb{R}^2.$$

Later P. Daskalopoulos and N. Sesum [DS2] extended this result to the case of compactly supported $0 \leq u_0 \in L^1(\mathbb{R}^2) \cap L^\infty(\mathbb{R}^2)$. However their proof of the behaviour of the maximal solution in the outer region near the extinction time is very difficult and uses the Hamilton-Yau Hamack inequality. Recently in [Hu5] I extended their result to the case of initial value

$$0 \leq u_0 \in L^1(\mathbb{R}^2) \cap L^\infty(\mathbb{R}^2)$$

that satisfies

$$u_0(x) = u_0(|x|)$$

is decreasing on $r = |x| \geq r_1$ for some constant $r_1 > 0$.\[101\]
\[u_0(x) = \frac{2\mu}{|x|^2(\log |x|)^2}(1 + o(1)) \quad \text{as} \quad |x| \to \infty, \]

and

\[R_0(x) := -\frac{\Delta \log u_0}{u_0} \geq -\frac{1}{\mu} \quad \text{on} \quad \mathbb{R}^2 \]

for some constant \(\mu \geq 0 \) with the right hand side being replaced by \(-\infty\) if \(\mu = 0 \) and

\[
\text{ess inf}_{\overline{B}_{r_1}(0)} u_0 \geq \text{ess sup}_{\mathbb{R}^2 \setminus B_{r_2}(0)} u_0 \quad \text{for some constant} \quad r_2 > r_1. \tag{1.1}
\]

Note that (1.1) is automatically satisfied if \(u_0 \) has compact support in \(\mathbb{R}^2 \). In [Hu5] I proved the behaviour of the maximal solution in the outer region near the extinction time by elementary method without using the difficult Hamilton-Yau Harnack inequality for surfaces. I also obtained the behaviour of the maximal solution in the inner region as the extinction time is approached.

I will now assume that \(u_0 \) satisfies the above structural conditions and \(u \) is the maximal solution of (0.1) in \(\mathbb{R}^2 \times (0, T) \) with flux \(f \equiv 2 \) and

\[T = \frac{1}{4\pi} \int_{\mathbb{R}^2} u_0 \, dx. \]

I will sketch of proof of [Hu5] here.

2 Inner region behaviour

By using the reflection method of D.G. Aronson and L.A. Caffarelli [AC] one has the following lemma:

Lemma 2.1. (Lemma 1.1 of [Hu5]) The solution \(u \) satisfies

\[u(x, t) \geq u(y, t) \]

for any \(t \in (0, T) \) and \(x, y \in \mathbb{R}^2 \) such that \(|y| \geq |x| + 2r_2 \).

Then for any \(0 < t \leq T \) there exists \(x_t \in \overline{B}_{2r_2} \) such that

\[u(x_t, t) = \max_{x \in \mathbb{R}^2} u(x, t). \]

That is the maximum of \(u(\cdot, t) \) is attained on the compact set \(\overline{B}_{2r_2} \). We will now perform a rescaling of the solution of (0.1). Let

\[\overline{u}(x, \tau) = \tau^2 u(x, t), \quad \tau = \frac{1}{T-t}, \tau > 1/T. \]
Then \overline{u} satisfies
\[
\overline{u}_\tau = \Delta \log \overline{u} + \frac{2\overline{u}}{\tau} \quad \text{in } \mathbb{R}^2 \times (1/T, \infty).
\]
Let
\[
R_{\max}(t) = \max_{x \in \mathbb{R}^2} R(x, t)
\]
and let $W(t)$ be the width function with respect to the metric $g_{ij}(t)$ as defined by P. Daskalopoulos and R. Hamilton [DH]. We now recall a result of P. Daskalopoulos and R. Hamilton [DH]:

Theorem 2.2. ([DH]) There exist positive constants $c > 0$ and $C > 0$ such that

(i) $c(T - t) \leq W(t) \leq C(T - t)$

(ii) \(\frac{c}{(T-t)^2} \leq R_{\max}(t) \leq \frac{c}{(T-t)^2}\)

hold for any $0 < t < T$.

By Theorem 2.2,
\[
c \leq \limsup_{t/T} (T-t)^2 R_{\max}(t) \leq C.
\]
Hence the singularity is a type II singularity. Note that u satisfies the Aronson-Bénilan inequality,
\[
\frac{u_t}{u} \leq \frac{1}{t} \quad \text{in } \mathbb{R}^2 \times (0, T).
\]

As
\[
R = -\frac{\Delta \log u}{u} = -\frac{u_t}{u},
\]
the Aronson-Bénilan inequality is equivalent to
\[
R \geq -\frac{1}{t}.
\]

So if we let
\[
\overline{R}(x, \tau) = -\frac{\Delta \log \overline{u}}{\overline{u}}.
\]
Then
\[
\frac{2}{\tau} + \frac{2}{\tau^2 T} \geq \frac{\overline{u}_\tau}{\overline{u}} \geq -C \quad \text{in } \mathbb{R}^2 \times (2/T, \infty). \tag{2.1}
\]

Theorem 2.3. (Theorem 1.3 of [Hu5]) For any sequence $\{\tau_k\}_{k=1}^{\infty}, \tau_k \to \infty$ as $k \to \infty$, let
\[
\overline{u}_k(y, \tau) = \alpha_k \overline{u}(\alpha_k^\frac{1}{2} y + x_k, \tau + \tau_k), \quad y \in \mathbb{R}^2, \tau > -\tau_k + T^{-1}
\]
where
\[
t_k = T - \tau_k^{-1} \quad \forall k \in \mathbb{Z}^+.
\]
and

$$\alpha_k = 1/\overline{u}(x_t, \tau_k).$$

Then \([\overline{u}_k]_{i=1}^{\infty} \) has a subsequence \([\overline{u}_{i_k}]_{i=1}^{\infty} \) that converges uniformly on \(C^\infty(K) \) for any compact set \(K \subset \mathbb{R}^2 \times (-\infty, \infty) \) as \(i \to \infty \) to a positive solution

$$U(y, \tau) = \frac{1}{\lambda|y|^2 + e^{4\lambda\tau}}.$$

of equation

$$U_\tau = \Delta \log U \quad \text{in} \quad \mathbb{R}^2 \times (-\infty, \infty)$$

with uniformly bounded non-negative scalar curvature and uniformly bounded width on \(\mathbb{R}^2 \times (-\infty, \infty) \) with respect to the metric \(\tilde{g}_{ij}(t) = U(\cdot, t)\delta_{ij} \) where \(\lambda > 0 \) is some constant.

Proof: (Sketch) By definition,

$$\overline{u}_k(0,0) = 1 \quad \text{and} \quad \overline{u}_k(y,0) \leq 1 \quad \forall y \in \mathbb{R}^2.$$

Let \(a < b \). By (2.1) there exist constants \(M_1 > 0 \) and \(k_0 \in \mathbb{Z}^+ \) such that

$$\overline{u}_k(x, \tau) \leq M_1 \quad \text{and} \quad |\overline{u}_{k,x}(x, \tau)| \leq CM_1 \quad \forall x \in \mathbb{R}^2, a \leq \tau \leq b, k \geq k_0.$$

By (2.2) one can deduce the following Harnack inequality:

For any \(a < b \), there exists a constant \(C > 0 \) such that

$$\sup_{|y| \leq R_1} \overline{u}_k(y, \tau_1)^9 \leq C_2 \inf_{|y| \leq R_1} \overline{u}_k(x, \tau_2) \quad \forall k \geq k_0.$$

Hence the sequence \(\overline{u}_k \) is uniformly parabolic on \(\overline{B}_{R_1} \times [a, b] \) and are uniformly Holder continuous in \(C^{2\gamma, 1/\gamma}(\overline{B}_{R_1} \times [a, b]) \) for any \(\gamma \in \mathbb{Z}^+ \). Then the sequence \([\overline{u}_i]_{i=1}^{\infty} \) has a subsequence which we may assume without loss of generality to be the sequence itself that converges uniformly in \(C^\infty(K) \) as \(k \to \infty \) for any compact set \(K \subset \mathbb{R}^2 \times (-\infty, \infty) \) to some positive function \(U \) that satisfies the logarithmic diffusion equation. Let

$$\overline{R}_k = -\frac{\Delta \log \overline{u}_k}{\overline{u}_k}.$$

Then \(\overline{R}_k \) converges uniformly on every compact subset of \(\mathbb{R}^2 \times (-\infty, \infty) \) as \(k \to \infty \) to the scalar curvature

$$\overline{R} = -\frac{\Delta \log U}{U}$$

of the metric \(\tilde{g}_{ij}(\tau) = U(\cdot, \tau)\delta_{ij} \). Moreover

$$0 \leq \overline{R}(y, \tau) \leq C \quad \forall (y, \tau) \in \mathbb{R}^2 \times (-\infty, \infty).$$
By an approximation argument the width function with respect to the metric \(\overline{g}_{ij}(\tau) = U(\cdot, \tau)\delta_{ij} \) is uniformly bounded on \(\mathbb{R}^2 \times (-\infty, \infty) \). Then by the result of P. Daskalopoulos and N. Sesum [DS1],

\[
U(y, \tau) = \frac{2}{\beta(|y - y_0|^2 + \delta e^{2\beta \tau})}
\]

for some \(y_0 \in \mathbb{R}^2 \) and constants \(\beta > 0, \delta > 0 \). Since \(\overline{u}_k(y, 0) \) attains its maximum at \(y = 0 \), \(U(y, 0) \) will attain its maximum at \(y = 0 \). Hence \(y_0 = 0 \).

\[
U(0, 0) = 1 \quad \Rightarrow \quad 1 = \frac{2}{\beta \delta}.
\]

Thus

\[
U(y, \tau) = \frac{1}{\lambda |y|^2 + e^{4\lambda \tau}}
\]

for some constant \(\lambda > 0 \).

\[\square\]

It can be proved that \(\alpha_k \to \infty \) as \(k \to \infty \).

Hence we can change the origin in rescaling and have the following result:

Lemma 2.4. (Lemma 1.10 of [Hu5]) Let

\[
q_k(y, \tau) = \alpha_k \overline{u}(\alpha_k^{\frac{1}{2}}y, \tau + \tau_k).
\]

Then \(q_k(y, \tau) \) converges uniformly in \(C^\infty(K) \) for every compact set \(K \subset \mathbb{R}^2 \) to the function \(U(y, \tau) \) as \(\tau \to \infty \).

We will now perform a change of scaling. Let

\[
\beta(\tau) = 1/\overline{u}(0, \tau),
\]

\[
\beta_k = \beta(\tau_k), \quad \text{and}
\]

\[
\bar{q}_k(y, \tau) = \beta_k \overline{u}(\beta_k^{\frac{1}{2}}y, \tau + \tau_k).
\]

Then

\[
\frac{\alpha_k}{\beta_k} = q_k(0, 0) \to U(0, 0) = 1 \quad \text{as} \quad k \to \infty.
\]

Hence there exists \(k_0 \in \mathbb{Z}^+ \) and constants \(c_2 > c_1 > 0 \) such that

\[c_1 \leq \frac{\beta_k}{\alpha_k} \leq c_2 \quad \forall k \geq k_0.
\]

Thus we have the following result.
Theorem 2.5. (Theorem 1.11 of [Hu5]) \(\overline{q}_k \) has a subsequence \(\overline{q}_{k_l} \) that converges uniformly on \(C^\infty(K) \) for any compact set \(K \subset \mathbb{R}^2 \times (-\infty, \infty) \) to \(U(y, \tau) \) as \(\tau \to \infty \). Moreover \(\beta_k \to \infty \) as \(k \to \infty \).

Lemma 2.6. (Proposition 1.17 and Proposition 1.18 of [Hu5])

\[
\lim_{\tau \to \infty} \frac{\beta'(\tau)}{\beta(\tau)} = \lim_{\tau \to \infty} \frac{\log \beta(\tau)}{\tau} = 2(T + \mu).
\]

Let

\[
\tilde{R}_k = -\frac{\Delta \log \overline{q}_k}{\overline{q}_k}.
\]

Since

\[
\tilde{R}_k(0, 0) = \frac{\beta'(\tau_k)}{\beta(\tau_k)} + \frac{2}{\tau_k},
\]

then

\[
4\lambda = \lim_{\tau \to \infty} \tilde{R}_k(0, 0) = 2(T + \mu).
\]

Let

\[
\overline{q}(y, \tau) = \beta(\tau) \overline{u}(\beta(\tau)^{\frac{1}{2}}y, \tau).
\]

We then have the following main theorem for inner region.

Theorem 2.7. (Theorem 1.21 of [Hu5]) \(\overline{q}(y, \tau) \) converges uniformly on \(C^\infty(K) \) for any compact set \(K \subset \mathbb{R}^2 \) to the function

\[
U_\mu(y) = \frac{1}{\frac{(T+\mu)}{2}|y|^2 + 1}
\]

as \(\tau \to \infty \).

Corollary 2.8. (cf. [Hu5]) For any \(\epsilon > 0 \) and \(M > 0 \) there exist \(\tau_0 > 1/T \) and \(C > 0 \) such that

\[
\begin{cases}
|u(x, t) - \frac{(T-t)^2}{\lambda|x|^2 + \beta(\tau)}| < u(0, t)\epsilon & \forall |x| \leq \beta(\tau)^{\frac{3}{2}}M, \tau > \tau_0 \\
u(0, t) \leq C(T-t)^2 & \forall t > T - \tau_0^{-1}.
\end{cases}
\]

where \(\tau = 1/(T-t) \).

As in [DP2], [DS2], [Hu5], we now consider the cylindrical change of variables,

\[
v(\zeta, \theta, t) = r^2u(r, \theta, t), \quad \zeta = \log r, r = |x|
\]

and let

\[
\overline{v}(\xi, \theta, \tau) = \tau^2v(\tau\xi, \theta, t), \quad \tau = 1/(T-t), \tau \geq 1/T.
\]

Then \(\overline{v} \) satisfies

\[
\tau \overline{v}_\tau = \frac{1}{\tau} (\log \overline{v})_{\xi\xi} + \tau (\log \overline{v})_{\theta\theta} + \xi \overline{v}_\xi + 2\overline{v} \quad \text{in } \mathbb{R} \times [0, 2\pi] \times (1/T, \infty).
\]
Corollary 2.9. (Lemma 1.23 of [Hu5]) For any $\varepsilon > 0$ there exists $\tau_0 > 1/T$ such that

$$\left| \overline{v}(\xi, \theta, \tau) - \frac{e^{2\tau \xi}}{\frac{T+\mu}{2} e^{2\tau \xi} + \beta(\tau)} \right| < \frac{e^{2\tau \xi}}{\beta(\tau)} \varepsilon \quad \forall \xi \leq \frac{\log \beta(\tau)}{2\tau}, \theta \in [0, 2\pi], \tau \geq \tau_0.$$

Corollary 2.10. (Corollary 1.24 of [Hu5])

$$\int_{-\infty}^{-} f_0^{2\pi} \overline{v}(\xi, \Theta, \tau) d\Theta d\xi \to 0 \quad \text{as} \quad \tau \to \infty$$

and

$$\lim_{\tau \to \infty} \overline{v}(\xi, \theta, \tau) = 0 \quad \text{uniformly on} \quad (-\infty, \xi^-] \times [0, 2\pi]$$

for any $\xi^- < T + \mu$.

3 Outer region behaviour

Let

$$\xi(\tau) = \frac{(\log \beta(\tau))}{2\tau}.$$

Lemma 3.1. (Lemma 2.1 of [Hu5]) There exists constants $C_1 > 0, C_2 > 0, C_3 > 0$ and $\tau_0 > 1/T$ such that the following holds.

(i) $\overline{v}(\xi, \theta, \tau) \leq C_1$ $\forall \xi \in \mathbb{R}, \theta \in [0, 2\pi], \tau \geq 1/T$

(ii) $\overline{v}(\xi, \theta, \tau) \geq \frac{C_2}{\xi^2}$ $\forall \xi \geq \xi(\tau), \theta \in [0, 2\pi], \tau \geq \tau_0$

(iii) $\overline{v}(\xi, \theta, \tau) \leq \frac{C_3}{\xi^2}$ $\forall \xi > 0, \theta \in [0, 2\pi], \tau \geq \tau_0$.

Moreover

$$\xi(\tau) = T + \mu + o(1) \quad \text{as} \quad \tau \to \infty.$$

We now let

$$w(\xi, \theta, s) = \overline{v}(\xi, \theta, \tau)$$

with

$$s = \log \tau = -\log(T - t).$$

Then

$$w_s = e^{-s} (\log w)_{\xi\xi} + e^s (\log w)_{\theta\theta} + \xi w_{\xi} + 2w \quad \text{in} \quad \mathbb{R} \times [0, 2\pi] \times (-\log T, \infty).$$

The following is the main theorem for outer region.
Theorem 3.2. (Theorem 2.3 of [Hu5]) As $\tau \to \infty$, the function \overline{v} converges to the function

$$V(\xi) = \begin{cases} \frac{2(T + \mu)}{\xi^2} & \forall \xi > T + \mu \\ 0 & \forall \xi < T + \mu. \end{cases}$$

Moreover the convergence is uniform on $(-\infty, a]$ for any $a < T + \mu$ and on $[\xi_0, \xi_0']$ for any $\xi_0' > \xi_0 > T + \mu$.

Proof: (Sketch) Let $\{s_k\}_{k=1}^{\infty}$ be a sequence such that $s_k \to \infty$ as $k \to \infty$ and

$$w_k(\xi, \theta, s) = w(\xi, \theta, s + s_k) \quad \forall \xi \in \mathbb{R}, 0 \leq \theta \leq 2\pi, s \geq -\log T - s_k.$$

Let

$$W^b_k(\eta, s) = \int_{\eta}^{b} \int_{0}^{2\pi} w_k(\xi, \theta, s) d\theta d\xi \quad \forall b \geq \eta > T + \mu, s > -\log T - s_k, k \in \mathbb{Z}^+,$$

$$W_k(\eta, s) = \int_{\eta}^{\infty} \int_{0}^{2\pi} w_k(\xi, \theta, s) d\theta d\xi \quad \forall \eta > T + \mu, s > -\log T - s_k, k \in \mathbb{Z}^+$$

and let $\{b_i\}_{i=1}^{\infty}$ be a monotonically increasing sequence such that $b_i > T + \mu$ for any $i \in \mathbb{Z}^+$ and $b_i \to \infty$ as $i \to \infty$.

Since

$$\int_{\mathbb{R}^2} u(x, t) dx = 4\pi(T - t) \quad \forall 0 < t < T,$$

$$\int_{-\infty}^{\infty} \int_{0}^{2\pi} w_k(\xi, \theta, s) d\theta d\xi = 4\pi \quad \forall s > -\log T - s_k, k \in \mathbb{Z}^+.$$

One can prove that there exists a function \overline{w} and a subsequence of \mathbb{Z}^+ which we may assume without loss of generality to be \mathbb{Z}^+ itself such that

$$W^b_k \to W^b_i \quad \text{uniformly on } [a, b] \times [c, d] \quad b > a > T + \mu, d > c \quad \text{as } k \to \infty$$

for any $i \in \mathbb{Z}^+$ and

$$W_k \to W \quad \text{uniformly on } [a, b] \times [c, d] \quad b > a > T + \mu, d > c \quad \text{as } k \to \infty$$

where

$$W^b(\eta, s) = \int_{\eta}^{b} \int_{0}^{2\pi} \overline{w}(\xi, \theta, s) d\theta d\xi, \quad W(\eta, s) = \int_{\eta}^{\infty} \int_{0}^{2\pi} \overline{w}(\xi, \theta, s) d\theta d\xi.$$

By elementary argument one can show that

$$\eta W(\eta, s) = \overline{\eta} W(\overline{\eta}, \overline{s}) \quad \forall \eta, \overline{\eta} > T + \mu, s, \overline{s} \in \mathbb{R}.$$
and
\[W(T + \mu, s) = 4\pi \quad \forall s \in \mathbb{R}. \]

Letting $\bar{\eta} \to T + \mu$,
\[W(\eta, s) = \frac{4\pi(T + \mu)}{\eta} \quad \forall \eta > T + \mu, s \in \mathbb{R} \]
which will then imply the theorem after some elementary computation. \qed

References

[Hu3] K.M. Hui, *Singular limit of solutions of the equation* $u_t = \Delta (u^m/m)$ *as* $m \to 0$, Pacific J. Math. 187 (1999), no. 2, 297–316.

